1
|
Chatio ST, Ganle JK, Adongo PB, Ansah PO, Nonterah EA, Mensah NK, Akazili J, Beisel U. Strategies to build trust in the conduct of clinical trials: Stakeholders' views in a qualitative study in Ghana. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003201. [PMID: 40198690 PMCID: PMC11978029 DOI: 10.1371/journal.pgph.0003201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
While clinical trials have evolved and improved over time producing significant advances in diagnosis, treatment and prevention of diseases, there are equally key challenges such as feasibility of some clinical trials and most importantly the issue of trust in the conduct of clinical trials. Thus, this study provides scientific evidence to address challenges associated with clinical trials conduct as well as a framework describing appropriate trust building strategies to guide the conduct of future clinical trial studies in Ghana and beyond. The study used qualitative research approach where 48 in-depth and Key informant interviews were conducted with participants between June and August, 2019. The interviews were recorded, transcribed and coded into themes using QSR Nvivo 12 software before thematic content analysis. The results revealed low level of trust in the conduct of clinical trials in Ghana. Participants recommended several trust building strategies to improve trust across the clinical trial cycle. Pre-implementation strategies such as effective stakeholder engagement and strengthening clinical trial regulatory bodies were recommended to build community trust. Implementation strategies such as effective monitoring, addressing issues of untrustworthiness and misconceptions regarding drawing and use of blood samples, improved informed consent procedures as well as post-implementation strategy such as timely feedback to clinical trial communities were highly recommended to build trust in clinical trials conduct. Trust is an important factor affecting clinical trials conduct especially in developing countries. The need to invest in national and community level trust-building activities through appropriate stakeholder engagement and effective monitoring systems by clinical trial regulatory bodies are critical strategies to improve trust in clinical trials conduct.
Collapse
Affiliation(s)
- Samuel Tamti Chatio
- Navrongo Health Research Centre, Navrongo, Ghana
- School of Public Health, C.K Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - John Kuumuori Ganle
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Philip Baba Adongo
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | | | - Engelbert A. Nonterah
- Navrongo Health Research Centre, Navrongo, Ghana
- School of Public Health, C.K Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Nathan Kumasenu Mensah
- Department of Health Information Management, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - James Akazili
- School of Public Health, C.K Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Ulrike Beisel
- Institute for Anthropology, Faculty of Cultural Studies, Bayreuth University, Germany
| |
Collapse
|
2
|
Sardar A, Bhowmick S, Kamble M, Dewangan N, Hazra B, Mallick AI, Tarafdar PK. De Novo Design of Lipopeptide-Based β-Sheet-Like Self-Assemblies: A Strategy to Develop Fusion Inhibitors as Broad-Spectrum Antivirals. Chemistry 2025; 31:e202403039. [PMID: 39716967 DOI: 10.1002/chem.202403039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
The recent surge in emerging viral infections warrants the design of broad-spectrum antivirals. We aim to develop a lead molecule that targets a common biochemical feature of many enveloped viruses, membrane fusion. To achieve the broad-spectrum ability, instead of targeting the fusion machinery, we plan to modulate the physicochemical properties of the host and viral membranes to block fusion. The approach is based on the Coronin-1 protein of Mycobacterium, which presumably inhibits the phagosome-lysosome fusion, and a unique Trp-Asp (WD) sequence is placed at the distorted β-meander motif. We designed a WD-based branched lipopeptide (Myr-D(WD)2) that supported the intermolecular interactions to create a β-sheet-like supramolecular assembly at the membrane surface. TEM and confocal fluorescence experiments also suggest that the lipopeptide self-assembled at the bilayer interface and modulated the interfacial order and the water penetration. We demonstrated that the supramolecular organization of Myr-D(WD)2 could block artificial membrane fusion completely and restrict pH-dependent influenza virus (H1N1, H9N2), and pH-independent mouse hepatitis virus, human coronavirus (HCoV-OC43) infections. The present study provided an evidence-based broad-spectrum antiviral potential of a designed self-assembled lipopeptide.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Sucharita Bhowmick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Mithila Kamble
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Nikesh Dewangan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741 246, India
| |
Collapse
|
3
|
Lee H, van de Mortel TF, Zimmerman PA. The experiences and roles of infection prevention and control professionals working in residential care facilities during global outbreaks: An integrative review. Infect Dis Health 2025:S2468-0451(25)00002-1. [PMID: 39894700 DOI: 10.1016/j.idh.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The escalating threat of global infectious disease outbreaks has underscored the imperative for robust infection prevention and control (IPC) measures, particularly within the high-risk context of residential care facilities. This research aimed to investigate the experiences and roles of IPC professionals (IPCPs) in such settings during global outbreaks. METHODS Utilising an integrative review methodology, four electronic databases - Medline, CINAHL, Embase, and Scopus - were searched from 2003 onwards for relevant papers. A two-tiered independent screening approach was employed to select eligible articles, followed by a consensus-based appraisal and thematic analysis of included studies. RESULTS The final review encompassed eight articles. IPCPs faced systemic organisational and ground-level operational hurdles, including inequitable access to resources, and lack of training and outbreak preparedness. External and internal variables impacted the effectiveness of outbreak responses, affecting resident and occupational health, and perceptions of IPC over time. CONCLUSIONS The review identified systemic challenges IPCPs face in residential care during outbreaks, including resource inequity and lack of standardised training. Centralised resources and standardised educational benchmarks may help to mitigate these issues. Policy changes are required to enhance healthcare readiness, quality, and research in residential care settings.
Collapse
Affiliation(s)
- Hyunji Lee
- School of Nursing & Midwifery, Griffith University, Southport, 4215, Australia
| | | | - Peta-Anne Zimmerman
- School of Nursing & Midwifery, Griffith University, Southport, 4215, Australia; Collaborative for the Advancement for Infection Prevention and Control, Griffith University, Southport, 4215, Australia; Infection Control Department, Gold Coast Hospital and Health Service, Southport, 4215, Australia.
| |
Collapse
|
4
|
Jeon J, Kim E. Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis. Vaccines (Basel) 2025; 13:56. [PMID: 39852835 PMCID: PMC11768803 DOI: 10.3390/vaccines13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO's standardized guidelines, CEPI's vaccine research and development expertise, GAVI's control of the vaccine supply chain and distribution, and IVI's technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term.
Collapse
Affiliation(s)
- Jihee Jeon
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Eunyoung Kim
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
- Central Research Center of Epigenome Based Platform and Its Application for Drug Development, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Regulatory Science Policy, Pharmaceutical Regulatory Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
6
|
Xie Y, Jiang Q, Chang C, Zhao X, Yong H, Ke X, Wu Z. A Thermal Cycler Based on Magnetic Induction Heating and Anti-Freezing Water Cooling for Rapid PCR. MICROMACHINES 2024; 15:1462. [PMID: 39770215 PMCID: PMC11679298 DOI: 10.3390/mi15121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Distinguished by its exceptional sensitivity and specificity, Polymerase Chain Reaction (PCR) is a pivotal technology for pathogen detection. However, traditional PCR instruments that employ thermoelectric cooling (TEC) are often constrained by cost, efficiency, and performance variability resulting from the fluctuations in ambient temperature. Here, we present a thermal cycler that utilizes electromagnetic induction heating at 50 kHz and anti-freezing water cooling with a velocity of 0.06 m/s to facilitate rapid heating and cooling of the PCR reaction chamber, significantly enhancing heat transfer efficiency. A multi-physics theoretical heat transfer model, developed using the digital twin approach, enables precise temperature control through advanced algorithms. Experimental results reveal average heating and cooling rates of 14.92 °C/s and 13.39 °C/s, respectively, significantly exceeding those of conventional methods. Compared to commercial PCR instruments, the proposed system further optimizes cost, efficiency, and practicality. Finally, PCR experiments were successfully performed using cDNA (Hepatitis B virus) at various concentrations.
Collapse
Affiliation(s)
- Yaping Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
- Sansure Biotech Inc., Changsha 410205, China
| | - Qin Jiang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
| | - Chang Chang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Zhao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
| | - Haochen Yong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
| | - Xingxing Ke
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Zhigang Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Q.J.); (C.C.); (X.Z.); (H.Y.); (X.K.)
| |
Collapse
|
7
|
Zhou Y, Du W, Chen Y, Li L, Xiao X, Xu Y, Yang W, Hu X, Wang B, Zhang J, Jiang Q, Wang Y. Pathogen detection via inductively coupled plasma mass spectrometry analysis with nanoparticles. Talanta 2024; 277:126325. [PMID: 38833906 DOI: 10.1016/j.talanta.2024.126325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenli Du
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
8
|
Solanki D, Murjani K, Singh V. CRISPR-Cas based genome editing for eradication of human viruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:43-58. [PMID: 39266187 DOI: 10.1016/bs.pmbts.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system possess a broad range of applications for genetic modification, diagnosis and treatment of infectious as well as non-infectious disease. The CRISPR-Cas system is found in bacteria and archaea that possess the Cas protein and guide RNA (gRNA). Cas9 and gRNA forms a complex to target and cleave the desired gene, providing defense against viral infections. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpesviruses, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cause major life threatening diseases which cannot cure completely by drugs. This chapter describes the present strategy of CRISPR-Cas systems for altering the genomes of viruses, mostly human ones, in order to control infections.
Collapse
Affiliation(s)
- Dharmisha Solanki
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Karan Murjani
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
9
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
10
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
11
|
Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes (Basel) 2024; 15:908. [PMID: 39062687 PMCID: PMC11275270 DOI: 10.3390/genes15070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases.
Collapse
Affiliation(s)
- Maria Vittoria Ristori
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
| | - Valerio Guarrasi
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
- Department of Diagnostic and Intervention, Radiation Physics, Biomedical Engineering, Umeå University, 901 87 Umeå, Sweden
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
| | - Fiorella Gurrieri
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Elisabetta Riva
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Virology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Silvia Angeletti
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
12
|
Feng M, Zhang S, Xia C, Zhao D. Impact of community structure on the spread of epidemics on time-varying multiplex networks. CHAOS (WOODBURY, N.Y.) 2024; 34:073128. [PMID: 38995988 DOI: 10.1063/5.0205793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Community structure plays a crucial role in realistic networks and different communities can be created by groups of interest and activity events, and exploring the impact of community properties on collective dynamics is an active topic in the field of network science. Here, we propose a new coupled model with different time scales for online social networks and offline epidemic spreading networks, in which community structure is added into online social networks to investigate its role in the interacting dynamics between information diffusion and epidemic spreading. We obtain the analytical equations of epidemic threshold by MMC (Microscopic Markov Chain) method and conduct a large quantities of numerical simulations using Monte Carlo simulations in order to verify the accuracy of the MMC method, and more valuable insights are also obtained. The results indicate that an increase in the probability of the mobility of an individual can delay the spread of epidemic-related information in the network, as well as delaying the time of the peak of the infection density in the network. However, an increase in the contact ability of mobile individuals produces a facilitating effect on the spread of epidemics. Finally, it is also found that the stronger the acceptance of an individual to information coming from a different community, the lower the infection density in the network, which suggests that it has an inhibitory effect on the disease spreading.
Collapse
Affiliation(s)
- Meiling Feng
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuofan Zhang
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chengyi Xia
- School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
| | - Dawei Zhao
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
13
|
Liu Q, Pan W, Zhang J, Yang M, Chen Q, Liu F, Li J, Wei S, Zhu G. Porphyrin-based porous organic polymers synthesized using the Alder-Longo method: the most traditional synthetic strategy with exceptional capacity. RSC Adv 2024; 14:20837-20855. [PMID: 38952933 PMCID: PMC11216041 DOI: 10.1039/d4ra02277g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Porphyrin is a typical tetrapyrrole chromophore-based pigment with a special electronic structure and functionalities, which is frequently introduced into various porous organic polymers (POPs). Porphyrin-based POPs are widely used in various fields ranging from environmental and energy to biomedicine-related fields. Currently, most porphyrin-based POPs are prepared via the copolymerization of specific-group-functionalized porphyrins with other building blocks, in which the tedious and inefficient synthesis procedure for the porphyrin greatly hinders the development of such materials. This review aimed to summarize information on porphyrin-based POPs synthesized using the Alder-Longo method, thereby skipping the complex synthesis of porphyrin-bearing monomers, in which the porphyrin macrocycles are formed directly via the cyclic tetramerization of pyrrole with monomers containing multiple aldehyde groups during the polymerization process. The representative applications of porphyrin-based POPs derived using the Alder-Longo method are finally introduced, which pinpoints a clear relationship between the structure and function from the aspect of the building blocks used and porous structures. This review is therefore valuable for the rational design of efficient porphyrin-based porous organic polymer systems that may be utilized in various fields from energy-related conversion/storage technologies to biomedical science.
Collapse
Affiliation(s)
- Qian Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261053 Shandong P. R. China
| | - Wen Pan
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Junshan Zhang
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Mei Yang
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Qin Chen
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Feng Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Juan Li
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Songrui Wei
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Guoji Zhu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| |
Collapse
|
14
|
Oo HS, Borry P. Contact investigation in multidrug-resistant tuberculosis: ethical challenges. Monash Bioeth Rev 2024; 42:16-27. [PMID: 38430345 DOI: 10.1007/s40592-024-00188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Contact investigation is an evidence-based intervention of multidrug-resistant tuberculosis (MDR-TB) to protect public health by interrupting the chain of transmission. In pursuit of contact investigation, patients' MDR-TB status has to be disclosed to third parties (to the minimum necessary) for tracing the contacts. Nevertheless, disclosure to third parties often unintentionally leads the MDR-TB patients suffered from social discrimination and stigma. For this reason, patients are less inclined to reveal their MDR-TB status and becomes a significant issue in contact investigation. This issue certainly turns into a negative impact on the public interest. Tension between keeping MDR-TB status confidential and safeguarding public health arises in relation to this issue. Regarding MDR-TB management, patient compliance with treatment and contact investigation are equally important. Patients might fail to comply with anti-TB therapy and be reluctant to seek healthcare due to disclosure concerns. In order to have treatment adherence, MDRTB patients should not live through social discrimination and stigma arising from disclosure and TB team has a duty to support them as a mean of reciprocity. However, implementation of contact investigation as a public health policy can still be challenging even with promising reciprocal support to the patients because MDR-TB patients are living in different contexts and situations. There can be no straight forward settlement but an appropriate justification for each distinct context is needed to strike a balance between individual confidentiality and public interest.
Collapse
Affiliation(s)
- Hnin Si Oo
- Master of Bioethics, KU Leuven, Leuven, Belgium.
| | - Pascal Borry
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Yoon J, Kim J, Lim S, Choi H, Bae J, Kim K, Song SH, Cho YB, Park W, Jung YG. All-in-one platform: Versatile, Easy, and User-friendly System (VEUS) based on automated and expert-independent antibody immobilization and immunoassay by utilizing customized movement of magnetic particles. Biotechnol J 2024; 19:e2400074. [PMID: 38896409 DOI: 10.1002/biot.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
The ELISA is the most worldwide method for immunoassay. However, the ELISA is losing ground due to low reproducibility of manual experimental processes in both R&D and IVD areas. An automated platform is a good solution, but there are still limitations owning to extremely high cost and requiring large space to set up especially for a small size laboratory. Here, we present a novel all-in-one platform called "VEUS" settable on the laboratory table that offers comprehensive automation of the entire multiplex immunoassay process by exploiting antibody conjugated magnetic particles, quality control and then immunoanalytical reaction, thereby enhancing detection sensitivity and high reproducibility. As a proof of concept, the system exhibits a sensitive LOD of 0.6 and 3.1 pg mL-1 within 1 h run, comparable precision that of molecular diagnostic systems based on PCR method, enabling rapid multiplex diagnosis of Influenza A, Influenza B, and COVID-19 viruses with similar symptoms. Through automation by the all-in-one system, it can be used by novice users, something innovative for immunoassays, relying heavily on user experience. Furthermore, it can contribute to streamline entire immunoassay processes of diverse biomarkers with high reproducibility and convenience in laboratories.
Collapse
Affiliation(s)
- Jinsik Yoon
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Jiyeong Kim
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Sujeong Lim
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Heelak Choi
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Junghyun Bae
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Kibeom Kim
- Department of Electronic Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Suk-Heung Song
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Yoo-Bok Cho
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
- Department of Electronic Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | | |
Collapse
|
16
|
Lin Q, Goldberg EE, Leitner T, Molina-París C, King AA, Romero-Severson EO. The Number and Pattern of Viral Genomic Reassortments are not Necessarily Identifiable from Segment Trees. Mol Biol Evol 2024; 41:msae078. [PMID: 38648521 PMCID: PMC11152448 DOI: 10.1093/molbev/msae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.
Collapse
Affiliation(s)
- Qianying Lin
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Emma E Goldberg
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Aaron A King
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan O Romero-Severson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
17
|
Arabestani MR, Bigham A, Kamarehei F, Dini M, Gorjikhah F, Shariati A, Hosseini SM. Solid lipid nanoparticles and their application in the treatment of bacterial infectious diseases. Biomed Pharmacother 2024; 174:116433. [PMID: 38508079 DOI: 10.1016/j.biopha.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Nano pharmacology is considered an effective, safe, and applicable approach for drug delivery applications. Solid lipid nanoparticle (SLNs) colloids contain biocompatible lipids which are capable of encapsulating and maintaining hydrophilic or hydrophobic drugs in the solid matrix followed by releasing the drug in a sustained manner in the target site. SLNs have more promising potential than other drug delivery systems for various purposes. Nowadays, the SLNs are used as a carrier for antibiotics, chemotherapeutic drugs, nucleic acids, herbal compounds, etc. The SLNs have been widely applied in biomedicine because of their non-toxicity, biocompatibility, and simple production procedures. In this review, the complications related to the optimization, preparation process, routes of transplantation, uptake and delivery system, and release of the loaded drug along with the advantages of SLNs as therapeutic agents were discussed.
Collapse
Affiliation(s)
- Mohammad Reza Arabestani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples 80125, Italy
| | - Farideh Kamarehei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahya Dini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Gorjikhah
- University reference laboratory, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of medical sciences, Arak, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Kiggundu R, Waswa J, Konduri N, Kasujja H, Murungi M, Vudriko P, Akello H, Lugada E, Muiva C, Were E, Tjipura D, Kajumbula H, Kikule K, Nfor E, Joshi MP. A One Health approach to fight antimicrobial resistance in Uganda: Implementation experience, results, and lessons learned. BIOSAFETY AND HEALTH 2024; 6:125-132. [PMID: 40078942 PMCID: PMC11894979 DOI: 10.1016/j.bsheal.2024.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 03/14/2025] Open
Abstract
Uganda has been implementing the Global Health Security Agenda (GHSA) since 2015 to build its capacity according to World Health Organization (WHO) Benchmarks on International Health Regulations Capacities. The country remains prone to outbreaks, with more than 20 disease outbreaks reported in the past five years, including Ebola virus disease, Crimean-Congo haemorrhagic fever, Marburg haemorrhagic fever, measles, yellow fever, coronavirus disease 2019 (COVID-19), and cholera. Antimicrobial resistance (AMR) is an ongoing challenge. Uganda scored capacity level 3 on infection prevention and control (IPC) and antimicrobial stewardship (AMS) in the 2017 Joint External Evaluation (JEE) assessment. Identified gaps were being addressed after a self-assessment in 2021. This paper describes the technical assistance approaches provided to Uganda by the Medicines, Technologies, and Pharmaceutical Services Program, funded by the United States (U.S.) Agency for International Development, and implemented by Management Sciences for Health. The program, through a One Health approach, supported systematic capacity strengthening based on the JEE's capacity advancement framework for global health security, specifically relating to AMR. The program's interventions impacted 32 WHO benchmark actions (7 for AMR multisectoral coordination, 16 for IPC, and 9 for AMS), contributing to Uganda's strengthened GHSA capacity. Leveraging success built on the AMR platform, the program trained 745 health workers in IPC for the Ebola virus and provided support for simulation exercises by eight district IPC teams. The program also worked with the Ministry of Health to coordinate IPC for the COVID-19 response in five health regions, covering 45 districts and reaching 5,452 health workers at 858 health facilities.
Collapse
Affiliation(s)
- Reuben Kiggundu
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Kampala 256, Uganda
| | - J.P. Waswa
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Kampala 256, Uganda
| | - Niranjan Konduri
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| | - Hassan Kasujja
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Kampala 256, Uganda
| | - Marion Murungi
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Kampala 256, Uganda
| | - Patrick Vudriko
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 256, Uganda
| | | | - Eric Lugada
- USAID Strengthening Supply Chain Systems Activity, Management Sciences for Health, Kampala 256, Uganda
| | - Cecilia Muiva
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Nairobi 254, Kenya
| | - Esther Were
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| | - Dinah Tjipura
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| | - Henry Kajumbula
- Department of Microbiology, College of Health Sciences, Makerere University, Kampala 256, Uganda
| | - Kate Kikule
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| | - Emmanuel Nfor
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| | - Mohan P. Joshi
- USAID Medicines, Technologies, and Pharmaceutical Services Program, Management Sciences for Health, Arlington, VA 22203, USA
| |
Collapse
|
19
|
Singh S, Sharma P, Pal N, Sarma DK, Tiwari R, Kumar M. Holistic One Health Surveillance Framework: Synergizing Environmental, Animal, and Human Determinants for Enhanced Infectious Disease Management. ACS Infect Dis 2024; 10:808-826. [PMID: 38415654 DOI: 10.1021/acsinfecdis.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recent pandemics, including the COVID-19 outbreak, have brought up growing concerns about transmission of zoonotic diseases from animals to humans. This highlights the requirement for a novel approach to discern and address the escalating health threats. The One Health paradigm has been developed as a responsive strategy to confront forthcoming outbreaks through early warning, highlighting the interconnectedness of humans, animals, and their environment. The system employs several innovative methods such as the use of advanced technology, global collaboration, and data-driven decision-making to come up with an extraordinary solution for improving worldwide disease responses. This Review deliberates environmental, animal, and human factors that influence disease risk, analyzes the challenges and advantages inherent in using the One Health surveillance system, and demonstrates how these can be empowered by Big Data and Artificial Intelligence. The Holistic One Health Surveillance Framework presented herein holds the potential to revolutionize our capacity to monitor, understand, and mitigate the impact of infectious diseases on global populations.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Rajnarayan Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| |
Collapse
|
20
|
Jiang S, Han C, Ma Y, Ji J, Chen G, Guo Y. Temporal dynamic effects of meteorological factors and air quality on the physical health of the older adults in Shenzhen, China. Front Public Health 2024; 12:1289253. [PMID: 38510362 PMCID: PMC10951054 DOI: 10.3389/fpubh.2024.1289253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Meteorological and environmental factors can affect people's lives and health, which is crucial among the older adults. However, it is currently unclear how they specifically affect the physical condition of older adults people. Methods We collected and analyzed the basic physical examination indicators of 41 older adults people for two consecutive years (2021 and 2022), and correlated them with meteorological and environmental factors. Partial correlation was also conducted to exclude unrelated factors as well. Results We found that among the physical examination indicators of the older adults for two consecutive years, five indicators (HB, WBC, HbAlc, CB, LDL-C) showed significant differences across the population, and they had significantly different dynamic correlation patterns with six meteorological (air pressure, temperature, humidity, precipitation, wind speed, and sunshine duration) and seven air quality factors (NO2, SO2, PM10, O3-1h, O3-8h, CO, PM2.5). Discussion Our study has discovered for the first time the dynamic correlation between indicators in normal basic physical examinations and meteorological factors and air quality indicators, which will provide guidance for the future development of policies that care for the healthy life of the older adults.
Collapse
Affiliation(s)
- Shuai Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Chuanliang Han
- Department of Electrical Engineering, The City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yue Ma
- Department of Healthcare-Associated Infection Management, National Clinical Research Center for Infectious Diseases, Third People’s Hospital of Shenzhen and The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Guomin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yinsheng Guo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Downie DL, Rao P, David-Ferdon C, Courtney S, Lee JS, Quiner C, MacDonald PDM, Barnes K, Fisher S, Andreadis JL, Chaitram J, Mauldin MR, Salerno RM, Schiffer J, Gundlapalli AV. Surveillance for Emerging and Reemerging Pathogens Using Pathogen Agnostic Metagenomic Sequencing in the United States: A Critical Role for Federal Government Agencies. Health Secur 2024; 22:85-92. [PMID: 38574329 PMCID: PMC11044857 DOI: 10.1089/hs.2023.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 04/06/2024] Open
Abstract
The surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians. In this study, we sought to gain an understanding of how federal government agencies currently support such pathogen agnostic testing of human specimens in the United States. We conducted a landscape analysis of federal agency websites for publicly accessible information on the availability and type of pathogen agnostic testing and details on flow of clinical specimens and data. The website analysis was supplemented by an expert review of results with representatives from the federal agencies. Operating divisions within the US Department of Health and Human Services and the US Department of Veterans Affairs have developed and sustained extensive clinical and research networks to obtain patient specimens and perform metagenomic sequencing. Metagenomic facilities supported by US agencies were not equally geographically distributed across the United States. Although many entities have work dedicated to metagenomics and/or support emerging infectious disease surveillance specimen collection, there was minimal formal collaboration across agencies.
Collapse
Affiliation(s)
- Diane L. Downie
- Diane L. Downie, PhD, MPH, is Deputy Associate Director for Science, Office of Readiness and Response, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Preetika Rao
- Preetika Rao, MPH, is a Health Scientist, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Corinne David-Ferdon
- Corinne David-Ferdon, PhD, is Associate Director of Science, Office of Public Health Data, Surveillance, and Technology, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Sean Courtney
- Sean Courtney, PhD, is a Health Scientist, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Justin S. Lee
- Justin S. Lee, DVM, PhD, is a Health Scientist, Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Claire Quiner
- Claire Quiner, MPH, MCP, is a Research Public Health Analyst, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Pia D. M. MacDonald
- Pia D. M. MacDonald, PhD, MPH, is a Senior Infectious Disease Epidemiologist, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Keegan Barnes
- Keegan Barnes is a Public Health Analyst, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Shelby Fisher
- Shelby Fisher, MPH, is an Epidemiologist, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Joanne L. Andreadis
- Joanne L. Andreadis, PhD, is Associate Director for Science, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jasmine Chaitram
- Jasmine Chaitram, MPH, is Branch Chief, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Matthew R. Mauldin
- Matthew R. Mauldin, PhD, is Health Scientists US Centers for Disease Control and Prevention, Atlanta, GA
| | - Reynolds M. Salerno
- Reynolds M. Salerno, PhD, is Director, Division of Laboratory Systems, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jarad Schiffer
- Jarad Schiffer, MS, is Health Scientists, Office of Readiness and Response, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Adi V. Gundlapalli
- Adi V. Gundlapalli, MD, PhD, is a Senior Advisor, Data Readiness and Response, Office of Public Health Data, Surveillance, and Technology, US Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
22
|
Mashinagu MM, Wambura PN, King DP, Paton DJ, Maree F, Kimera SI, Rweyemamu MM, Kasanga CJ. Challenges of Controlling Foot-and-Mouth Disease in Pastoral Settings in Africa. Transbound Emerg Dis 2024; 2024:2700985. [PMID: 40303029 PMCID: PMC12017246 DOI: 10.1155/2024/2700985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 05/02/2025]
Abstract
Foot-and-mouth disease (FMD) is a highly devastating viral disease affecting all cloven-hoofed animals. The disease threatens food security and livelihoods across different parts of the world. FMD is endemic in Africa; where the continuous circulation of the disease impacts the livelihoods of pastoral communities by reducing the quality and quantity of livestock products such as milk and meat, as well as undermining the access of the livestock sector to regional and lucrative global markets. Strategies used to control FMD in Africa, especially tropical Africa, are typically fragmented national-level focused activities with relatively poor outcomes, rather than regionally coordinated initiatives that have been used on other continents (South America, Europe) to successfully reduce and even eliminate virus circulation. Biotechnological advances have improved our ability to detect and characterize FMD virus strains, but more effective approaches to disease control are needed to encourage disease reporting and outbreak investigation. This review of the challenges to FMD control amongst Africa's diverse pastoral communities is intended to provide information and provoke discussion to improve the strategies and approaches for regional FMD control in Africa.
Collapse
Affiliation(s)
- Mkama M. Mashinagu
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
- SACIDS Foundation for One Health, Africa Centre of Excellence, P.O. Box 3297, Morogoro, Tanzania
- Tanzania Veterinary Laboratory Agency, Centre for Infectious Diseases and Biotechnology, P.O. Box 9254, Dar es salaam, Tanzania
| | - Philemon N. Wambura
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Donald P. King
- FAO World Reference Laboratory for FMD, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 ONF, UK
| | - David J. Paton
- FAO World Reference Laboratory for FMD, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 ONF, UK
| | - Francois Maree
- Clinomics, Uitzich Road, Bainsvlei, Bloemfontein 9301, Free State, South Africa
| | - Sharadhuli I. Kimera
- SACIDS Foundation for One Health, Africa Centre of Excellence, P.O. Box 3297, Morogoro, Tanzania
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Mark M. Rweyemamu
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
- SACIDS Foundation for One Health, Africa Centre of Excellence, P.O. Box 3297, Morogoro, Tanzania
| | - Christopher J. Kasanga
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
- SACIDS Foundation for One Health, Africa Centre of Excellence, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
23
|
Jackson RT, Lunn TJ, DeAnglis IK, Ogola JG, Webala PW, Forbes KM. Frequent and intense human-bat interactions occur in buildings of rural Kenya. PLoS Negl Trop Dis 2024; 18:e0011988. [PMID: 38412171 PMCID: PMC10923417 DOI: 10.1371/journal.pntd.0011988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Simultaneous use of domestic spaces by humans and wildlife is little understood, despite global ubiquity, and can create an interface for human exposure to wildlife pathogens. Bats are a pervasive synanthropic taxon and are associated with several pathogens that can spill over and cause disease in humans. Urbanization has destroyed much natural bat habitat and, in response, many species increasingly use buildings as roosts. The purpose of this study was to characterize human interactions with bats in shared buildings to assess potential for human exposure to and spillover of bat-borne pathogens. We surveyed 102 people living and working in buildings used as bat roosts in Taita-Taveta county, Kenya between 2021 and 2023. We characterized and quantified the duration, intensity, and frequency of human-bat interactions occurring in this common domestic setting. Survey respondents reported living with bats in buildings year-round, with cohabitation occurring consistently for at least 10 years in 38% of cases. Human contact with bats occurred primarily through direct and indirect routes, including exposure to excrement (90% of respondents), and direct touching of bats (39% of respondents). Indirect contacts most often occurred daily, and direct contacts most often occurred yearly. Domestic animal consumption of bats was also reported (16% of respondents). We demonstrate that shared building use by bats and humans in rural Kenya leads to prolonged, frequent, and sometimes intense interactions between bats and humans, consistent with interfaces that can facilitate exposure to bat pathogens and subsequent spillover. Identifying and understanding the settings and practices that may lead to zoonotic pathogen spillover is of great global importance for developing countermeasures, and this study establishes bat roosts in buildings as such a setting.
Collapse
Affiliation(s)
- Reilly T. Jackson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Isabella K. DeAnglis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Joseph G. Ogola
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
24
|
Katzelnick LC, Quentin E, Colston S, Ha TA, Andrade P, Eisenberg JNS, Ponce P, Coloma J, Cevallos V. Increasing transmission of dengue virus across ecologically diverse regions of Ecuador and associated risk factors. PLoS Negl Trop Dis 2024; 18:e0011408. [PMID: 38295108 PMCID: PMC10861087 DOI: 10.1371/journal.pntd.0011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emmanuelle Quentin
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Savannah Colston
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thien-An Ha
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
25
|
Lawrence P, Heung M, Nave J, Henkel C, Escudero-Pérez B. The natural virome and pandemic potential: Disease X. Curr Opin Virol 2023; 63:101377. [PMID: 37995425 DOI: 10.1016/j.coviro.2023.101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Over the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans. Thus, in order to mitigate disease emergence and prevent future pandemics, it is crucial to identify the global extent of viral threats to which humans may become exposed. This requires cataloguing the viruses that exist in the environment within their various and diverse host species, and also understanding the viral, host, and environmental factors that dictate the circumstances that result in viral spillover into humans. We also address here which strategies can be implemented as countermeasure initiatives to reduce the risk of emergence of new diseases.
Collapse
Affiliation(s)
- Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA1598), Lyon, France
| | - Michelle Heung
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Nave
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Henkel
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany.
| |
Collapse
|
26
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
27
|
Wang M, Yang B, Liu Y, Yang Y, Ji H, Yang C. Emerging infectious disease surveillance using a hierarchical diagnosis model and the Knox algorithm. Sci Rep 2023; 13:19836. [PMID: 37963966 PMCID: PMC10645817 DOI: 10.1038/s41598-023-47010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
Emerging infectious diseases are a critical public health challenge in the twenty-first century. The recent proliferation of such diseases has raised major social and economic concerns. Therefore, early detection of emerging infectious diseases is essential. Subjects from five medical institutions in Beijing, China, which met the spatial-specific requirements, were analyzed. A quality control process was used to select 37,422 medical records of infectious diseases and 56,133 cases of non-infectious diseases. An emerging infectious disease detection model (EIDDM), a two-layer model that divides the problem into two sub-problems, i.e., whether a case is an infectious disease, and if so, whether it is a known infectious disease, was proposed. The first layer model adopts the binary classification model TextCNN-Attention. The second layer is a multi-classification model of LightGBM based on the one-vs-rest strategy. Based on the experimental results, a threshold of 0.5 is selected. The model results were compared with those of other models such as XGBoost and Random Forest using the following evaluation indicators: accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. The prediction performance of the first-layer TextCNN is better than that of other comparison models. Its average specificity for non-infectious diseases is 97.57%, with an average negative predictive value of 82.63%, indicating a low risk of misdiagnosing non-infectious diseases as infectious (i.e., a low false positive rate). Its average positive predictive value for eight selected infectious diseases is 95.07%, demonstrating the model's ability to avoid misdiagnoses. The overall average accuracy of the model is 86.11%. The average prediction accuracy of the second-layer LightGBM model for emerging infectious diseases reaches 90.44%. Furthermore, the response time of a single online reasoning using the LightGBM model is approximately 27 ms, which makes it suitable for analyzing clinical records in real time. Using the Knox method, we found that all the infectious diseases were within 2000 m in our case, and a clustering feature of spatiotemporal interactions (P < 0.05) was observed as well. Performance testing and model comparison results indicated that the EIDDM is fast and accurate and can be used to monitor the onset/outbreak of emerging infectious diseases in real-world hospitals.
Collapse
Affiliation(s)
- Mengying Wang
- State Key Laboratory of Media Convergence and Communication, Communication University of China, No. 1, Dingfuzhuang East Street, Chaoyang District, Beijing, China
- Information Management and Big Data Center, Peking University Third Hospital, No. 49, Huayuan North Road, Beijing, China
| | - Bingqing Yang
- Goodwill Hessian Health Technology Co. Ltd, Beijing, China
| | - Yunpeng Liu
- Goodwill Hessian Health Technology Co. Ltd, Beijing, China
| | - Yingyun Yang
- State Key Laboratory of Media Convergence and Communication, Communication University of China, No. 1, Dingfuzhuang East Street, Chaoyang District, Beijing, China
| | - Hong Ji
- Information Management and Big Data Center, Peking University Third Hospital, No. 49, Huayuan North Road, Beijing, China.
| | - Cheng Yang
- State Key Laboratory of Media Convergence and Communication, Communication University of China, No. 1, Dingfuzhuang East Street, Chaoyang District, Beijing, China.
| |
Collapse
|
28
|
Lin Z, Sun B, Yang X, Jiang Y, Wu S, Lv B, Pan Y, Zhang Q, Wang X, Xiang G, Lou Y, Xiao X. Infectious Disease Diagnosis and Pathogen Identification Platform Based on Multiplex Recombinase Polymerase Amplification-Assisted CRISPR-Cas12a System. ACS Infect Dis 2023; 9:2306-2315. [PMID: 37811564 DOI: 10.1021/acsinfecdis.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Controlling and mitigating infectious diseases caused by multiple pathogens or pathogens with several subtypes require multiplex nucleic acid detection platforms that can detect several target genes rapidly, specifically, sensitively, and simultaneously. Here, we develop a detection platform, termed Multiplex Assay of RPA and Collateral Effect of Cas12a-based System (MARPLES), based on multiplex nucleic acid amplification and Cas12a ssDNase activation to diagnose these diseases and identify their pathogens. We use the clinical specimens of hand, foot, and mouth disease (HFMD) and influenza A to evaluate the feasibility of MARPLES in diagnosing the disease and identifying the pathogen, respectively, and find that MARPLES can accurately diagnose the HFMD associated with enterovirus 71, coxsackievirus A16 (CVA16), CVA6, or CVA10 and identify the exact types of H1N1 and H3N2 in an hour, showing high sensitivity and specificity and 100% predictive agreement with qRT-PCR. Collectively, our findings demonstrate that MARPLES is a promising multiplex nucleic acid detection platform for disease diagnosis and pathogen identification.
Collapse
Affiliation(s)
- Ziqin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yayun Jiang
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang 618000, China
| | - Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binbin Lv
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China
| | - Yajing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Xiaoqiong Wang
- Zhuji Institute of Biomedicine, Wenzhou Medical University, Zhuji, Shaoxing 311800, Zhejiang, China
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
29
|
Lawrence TJ, Takenaka BP, Garg A, Tao D, Deem SL, Fèvre EM, Gluecks I, Sagan V, Shacham E. A global examination of ecological niche modeling to predict emerging infectious diseases: a systematic review. Front Public Health 2023; 11:1244084. [PMID: 38026359 PMCID: PMC10652780 DOI: 10.3389/fpubh.2023.1244084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction As emerging infectious diseases (EIDs) increase, examining the underlying social and environmental conditions that drive EIDs is urgently needed. Ecological niche modeling (ENM) is increasingly employed to predict disease emergence based on the spatial distribution of biotic conditions and interactions, abiotic conditions, and the mobility or dispersal of vector-host species, as well as social factors that modify the host species' spatial distribution. Still, ENM applied to EIDs is relatively new with varying algorithms and data types. We conducted a systematic review (PROSPERO: CRD42021251968) with the research question: What is the state of the science and practice of estimating ecological niches via ENM to predict the emergence and spread of vector-borne and/or zoonotic diseases? Methods We searched five research databases and eight widely recognized One Health journals between 1995 and 2020. We screened 383 articles at the abstract level (included if study involved vector-borne or zoonotic disease and applied ENM) and 237 articles at the full-text level (included if study described ENM features and modeling processes). Our objectives were to: (1) describe the growth and distribution of studies across the types of infectious diseases, scientific fields, and geographic regions; (2) evaluate the likely effectiveness of the studies to represent ecological niches based on the biotic, abiotic, and mobility framework; (3) explain some potential pitfalls of ENM algorithms and techniques; and (4) provide specific recommendation for future studies on the analysis of ecological niches to predict EIDs. Results We show that 99% of studies included mobility factors, 90% modeled abiotic factors with more than half in tropical climate zones, 54% modeled biotic conditions and interactions. Of the 121 studies, 7% include only biotic and mobility factors, 45% include only abiotic and mobility factors, and 45% fully integrated the biotic, abiotic, and mobility data. Only 13% of studies included modifying social factors such as land use. A majority of studies (77%) used well-recognized ENM algorithms (MaxEnt and GARP) and model selection procedures. Most studies (90%) reported model validation procedures, but only 7% reported uncertainty analysis. Discussion Our findings bolster ENM to predict EIDs that can help inform the prevention of outbreaks and future epidemics. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier (CRD42021251968).
Collapse
Affiliation(s)
| | - Bryce P. Takenaka
- College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, United States
| | - Aastha Garg
- College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, United States
| | - Donghua Tao
- Medical Center Library, Saint Louis University, St. Louis, MO, United States
| | - Sharon L. Deem
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, United States
| | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ilona Gluecks
- International Livestock Research Institute, Nairobi, Kenya
| | - Vasit Sagan
- Taylor Geospatial Institute, St. Louis, MO, United States
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO, United States
| | - Enbal Shacham
- Taylor Geospatial Institute, St. Louis, MO, United States
- College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
30
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Sharan M, Vijay D, Yadav JP, Bedi JS, Dhaka P. Surveillance and response strategies for zoonotic diseases: a comprehensive review. SCIENCE IN ONE HEALTH 2023; 2:100050. [PMID: 39077041 PMCID: PMC11262259 DOI: 10.1016/j.soh.2023.100050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 07/31/2024]
Abstract
Out of all emerging infectious diseases, approximately 75% are of zoonotic origin, with their source often traced back to animals. The emergence of zoonoses is driven by a complex interplay between anthropogenic, genetic, ecological, socioeconomic, and climatic factors. This intricate web of influences poses significant challenges for the prediction and prevention of zoonotic outbreaks. Effective coordination and collaboration among the animal, human, and environmental health sectors are essential for proactively addressing major zoonotic diseases. Despite advancements in surveillance and diagnostic practices, the emergence of zoonoses continues to be a pressing global concern. Therefore, prioritizing zoonotic disease surveillance is of paramount importance as part of a comprehensive disease prevention and containment strategy. Furthermore, evaluating existing surveillance systems provides insights into the challenges faced, which can be mitigated through implementation of One Health principles involving relevant stakeholders. To initiate multisectoral partnerships, it is crucial to identify the priorities and core themes of surveillance systems with equitable inputs from various sectors. Strengthening surveillance, promoting data sharing, enhancing laboratory testing capabilities, and fostering joint outbreak responses in both the human and animal health sectors will establish the necessary infrastructure to effectively prevent, predict, detect, and respond to emerging health threats, thereby reinforcing global health security. This review assesses existing surveillance approaches by offering an overview of global agencies engaged in monitoring zoonoses and outlines the essential components required at the human-animal-environment interface for designing comprehensive surveillance networks. Additionally, it discusses the key steps necessary for executing effective zoonotic disease surveillance through a One Health approach, while highlighting the key challenges encountered in establishing such a robust surveillance system.
Collapse
Affiliation(s)
- Manjeet Sharan
- Animal and Fisheries Resources Department, Patna, Bihar, 800015, India
| | - Deepthi Vijay
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680651, India
| | - Jay Prakash Yadav
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, 151103, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
32
|
Lin Q, Goldberg EE, Leitner T, Molina-París C, King AA, Romero-Severson EO. Modeling the evolution of segment trees reveals deficiencies in current inferential methods for genomic reassortment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558687. [PMID: 37790507 PMCID: PMC10542121 DOI: 10.1101/2023.09.20.558687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to new viral variants. Large-scale genome rearrangements, such as reassortment, have the potential to quickly generate new phenotypes, making the understanding of viral reassortment important to both evolutionary biology and public health research. In this paper, we argue that reassortment cannot be reliably inferred from incongruities between segment phylogenies using the established remove-and-rejoin or coalescent approaches. We instead show that reassortment must be considered in the context of a broader population process that includes the dynamics of the infected hosts. Using illustrative examples and simulation we identify four types of evolutionary events that are difficult or impossible to reconstruct with incongruence-based methods. Further, we show that these specific situations are very common and will likely occur even in small samples. Finally, we argue that existing methods can be augmented or modified to account for all the problematic situations that we identify in this paper. Robust assessment of the role of reassortment in viral evolution is difficult, and we hope to provide conceptual clarity on some important methodological issues that can arise in the development of the next generation of tools for studying reassortment.
Collapse
|
33
|
Bozzuto C, Ives AR. Differences in COVID-19 cyclicity and predictability among U.S. counties and states reflect the effectiveness of protective measures. Sci Rep 2023; 13:14277. [PMID: 37653000 PMCID: PMC10471777 DOI: 10.1038/s41598-023-40990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
During the COVID-19 pandemic, many quantitative approaches were employed to predict the course of disease spread. However, forecasting faces the challenge of inherently unpredictable spread dynamics, setting a limit to the accuracy of all models. Here, we analyze COVID-19 data from the USA to explain variation among jurisdictions in disease spread predictability (that is, the extent to which predictions are possible), using a combination of statistical and simulation models. We show that for half the counties and states the spread rate of COVID-19, r(t), was predictable at most 9 weeks and 8 weeks ahead, respectively, corresponding to at most 40% and 35% of an average cycle length of 23 weeks and 26 weeks. High predictability was associated with high cyclicity of r(t) and negatively associated with R0 values from the pandemic's onset. Our statistical evidence suggests the following explanation: jurisdictions with a severe initial outbreak, and where individuals and authorities took strong and sustained protective measures against COVID-19, successfully curbed subsequent waves of disease spread, but at the same time unintentionally decreased its predictability. Decreased predictability of disease spread should be viewed as a by-product of positive and sustained steps that people take to protect themselves and others.
Collapse
Affiliation(s)
- Claudio Bozzuto
- Wildlife Analysis GmbH, Oetlisbergstrasse 38, 8053, Zurich, Switzerland.
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Guarner J, Jean S. One Health: The Role of Pathology as it Pertains to Diagnosis of Zoonoses and Discovery of Emerging Infections. Mod Pathol 2023; 36:100236. [PMID: 37268063 DOI: 10.1016/j.modpat.2023.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Pathologists are an integral part of One Health as they are a critical component of the multidisciplinary team that diagnoses zoonotic diseases and discovers emerging pathogens. Both human and veterinary pathologists are uniquely positioned to identify clusters or trends in patient populations that can be caused by an infectious agent and preface emerging outbreaks. The repository of tissue samples available to pathologists is an invaluable resource that can be used to investigate a variety of pathogens. One Health is an encompassing approach that focuses on optimizing the health of humans, animals (domesticated and sylvatic), and the ecosystem, including plants, water, and vectors. In this integrated and balanced approach, multiple disciplines and sectors from local and global communities work together to promote overall well-being of the 3 components and address threats such as emerging infectious diseases and zoonoses. Zoonoses are defined as infectious diseases that are spread between animals and humans through different mechanisms, including direct contact, food, water, vectors, or fomites. This review highlights examples in which human and veterinary pathologists were an integral part of the multisectoral team that identified uncommon etiologic agents or pathologies that had not been elucidated clinically. As the team discovers an emerging infectious disease, pathologists develop and validate tests for epidemiologic and clinical use and provide surveillance data on these diseases. They define the pathogenesis and pathology that these new diseases cause. This review also presents examples that demonstrate the crucial role pathologists play in diagnosing zoonoses that have an impact on the food supply and the economy.
Collapse
Affiliation(s)
- Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Sherrie Jean
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
He J, Guo X, Pan C, Cheng G, Zheng M, Zi Y, Cui H, Li X. High-output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application. NANOTECHNOLOGY 2023; 34:385403. [PMID: 37339612 DOI: 10.1088/1361-6528/acdfd5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Infectious diseases are spreading rapidly with the flow of the world's population, and the prevention of epidemic diseases is particularly important for public and personal health. Therefore, there is an urgent need to develop a simple, efficient and non-toxic method to control the spread of bacteria and viruses. The newly developed triboelectric nanogenerator (TENG) can generate a high voltage, which inhibits bacterial reproduction. However, the output performance is the main factor limiting real-world applications of TENGs. Herein, we report a soft-contact fiber-structure TENG to avoid insufficient friction states and to improve the output, especially at a high rotation speed. Rabbit hair, carbon nanotubes, polyvinylidene difluoride film and paper all contain fiber structures that are used to guarantee soft contact between the friction layers and improve the contact state and abrasion problem. Compared with a direct-contact triboelectric nanogenerator, the outputs of this soft-contact fiber-structure TENG are improved by about 350%. Meanwhile, the open-circuit voltage can be enhanced to 3440 V, which solves the matching problems when driving high-voltage devices. A TENG-driven ultraviolet sterilization system is then developed. The bactericidal rate of this sterilization system can reach 91%, which significantly reduces the risk of disease spread. This work improves a forward-looking strategy to improve the output and service life of the TENG. It also expands the applications of self-powered TENG sterilization systems.
Collapse
Affiliation(s)
- Jianwei He
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Xuhua Guo
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mingli Zheng
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yunlong Zi
- Sustainable Energy and Environment Thrust, Hong Kong University of Science and Technology, Guangzhou, 510000, People's Republic of China
| | - Hongzhi Cui
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Xiaoyi Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
36
|
Zheng N, Vilela AM, Deshpande S. How scared are Americans of the Zika virus? The role of threat, efficacy, and third-person perception to induce protective behaviors. Health Mark Q 2023; 40:289-308. [PMID: 35775882 DOI: 10.1080/07359683.2022.2092376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study examines how public perception of threat and efficacy (on self and others) influence their tendency to take preventive action against the Zika virus by surveying 1,152 U.S. adults in Texas and Florida. Findings show that individuals were likely to take protective actions when they: (1) saw a high risk of the disease (high threat) and were confident about their ability to reduce the danger (high efficacy); and (2) perceived others as having a high risk (high threat), but lacked the ability to reduce the danger (low efficacy). Further, the study discusses practical implications for the design of public health campaigns.
Collapse
Affiliation(s)
- Nan Zheng
- School of Media Arts and Design, James Madison University, Harrisonburg, VA, USA
| | - Alexandra M Vilela
- School of Media Arts and Design, James Madison University, Harrisonburg, VA, USA
| | - Sameer Deshpande
- Social Marketing at Griffith, Griffith University, Nathan, Australia
| |
Collapse
|
37
|
Lista F, Peragallo MS, Biselli R, De Santis R, Mariotti S, Nisini R, D'Amelio R. Have Diagnostics, Therapies, and Vaccines Made the Difference in the Pandemic Evolution of COVID-19 in Comparison with "Spanish Flu"? Pathogens 2023; 12:868. [PMID: 37513715 PMCID: PMC10384375 DOI: 10.3390/pathogens12070868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In 1918 many countries, but not Spain, were fighting World War I. Spanish press could report about the diffusion and severity of a new infection without censorship for the first-time, so that this pandemic is commonly defined as "Spanish flu", even though Spain was not its place of origin. "Spanish flu" was one of the deadliest pandemics in history and has been frequently compared with the coronavirus disease (COVID)-19 pandemic. These pandemics share similarities, being both caused by highly variable and transmissible respiratory RNA viruses, and diversity, represented by diagnostics, therapies, and especially vaccines, which were made rapidly available for COVID-19, but not for "Spanish flu". Most comparison studies have been carried out in the first period of COVID-19, when these resources were either not yet available or their use had not long started. Conversely, we wanted to analyze the role that the advanced diagnostics, anti-viral agents, including monoclonal antibodies, and innovative COVID-19 vaccines, may have had in the pandemic containment. Early diagnosis, therapies, and anti-COVID-19 vaccines have markedly reduced the pandemic severity and mortality, thus preventing the collapse of the public health services. However, their influence on the reduction of infections and re-infections, thus on the transition from pandemic to endemic condition, appears to be of minor relevance. The high viral variability of influenza and coronavirus may probably be contained by the development of universal vaccines, which are not easy to be obtained. The only effective weapon still remains the disease prevention, to be achieved with the reduction of promiscuity between the animal reservoirs of these zoonotic diseases and humans.
Collapse
Affiliation(s)
- Florigio Lista
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell'Esercito, 00184 Roma, Italy
| | - Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Riccardo De Santis
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza, Università di Roma, 00161 Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Raffaele D'Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza, Università di Roma, 00198 Roma, Italy
| |
Collapse
|
38
|
Zhang S, Zhao D, Xia C, Tanimoto J. Impact of simplicial complexes on epidemic spreading in partially mapping activity-driven multiplex networks. CHAOS (WOODBURY, N.Y.) 2023; 33:2895981. [PMID: 37307162 DOI: 10.1063/5.0151881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Over the past decade, the coupled spread of information and epidemic on multiplex networks has become an active and interesting topic. Recently, it has been shown that stationary and pairwise interactions have limitations in describing inter-individual interactions , and thus, the introduction of higher-order representation is significant. To this end, we present a new two-layer activity-driven network epidemic model, which considers the partial mapping relationship among nodes across two layers and simultaneously introduces simplicial complexes into one layer, to investigate the effect of 2-simplex and inter-layer mapping rate on epidemic transmission. In this model, the top network, called the virtual information layer, characterizes information dissemination in online social networks, where information can be diffused through simplicial complexes and/or pairwise interactions. The bottom network, named as the physical contact layer, denotes the spread of infectious diseases in real-world social networks. It is noteworthy that the correspondence among nodes between two networks is not one-to-one but partial mapping. Then, a theoretical analysis using the microscopic Markov chain (MMC) method is performed to obtain the outbreak threshold of epidemics, and extensive Monte Carlo (MC) simulations are also carried out to validate the theoretical predictions. It is obviously shown that MMC method can be used to estimate the epidemic threshold; meanwhile, the inclusion of simplicial complexes in the virtual layer or introductory partial mapping relationship between layers can inhibit the spread of epidemics. Current results are conducive to understanding the coupling behaviors between epidemics and disease-related information.
Collapse
Affiliation(s)
- Shuofan Zhang
- Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384, China
| | - Dawei Zhao
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chengyi Xia
- School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
39
|
Austin L, Jin Y, Liu BF, Kim S. Coping with outbreaks: Toward an infectious disease threat (IDT) appraisal model for risk communication. HEALTH COMMUNICATION 2023; 38:1305-1317. [PMID: 34875943 DOI: 10.1080/10410236.2021.2006394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Through an online, nationally representative survey (N = 1,164), this study examines how individuals perceive and cope with infectious disease outbreaks. Findings inform risk and crisis communication strategies for health organizations. This study explored how individuals' threat appraisals (perceived controllability, perceived predictability, and perceived responsibility) and their cognitive (i.e., information seeking) and conative coping (i.e., protective actions) differ by infectious disease threat (IDT) type (i.e. airborne, bloodborne, foodborne, sexually-transmitted, waterborne, or zoonotic/vectorborne) in epidemic situations. Findings revealed that IDT types varied significantly based on individuals' appraisals of predictability, controllability, and responsibility for different disease types. Across all disease types, predictability was the most impactful factor related to participants' information seeking and planned protective action taking.
Collapse
Affiliation(s)
- Lucinda Austin
- UNC Hussman School of Journalism and Media, University of North Carolina at Chapel Hill
| | - Yan Jin
- Grady College of Journalism and Mass Communication, University of Georgia
| | | | - Seoyeon Kim
- College of Communication and Information Sciences, University of Alabama
| |
Collapse
|
40
|
Katzelnick LC, Quentin E, Colston S, Ha TA, Andrade P, Eisenberg JN, Ponce P, Coloma J, Cevallos V. Increasing transmission of dengue virus across ecologically diverse regions of Ecuador and associated risk factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.25.23290519. [PMID: 37398346 PMCID: PMC10312896 DOI: 10.1101/2023.05.25.23290519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Ecuador is an interesting country to study drivers of dengue virus (DENV) transmission given it has multiple ecologically and demographically distinct regions. Here, we analyze province-level age-stratified dengue prevalence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades and across provinces in Ecuador. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have distinct age-specific prevalence distributions consistent with recent emergence across all provinces. We evaluated factors to the resolution of 1 hectare associated with geographic differences in vector suitability and arbovirus disease in the last 10 years by modeling 11,693 A aegypti presence points and 73,550 arbovirus cases. In total, 56% of the population of Ecuador lives in areas with high risk of Aedes aegypti. Most suitable provinces had hotspots for arbovirus disease risk, with population size, elevation, sewage connection, trash collection, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Emmanuelle Quentin
- Centro de Investigación en Salud Pública y Epidemiología Clínica, Universidad Tecnológica Equinoccial, Quito, 170129, Ecuador
| | - Savannah Colston
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Thien-An Ha
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Joseph N.S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, 170136, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infeciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, 170136, Ecuador
| |
Collapse
|
41
|
Huo L, Yu Y. The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks. CHAOS, SOLITONS, AND FRACTALS 2023; 169:113229. [PMID: 36844432 PMCID: PMC9942607 DOI: 10.1016/j.chaos.2023.113229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In recent years, as the COVID-19 global pandemic evolves, many unprecedented new patterns of epidemic transmission continue to emerge. Reducing the impact of negative information diffusion, calling for individuals to adopt immunization behaviors, and decreasing the infection risk are of great importance to maintain public health and safety. In this paper, we construct a coupled negative information-behavior-epidemic dynamics model by considering the influence of the individual's self-recognition ability and physical quality in multiplex networks. We introduce the Heaviside step function to explore the effect of decision-adoption process on the transmission for each layer, and assume the heterogeneity of the self-recognition ability and physical quality obey the Gaussian distribution. Then, we use the microscopic Markov chain approach (MMCA) to describe the dynamic process and derive the epidemic threshold. Our findings suggest that increasing the clarification strength of mass media and enhancing individuals' self-recognition ability can facilitate the control of the epidemic. And, increasing physical quality can delay the epidemic outbreak and leads to suppress the scale of epidemic transmission. Moreover, the heterogeneity of the individuals in the information diffusion layer leads to a two-stage phase transition, while it leads to a continuous phase transition in the epidemic layer. Our results can provide favorable references for managers in controlling negative information, urging immunization behaviors and suppressing epidemics.
Collapse
Affiliation(s)
- Liang'an Huo
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Yu
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
42
|
Newmyer S, Ssemadaali MA, Radhakrishnan H, Javitz HS, Bhatnagar P. Electrically regulated cell-based intervention for viral infections. Bioeng Transl Med 2023; 8:e10434. [PMID: 36925710 PMCID: PMC10013824 DOI: 10.1002/btm2.10434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
This work reports on an engineered cell that-when electrically stimulated-synthesizes a desired protein, that is, ES-Biofactory. The platform has been used to express interferon (IFN)-β as a universal antiviral protein. Compelling evidence indicates the inevitability of new pandemics and drives the need for a pan-viral intervention that may be quickly deployed while more specific vaccines are in development. Toward this goal, a fast-growing mammalian cell (Chassis) has been engineered with multiple synthetic elements. These include-(1) a voltage-gated Ca2+ channel (Voltage-Sensor) that, upon sensing the electric field, activates the (2) Ca2+-mediated signaling pathway (Actuator) to upregulate (3) IFN-β, via an engineered antiviral transgene (Effector), that is, ES-Biofactory➔IFN-β. The antiviral effects of the ES-Biofactory➔IFN-β have been validated on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells. The irradiated ES-Biofactory, that does not exhibit oncogenic capacity, continues to exert antiviral effect. The resulting ES-Biofactory➔IFN-β uses a novel signaling pathway that, unlike the natural IFN synthesis pathway, is not subject to viral interference. Once clinically validated, the ES-Biofactory will be a universal antiviral cell therapy that can be immediately deployed in the event of an outbreak. The platform may also be useful in treating other diseases including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Sherri Newmyer
- Biosciences DivisionSRI InternationalMenlo ParkCaliforniaUSA
| | | | | | | | | |
Collapse
|
43
|
Sorci G, Faivre B. [Age and case fatality rate of infectious diseases]. Med Sci (Paris) 2023; 39:287-289. [PMID: 36943127 DOI: 10.1051/medsci/2023020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, université de Bourgogne, Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, université de Bourgogne, Dijon, France
| |
Collapse
|
44
|
Breedlove B. Emerging Pathogens Pose Inevitable Surprises. Emerg Infect Dis 2023. [DOI: 10.3201/eid2902.ac2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
45
|
Tao C, Du J, Wang J, Hu B, Zhang Z. Rapid Identification of Infectious Pathogens at the Single-Cell Level via Combining Hyperspectral Microscopic Images and Deep Learning. Cells 2023; 12:cells12030379. [PMID: 36766719 PMCID: PMC9913624 DOI: 10.3390/cells12030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Identifying infectious pathogens quickly and accurately is significant for patients and doctors. Identifying single bacterial strains is significant in eliminating culture and speeding up diagnosis. We present an advanced optical method for the rapid detection of infectious (including common and uncommon) pathogens by combining hyperspectral microscopic imaging and deep learning. To acquire more information regarding the pathogens, we developed a hyperspectral microscopic imaging system with a wide wavelength range and fine spectral resolution. Furthermore, an end-to-end deep learning network based on feature fusion, called BI-Net, was designed to extract the species-dependent features encoded in cell-level hyperspectral images as the fingerprints for species differentiation. After being trained based on a large-scale dataset that we built to identify common pathogens, BI-Net was used to classify uncommon pathogens via transfer learning. An extensive analysis demonstrated that BI-Net was able to learn species-dependent characteristics, with the classification accuracy and Kappa coefficients being 92% and 0.92, respectively, for both common and uncommon species. Our method outperformed state-of-the-art methods by a large margin and its excellent performance demonstrates its excellent potential in clinical practice.
Collapse
Affiliation(s)
- Chenglong Tao
- Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China
| | - Jian Du
- Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China
| | - Junjie Wang
- Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China
| | - Bingliang Hu
- Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China
- Correspondence: (B.H.); (Z.Z.)
| | - Zhoufeng Zhang
- Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi’an, Xi’an 710119, China
- Correspondence: (B.H.); (Z.Z.)
| |
Collapse
|
46
|
Mremi IR, Rumisha SF, Sindato C, Kimera SI, Mboera LEG. Comparative assessment of the human and animal health surveillance systems in Tanzania: Opportunities for an integrated one health surveillance platform. Glob Public Health 2023; 18:2110921. [PMID: 35951768 DOI: 10.1080/17441692.2022.2110921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
Globally, there have been calls for an integrated zoonotic disease surveillance system. This study aimed to assess human and animal health surveillance systems to identify opportunities for One Health surveillance platform in Tanzania. A desk review of policies, acts and strategies addressing disease surveillance that support inter-sectoral collaboration was conducted. A semi-structured questionnaire was administered to key informants from the two sectors. Databases with potential relevance for surveillance were assessed. One Health-focused policies, acts, strategic plans and guidelines emphasising inter-sectoral collaboration strengthening were in place. Stable systems for collecting surveillance data with trained staff to implement surveillance activities at all levels in both sectors were available. While the human surveillance system was a mix of paper-based and web-based, the animal health system was mainly paper-based. The laboratory information system existed in both sectors, though not integrated with the epidemiological surveillance systems. Both the animal and human surveillance systems had low sensitivity to alert outbreaks. The findings indicate that individual, organisational, and infrastructure opportunities that support the integration of surveillance systems from multiple sectors exist. Challenges related to data sharing and quality need to be addressed for the effective implementation of the platform.
Collapse
Affiliation(s)
- Irene R Mremi
- SACIDS Foundation for One Health, Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Susan F Rumisha
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, West Perth, Australia
| | - Calvin Sindato
- SACIDS Foundation for One Health, Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania
| | - Sharadhuli I Kimera
- SACIDS Foundation for One Health, Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
47
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:56. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
48
|
Green synthesis, characterization and application on the proanthocyanidins-functionalized Fe3O4 @ Ag nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Mohammad N, Katkam SS, Wei Q. A Sensitive and Nonoptical CRISPR Detection Mechanism by Sizing Double-Stranded λ DNA Reporter. Angew Chem Int Ed Engl 2022; 61:e202213920. [PMID: 36239984 PMCID: PMC10100359 DOI: 10.1002/anie.202213920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/12/2022]
Abstract
CRISPR-based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR-Cas12a-based sensing platform to detect ssDNA targets by sizing double-stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massive trans-nuclease activity of Cas12a toward λ DNA is due to the presence of single-stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes the trans-cleavage activity and helps achieve sub-picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
- Department of Chemical EngineeringBangladesh University of Engineering and Technology1000DhakaBangladesh
| | - Shrinivas S. Katkam
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC 27695USA
| |
Collapse
|
50
|
Sung H. Non-pharmaceutical interventions and urban vehicle mobility in Seoul during the COVID-19 pandemic. CITIES (LONDON, ENGLAND) 2022; 131:103911. [PMID: 35966967 PMCID: PMC9359518 DOI: 10.1016/j.cities.2022.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Non-pharmaceutical interventions to control human mobility are important in preventing COVID-19 transmission. These interventions must also help effectively control the urban mobility of vehicles, which can be a safer travel mode during the pandemic, at any time and place. However, few studies have identified the effectiveness of vehicle mobility in terms of time and place. This study demonstrates the effectiveness of non-pharmaceutical interventions at both local and national levels on intra- and inter-urban vehicle mobility by time of day in Seoul, South Korea, by applying the autoregressive integrated moving average with exogenous variables. The study found that social distancing measures at the national level were effective for intra-urban vehicle mobility, especially at night-time, but not for inter-urban mobility. Information provision with emergency text messages by cell phone was effective in reducing vehicle mobility in daytime and night-time, but not during morning peak hours. At the local level, both restrictions on late-night transit operations and stricter social distancing measures were mostly significant in reducing night-time mobility only in intra-urban areas. The study also indicates when (what time of the day), where (which area within the city), and which combination strategy could be more effective in containing urban vehicle mobility. This study recommends that restrictions on human mobility should also be extended to vehicle mobility, especially in inter-urban areas and during morning peak hours, by systematically designing diverse non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Hyungun Sung
- School of Urban Studies, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| |
Collapse
|