1
|
Chen N, Jin J, Qiao B, Gao Z, Tian Y, Ping J. JNK kinase promotes inflammatory responses by inducing the expression of the inflammatory amplifier TREM1 during influenza a virus infection. Virus Res 2025; 356:199577. [PMID: 40253010 PMCID: PMC12033962 DOI: 10.1016/j.virusres.2025.199577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Since the twentieth century, four influenza pandemics caused by IAV have killed millions of people worldwide. IAV infection could induce acute lung injury mediated by cytokine storms, which is an essential cause of death in critically ill patients. Consequently, it is crucial to explore the regulators and regulatory mechanisms of cytokine storms, which may provide potential drug targets and expand our understanding of acute lung injury. Previous studies have shown that JNK kinase is essential in promoting inflammatory responses during viral infections. In this study, we demonstrated that JNK kinase could regulate the IAV-induced cytokine storms by affecting the expression of pro-inflammatory and anti-inflammatory factors. Further studies revealed that inhibition of JNK kinase activity significantly downregulated the expression of the inflammatory amplifier TREM1. Besides, TREM1 knockdown could significantly inhibit the expression of pro-inflammatory factors. Furthermore, SP600125 is a specific inhibitor of JNK kinase. The results show that TREM1 overexpression reversed the effect of SP600125 treatment on the expression of pro-inflammatory factors. Together, we found that JNK kinase could activate the inflammatory amplifier TREM1 to promote inflammatory responses during influenza A virus infection. These findings may provide some inspiration for subsequent researchers to explore the regulatory mechanisms of cytokine storms induced by emerging viral infections.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihe Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yusen Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Chang Y, Chen J, Peng Y, Zhang K, Zhang Y, Zhao X, Wang D, Li L, Zhu J, Liu K, Li Z, Pan S, Huang K. Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling. Cell Mol Immunol 2025; 22:437-455. [PMID: 39984674 PMCID: PMC11955566 DOI: 10.1038/s41423-025-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed. Transcriptome sequencing was performed to identify the key proinflammatory signal of macrophages infiltrating the brain, triggering receptor expressed on myeloid cells 1 (TREM1). Upon drug intervention, the effects of TREM1 on post-CA/CPR brain injury were further evaluated. 16S rRNA sequencing was used to detect gut dysbiosis after CA/CPR. Through photoconversion experiments, we found that small intestine-derived macrophages infiltrated the brain and played a crucial role in triggering secondary brain injury after CA/CPR. The infiltrating peripheral macrophages showed upregulated TREM1 levels, and we further revealed the crucial role of gut-derived TREM1+ macrophages in post-CA/CPR brain injury through a drug intervention targeting TREM1. Moreover, a close correlation between upregulated TREM1 expression and poor neurological outcomes was observed in CA survivors. Mechanistically, CA/CPR caused a substantial expansion of Enterobacter at the early stage, which ignited intestinal TREM1 signaling via the activation of Toll-like receptor 4 on macrophages through the release of lipopolysaccharide. Our findings reveal essential crosstalk between the gut and brain after CA/CPR and underscore the potential of targeting TREM1+ small intestine-derived macrophages as a novel therapeutic strategy for mitigating post-CA/CPR brain injury.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
3
|
Gysemans C, Beya M, Pedace E, Mathieu C. Exploring Neutrophil Heterogeneity and Plasticity in Health and Disease. Biomedicines 2025; 13:597. [PMID: 40149573 PMCID: PMC11940349 DOI: 10.3390/biomedicines13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils, the most abundant polymorphonuclear leukocytes, are critical first responders to infection, and have historically been underappreciated in terms of their functional complexity within the immune response. Once viewed primarily as short-lived, innate immune cells with limited functional plasticity, recent research has illuminated their considerable heterogeneity and diverse functional roles, which extend beyond their involvement in steady-state immunity. This review seeks to provide an updated analysis of neutrophil development, maturation, heterogeneity, and plasticity, with a focus on how these characteristics influence immune modulation in both healthy and diseased tissues. Beginning with the origin of neutrophils, we explore their maturation into effector cells and their evolving roles in immune defense under homeostatic and disease-associated conditions. We then delve into their heterogeneity, discussing recent breakthroughs in neutrophil research that challenge the traditional view of neutrophils as a uniform population. We address the significant advances that have been made in identifying distinct neutrophil subsets, the emerging complexities of their plasticity, and the challenges that remain in fully understanding their functional diversity. Finally, we highlight future directions and opportunities for continued exploration in this rapidly advancing field, shedding light on how these insights could open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Conny Gysemans
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Mateson Beya
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100 Siena, Italy;
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Chantal Mathieu
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| |
Collapse
|
4
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
5
|
Bale S, Verma P, Yalavarthi B, Bajželj M, Hasan SA, Silverman JN, Broderick K, Shah KA, Hamill T, Khanna D, Sigalov AB, Bhattacharyya S, Varga J. Inhibiting triggering receptor expressed on myeloid cells 1 signaling to ameliorate skin fibrosis. JCI Insight 2024; 9:e176319. [PMID: 39418109 PMCID: PMC11623937 DOI: 10.1172/jci.insight.176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. TGF-β is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown. By amplifying pattern recognition receptor signaling, triggering receptor expressed on myeloid cells 1 (TREM-1) is implicated in multiple inflammatory conditions. In this study, we used potentially novel ligand-independent TREM-1 inhibitors in preclinical models of fibrosis and explanted SSc skin fibroblasts in order to investigate the pathogenic role of TREM-1 in SSc. Selective pharmacological TREM-1 blockade prevented and reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and suggest a potential therapeutic benefit for TREM-1 inhibition.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matija Bajželj
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Syed A.M. Hasan
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna N. Silverman
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Broderick
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kris A. Shah
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hamill
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Chen Y, Mao L, Liu S, Huang S, Lin Q, Zeng M, Huang H, Sun X, Chen H, Huang J, Zhou G, Deng L. The role of TREM-1 in septic myocardial pyroptosis and septic cardiomyopathy in vitro and in vivo. J Cell Physiol 2024; 239:e31445. [PMID: 39344989 DOI: 10.1002/jcp.31445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Septic cardiomyopathy (SCM) is an acute cardiac dysfunction involving myocardial cell pyroptosis. TREM-1 is a known receptor on cell membrane that can amplify the inflammatory response. Our previous studies have shown that TREM-1 in cardiomyocytes is involved in the activation of NLRP3 through the SMC4/NEMO pathway. Here, we aimed to use Trem-1 and Nlrp3 knockout mice to verify the effect of TREM-1 through NLRP3 on cardiac function in septic mice. The results showed that TREM-1 knockout resulted in a decrease in the release of downstream cell signals, including SMC4 and NLRP3, resulting in a decrease in cytokine release and improvement of cardiac dysfunction. Knockout of NLRP3 also reduced cardiomyocyte pyroptosis and increased survival rate. The therapeutic targeting of TREM-1 activation of NLRP3 and its pathway may contribute to the treatment or prevention of SCM.
Collapse
Affiliation(s)
- Yongxia Chen
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Lixia Mao
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Songtao Liu
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Shunyi Huang
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Qiuyun Lin
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Man Zeng
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Huiyi Huang
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Xiaocong Sun
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Hongpeng Chen
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Jiahao Huang
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University; Yichang Central People's Hospital, Yichang, Hubei, China
| | - Liehua Deng
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, China
| |
Collapse
|
7
|
Chen X, Yu L, Meng S, Zhao J, Huang X, Wang Z, Zhou Z, Huang Y, Hong T, Duan J, Su T, Cao Z, Chi Y, Huang T, Wang H. Inhibition of TREM-1 ameliorates angiotensin II-induced atrial fibrillation by attenuating macrophage infiltration and inflammation through the PI3K/AKT/FoxO3a signaling pathway. Cell Signal 2024; 124:111458. [PMID: 39384003 DOI: 10.1016/j.cellsig.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Inflammation and infiltration of immune cells are intricately linked to the pathogenesis of atrial fibrillation (AF). Triggering receptor expressed on myeloid cells-1 (TREM-1), an enhancer of inflammation, is implicated in various cardiovascular disorders. However, the precise role and potential mechanisms of TREM-1 in the development of AF remain ambiguous. Atrial samples from patients with AF were used to assess the expression levels of TREM-1. An angiotensin II (Ang II)-induced AF mouse model was established to assess the functionality of TREM-1. Cardiac function and AF inducibility were assessed through echocardiography, programmed transvenous cardiac pacing, and atrial electrophysiological mapping. Peripheral blood and atrial inflammatory cells were assessed using flow cytometry. Using histology, bulk RNA sequencing, biochemical analyses, and cell cultures, the mechanistic role of TREM-1 in AF was elucidated. TREM-1 expression was upregulated and co-localized with macrophages in the atria of patients with AF. Pharmacological inhibition of TREM-1 decreased Ang II-induced atrial enlargement and electrical remodeling. TREM-1 inhibition also ameliorated Ang II-induced NLRP3 inflammasome activation, inflammatory factor release, atrial fibrosis, and macrophage infiltration. Transcriptomic analysis revealed that TREM-1 modulates Ang II-induced inflammation through the PI3K/AKT/FoxO3a signaling pathway. In vitro studies further supported these findings, demonstrating that TREM-1 activation exacerbates Ang II-induced inflammation, while overexpression of FoxO3a counteracts this effect. This study discovered the critical role of TREM-1 in the pathogenesis of AF and its underlying molecular mechanisms. Inhibition of TREM-1 provides a new therapeutic strategy for the treatment of AF.
Collapse
Affiliation(s)
- Xin Chen
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xinyi Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zhishang Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Hong
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, Dalian Medical University, Dalian, Liaoning 116000, PR China; Pediatric Surgery Ward, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen 518000, PR China
| | - Jinfeng Duan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Tong Su
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Yanbang Chi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
8
|
Vinolo E, Maillefer M, Jolly L, Colné N, Meiffren G, Carrasco K, Derive M. The potential of targeting TREM-1 in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:301-330. [PMID: 39521605 DOI: 10.1016/bs.apha.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Innate immune dysfunction is a hallmark of the pathogenesis of Inflammatory Bowel Disease, both in Crohn's disease and ulcerative colitis. Despite considerable efforts in research to better understand the pathophysiology of IBD and for the development of new therapeutic modalities for IBD patients, there is no therapy specifically targeting the dysregulations of the innate immune response available today in that field. TREM-1 is exclusively expressed by innate immune cells and is an immune amplifier. Its engagement following the primary activation of Pattern Recognition Receptors, including Toll-Like Receptors, triggers the development of a dysregulated and sustained innate immune response, promoting the perpetuation of the inflammatory response in the mucosa of IBD patients, microscopic mucosal tissue alterations, impaired autophagy, impaired epithelial barrier integrity and function, ulcerations, and mucosal damages. In patients, TREM-1 activation is associated with the active status of the disease as well as with severity. Blocking TREM-1 in experimental colitis attenuates the dysregulated innate immune response leading to improved clinical signs. Anti-TREM-1 approaches have the potential of controlling the pathogenic dysregulation of the immune response in IBD by targeting an upstream amplification loop of the activation of innate immunity.
Collapse
|
9
|
Quan M, Zhang H, Han X, Ba Y, Cui X, Bi Y, Yi L, Li B. Single-Cell RNA Sequencing Reveals Transcriptional Landscape of Neutrophils and Highlights the Role of TREM-1 in EAE. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200278. [PMID: 38954781 PMCID: PMC11221915 DOI: 10.1212/nxi.0000000000200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/06/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Moyuan Quan
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Huining Zhang
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xianxian Han
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yongbing Ba
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Cui
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yanwei Bi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Le Yi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Bowen JL, Keck K, Baruah S, Nguyen KH, Thurman AL, Pezzulo AA, Klesney-Tait J. Eosinophil expression of triggering receptor expressed on myeloid cells 1 (TREM-1) restricts type 2 lung inflammation. J Leukoc Biol 2024; 116:409-423. [PMID: 38547428 DOI: 10.1093/jleuko/qiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 07/27/2024] Open
Abstract
Asthma affects 25 million Americans, and recent advances in treatment are effective for only a portion of severe asthma patients. TREM-1, an innate receptor that canonically amplifies inflammatory signaling in neutrophils and monocytes, plays a central role in regulating lung inflammation. It is unknown how TREM-1 contributes to allergic asthma pathology. Utilizing a murine model of asthma, flow cytometry revealed TREM-1+ eosinophils in the lung tissue and airway during allergic airway inflammation. TREM-1 expression was restricted to recruited, inflammatory eosinophils. Expression was induced on bone marrow-derived eosinophils by incubation with interleukin 33, lipopolysaccharide, or granulocyte-macrophage colony-stimulating factor. Compared to TREM-1- airway eosinophils, TREM-1+ eosinophils were enriched for proinflammatory gene sets, including migration, respiratory burst, and cytokine production. Unexpectedly, eosinophil-specific ablation of TREM-1 exacerbated airway interleukin (IL) 5 production, airway MUC5AC production, and lung tissue eosinophil accumulation. Further investigation of transcriptional data revealed apoptosis and superoxide generation-related gene sets were enriched in TREM-1+ eosinophils. Consistent with these findings, annexin V and caspase-3/7 staining demonstrated higher rates of apoptosis among TREM-1+ eosinophils compared to TREM-1- eosinophils in the inflammatory airway. In vitro, Trem1/3-/- bone marrow-derived eosinophils consumed less oxygen than wild-type in response to phorbol myristate acetate, suggesting that TREM-1 promotes superoxide generation in eosinophils. These data reveal protein-level expression of TREM-1 by eosinophils, define a population of TREM-1+ inflammatory eosinophils, and demonstrate that eosinophil TREM-1 restricts key features of type 2 lung inflammation.
Collapse
Affiliation(s)
- Jayden L Bowen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, 501 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy Keck
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Sankar Baruah
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Kathy H Nguyen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Geng N, Wu Z, Liu Z, Pan W, Zhu Y, Shi H, Han Y, Ma Y, Liu B. sTREM-1 as a Predictive Biomarker for Disease Severity and Prognosis in COVID-19 Patients. J Inflamm Res 2024; 17:3879-3891. [PMID: 38911986 PMCID: PMC11192294 DOI: 10.2147/jir.s464789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background Research on biomarkers associated with the severity and adverse prognosis of COVID-19 can be beneficial for improving patient outcomes. However, there is limited research on the role of soluble TREM-1 (sTREM-1) in predicting the severity and prognosis of COVID-19 patients. Methods A total of 115 COVID-19 patients admitted to the emergency department of Beijing Youan Hospital from February to May 2023 were included in the study. Demographic information, laboratory measurements, and blood samples for sTREM-1 levels were collected upon admission. Results Our study found that sTREM-1 levels in the plasma of COVID-19 patients increased with the severity of the disease (moderate vs mild, p=0.0013; severe vs moderate, p=0.0195). sTREM-1 had good predictive value for disease severity and 28-day mortality (area under the ROC curve was 0.762 and 0.805, respectively). sTREM-1 also exhibited significant correlations with age, body temperature, respiratory rate, PaO2/FiO2, PCT, CRP, and CAR. Ultimately, through multivariate logistic regression analysis, we determined that sTREM-1 (OR 1.008, 95% CI: 1.002-1.013, p=0.005), HGB (OR 0.966, 95% CI: 0.935-0.998, p=0.036), D-dimer (OR 1.001, 95% CI: 1.000-1.001, p=0.009), and CAR (OR 1.761, 95% CI: 1.154-2.688, p=0.009) were independent predictors of 28-day mortality in COVID-19 patients. The combination of these four markers yielded a strong predictive value for 28-day mortality in COVID-19 cases with an AUC of 0.919 (95% CI: 0.857 -0.981). Conclusion sTREM-1 demonstrated good predictive value for disease severity and 28-day mortality, serving as an independent prognostic factor for adverse patient outcomes. In the future, we anticipate conducting large-scale multicenter studies to validate our research findings.
Collapse
Affiliation(s)
- Nan Geng
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Zhipeng Wu
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, 100013, People’s Republic of China
| | - Zhao Liu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Wen Pan
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yueke Zhu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Ying Han
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, 100013, People’s Republic of China
| | - Bo Liu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
12
|
Shen T, Cui G, Chen H, Huang L, Song W, Zu J, Zhang W, Xu C, Dong L, Zhang Y. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res 2024; 19:1375-1384. [PMID: 37905888 PMCID: PMC11467918 DOI: 10.4103/1673-5374.385843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson’s disease. Triggering receptor expressed on myeloid cell-1 (TREM-1) can amplify the inherent immune response, and crucially, regulate inflammation. In this study, we found marked elevation of serum soluble TREM-1 in patients with Parkinson’s disease that positively correlated with Parkinson’s disease severity and dyskinesia. In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease, we found that microglial TREM-1 expression also increased in the substantia nigra. Further, TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson’s disease and reduced dopaminergic neuronal injury. Meanwhile, TREM-1 knockout attenuated the neuroinflammatory response, dopaminergic neuronal injury, and neutrophil migration. Next, we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson’s disease and treated the cells with the TREM-1 inhibitory peptide LP17. We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration. Moreover, inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide. TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK. These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson’s disease by regulating the interaction between microglia and peripheral neutrophils.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Wilson EN, Wang C, Swarovski MS, Zera KA, Ennerfelt HE, Wang Q, Chaney A, Gauba E, Ramos Benitez JA, Le Guen Y, Minhas PS, Panchal M, Tan YJ, Blacher E, A Iweka C, Cropper H, Jain P, Liu Q, Mehta SS, Zuckerman AJ, Xin M, Umans J, Huang J, Durairaj AS, Serrano GE, Beach TG, Greicius MD, James ML, Buckwalter MS, McReynolds MR, Rabinowitz JD, Andreasson KI. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat Neurosci 2024; 27:873-885. [PMID: 38539014 PMCID: PMC11102654 DOI: 10.1038/s41593-024-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/21/2024]
Abstract
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-β42 oligomer-induced bioenergetic changes, suggesting that amyloid-β42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Collapse
Affiliation(s)
- Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Swarovski
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier A Ramos Benitez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maharshi Panchal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting J Tan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chinyere A Iweka
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poorva Jain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qingkun Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Abigail J Zuckerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Xin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Umans
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolie Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
15
|
Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15:1324010. [PMID: 38370418 PMCID: PMC10869492 DOI: 10.3389/fimmu.2024.1324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1), which belongs to the Ig-like superfamily expressed on myeloid cells, is reportedly involved in various diseases but has rarely been studied in glioma. In this study, the prognostic value and functional roles of TREM2 in glioma were analyzed. TERM1 was observed to be significantly upregulated in GBM compared to in other grade gliomas and was associated with poor prognosis. Increased TREM1 accompanied distinct mutation and amplification of driver oncogenes. Moreover, gene ontology and KEGG analyses showed that TREM1 might play a role in immunologic biological processes in glioma. TREM1 was also found to be tightly correlated with immune checkpoint molecules. xCell research revealed a link between TREM1 expression and multiple immune cell types, especially monocytes and macrophages. Single-cell analysis and immunofluorescence results showed that macrophages expressed TREM1. In vitro, inhibition of TREM1 signaling could result in a decrease in tumor-promoting effects of monocytes/TAMs. In summary, TREM1 may be a potential independent prognostic factor and immune target, which might provide new avenues to improve the efficacy of immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
16
|
Li P, Wang R, Dong WQ, Wang GY, Zhang AD, Chen HC, Tan C. Systemic neutrophils are triggered by respiratory Bacillus Calmette- Guérin and mediate pulmonary mycobacterial clearance in synergy with the triggering receptor expressed on myeloid cells 1. Microb Pathog 2024; 187:106535. [PMID: 38176463 DOI: 10.1016/j.micpath.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Tuberculosis remains a threat to public health. The only approved vaccine, Bacillus Calmette-Guérin (BCG), is administered intradermally and provides limited protection, and its effect on innate immunity via the respiratory route has not been fully elucidated. A mouse model with genetically depleted TREM1 and seven-color flow cytometry staining were used to characterize the comprehensive immune response induced by respiratory BCG, through evaluating organ bacterial loads, lung histopathology, and lung immunohistochemistry. During respiratory BCG infection, the murine lungs displayed effective bacterial clearance. Notably, marked differences in neutrophils were observed between thymus and bone marrow cells, characterized by a significant increase in the expression of the triggering receptor expressed on myeloid cells 1 (TREM1). Subsequently, upon depletion of TREM1, a reduction in pulmonary neutrophils was observed, which further exacerbated bacterial loads and resulted in worsened pathology following respiratory BCG infection. In summary, up-regulated expression of TREM1 in rapidly increasing circulating neutrophil by pulmonary BCG is required for an efficient host response to BCG infection, and suggests the important role of TREM1 in neutrophil-related pulmonary bacteria clearance and pathology.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Systematic Immunology of Tuberculosis, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Qi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gao-Yan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - An-Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Theobald V, Schmitt FCF, Middel CS, Gaissmaier L, Brenner T, Weigand MA. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit Care 2024; 28:17. [PMID: 38191420 PMCID: PMC10775509 DOI: 10.1186/s13054-024-04798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Vivienne Theobald
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Felix Carl Fabian Schmitt
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Chiara Simone Middel
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Lena Gaissmaier
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Ajith A, Mamouni K, Horuzsko DD, Musa A, Dzutsev AK, Fang JR, Chadli A, Zhu X, Lebedyeva I, Trinchieri G, Horuzsko A. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti-PD-1 resistance. J Clin Invest 2023; 133:e167951. [PMID: 37651197 PMCID: PMC10617775 DOI: 10.1172/jci167951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kenza Mamouni
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D. Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Abu Musa
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Abstract
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
20
|
Juric V, Mayes E, Binnewies M, Lee T, Canaday P, Pollack JL, Rudolph J, Du X, Liu VM, Dash S, Palmer R, Jahchan NS, Ramoth ÅJ, Lacayo S, Mankikar S, Norng M, Brassell C, Pal A, Chan C, Lu E, Sriram V, Streuli M, Krummel MF, Baker KP, Liang L. TREM1 activation of myeloid cells promotes antitumor immunity. Sci Transl Med 2023; 15:eadd9990. [PMID: 37647386 DOI: 10.1126/scitranslmed.add9990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Myeloid cells in the tumor microenvironment (TME) can exist in immunosuppressive and immunostimulatory states that impede or promote antitumor immunity, respectively. Blocking suppressive myeloid cells or increasing stimulatory cells to enhance antitumor immune responses is an area of interest for therapeutic intervention. Triggering receptor expressed on myeloid cells-1 (TREM1) is a proinflammatory receptor that amplifies immune responses. TREM1 is expressed on neutrophils, subsets of monocytes and tissue macrophages, and suppressive myeloid populations in the TME, including tumor-associated neutrophils, monocytes, and tumor-associated macrophages. Depletion or inhibition of immunosuppressive myeloid cells, or stimulation by TREM1-mediated inflammatory signaling, could be used to promote an immunostimulatory TME. We developed PY159, an afucosylated humanized anti-TREM1 monoclonal antibody with enhanced FcγR binding. PY159 is a TREM1 agonist that induces signaling, leading to up-regulation of costimulatory molecules on monocytes and macrophages, production of proinflammatory cytokines and chemokines, and enhancement of T cell activation in vitro. An antibody against mouse TREM1, PY159m, promoted antitumor efficacy in syngeneic mouse tumor models. These results suggest that PY159-mediated agonism of TREM1 on tumoral myeloid cells can promote a proinflammatory TME and offer a promising strategy for immunotherapy.
Collapse
Affiliation(s)
- Vladislava Juric
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Erin Mayes
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Mikhail Binnewies
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Tian Lee
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Pamela Canaday
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Joshua L Pollack
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Joshua Rudolph
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Xiaoyan Du
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Victoria M Liu
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Subhadra Dash
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Rachael Palmer
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Nadine S Jahchan
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Åsa Johanna Ramoth
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Sergio Lacayo
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Shilpa Mankikar
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Manith Norng
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Chris Brassell
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Aritra Pal
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Christopher Chan
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Erick Lu
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Venkataraman Sriram
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Michel Streuli
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin P Baker
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| | - Linda Liang
- Pionyr Immunotherapeutics, 2 Tower Place, Suite 800, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Wu K, Liu YY, Shao S, Song W, Chen XH, Dong YT, Zhang YM. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav Immun 2023:S0889-1591(23)00141-1. [PMID: 37286175 DOI: 10.1016/j.bbi.2023.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
22
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
23
|
de Oliveira Matos A, dos Santos Dantas PH, Colmenares MTC, Sartori GR, Silva-Sales M, Da Silva JHM, Neves BJ, Andrade CH, Sales-Campos H. The CDR3 region as the major driver of TREM-1 interaction with its ligands, an in silico characterization. Comput Struct Biotechnol J 2023; 21:2579-2590. [PMID: 37122631 PMCID: PMC10130352 DOI: 10.1016/j.csbj.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor heavily investigated in infectious and non-infectious diseases. Because of its role in amplifying inflammation, TREM-1 has been explored as a diagnostic/prognostic biomarker. Further, as the receptor has been implicated in the pathophysiology of several diseases, therapies aiming at modulating its activity represent a promising strategy to constrain uncontrolled inflammatory or infectious diseases. Despite this, several aspects concerning its interaction with ligands and activation process, remain unclear. Although many molecules have been suggested as TREM-1 ligands, only five have been confirmed to interact with the receptor: actin, eCIRP, HMGB1, Hsp70 and PGLYRP1. However, the domains involved in the interaction between the receptor and these proteins are not clarified yet. Therefore, here we used in silico approaches to investigate the putative binding domains in the receptor, using hot spots analysis, molecular docking and molecular dynamics simulations between TREM-1 and its five known ligands. Our results indicated the complementarity-determining regions (CDRs) of the receptor as the main mediators of antigen recognition, especially the CDR3 loop. We believe that our study could be used as structural basis for the elucidation of TREM-1's recognition process, and may be useful for prospective in silico and biological investigations exploring the receptor in different contexts.
Collapse
Affiliation(s)
| | | | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
24
|
Zhong WJ, Zhang J, Duan JX, Zhang CY, Ma SC, Li YS, Yang NSY, Yang HH, Xiong JB, Guan CX, Jiang ZX, You ZJ, Zhou Y. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury. J Transl Med 2023; 21:179. [PMID: 36879273 PMCID: PMC9990355 DOI: 10.1186/s12967-023-04027-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Sheng-Chao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.,The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhi-Xing Jiang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, China. .,Liuzhou Key Laboratory of Anesthesia and Brain Health, Liuzhou People's Hospital, Liuzhou, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
25
|
Identification of Specific Biomarkers and Pathways in the Treatment Response of Infliximab for Inflammatory Bowel Disease: In-Silico Analysis. Life (Basel) 2023; 13:life13030680. [PMID: 36983834 PMCID: PMC10057676 DOI: 10.3390/life13030680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. In biological therapy, infliximab became the first anti-tumor necrosis factor (TNF) agent approved for IBD. Despite this success, infliximab is expensive, often ineffective, and associated with adverse events. Prediction of infliximab resistance would improve overall potential outcomes. Therefore, there is a pressing need to widen the scope of investigating the role of genetics in IBD to their association with therapy response. Methods: In the current study, an in-silico analysis of publicly available IBD patient transcriptomics datasets from Gene Expression Omnibus (GEO) are used to identify subsets of differentially expressed genes (DEGs) involved in the pathogenesis of IBD and may serve as potential biomarkers for Infliximab response. Five datasets were found that met the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEOR2 tool. The probes’ annotated genes in each dataset intersected with DGEs from all other datasets. Enriched gene Ontology Clustering for the identified genes was performed using Metascape to explore the possible connections or interactions between the genes. Results: 174 DEGs between IBD and healthy controls were found from analyzing two datasets (GSE14580 and GSE73661), indicating a possible role in the pathogenesis of IBD. Of the 174 DEGs, five genes (SELE, TREM1, AQP9, FPR2, and HCAR3) were shared between all five datasets. Moreover, these five genes were identified as downregulated in the infliximab responder group compared to the non-responder group. Conclusions: We hypothesize that alteration in the expression of these genes leads to an impaired response to infliximab in IBD patients. Thus, these genes can serve as potential biomarkers for the early detection of compromised infliximab response in IBD patients.
Collapse
|
26
|
Zhou X, Lin K, Fu L, Liu F, Lin H, Chen Y, Zhuang B, Liang H, Deng Q, Wang Z, Chen W, Luo J, Cao J, Li P. Overexpression of TREM1 is Associated with the Immune-Suppressive Microenvironment and Unfavorable Prognosis in Pan-Cancer. J Inflamm Res 2023; 16:1375-1391. [PMID: 37006813 PMCID: PMC10065015 DOI: 10.2147/jir.s398284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background Triggering receptors expressed by myeloid cells-1 (TREM1) is a receptor belonging to the immunoglobulin superfamily and plays an important role in pro-inflammation in acute and chronic inflammatory disorders. However, the understanding of the immunomodulatory roles of TREM1 in the tumor microenvironment remains incomplete. Methods The expression patterns of TREM1 mRNA in tumors and adjacent normal tissues were compared by analyzing data obtained from the Genotype-Tissue Expression and The Cancer Genome Atlas datasets. Survival analysis was performed to determine the prognostic value of TREM1. Functional enrichment analysis was applied to decipher the discrepancy in biological processes between high- and low-TREM1 groups across various cancers. The correlation between TREM1 and immune cell infiltration determined by using multiple algorithms was evaluated with the Pearson method. Four independent immunotherapy cohorts were adopted to validate the role of TREM1 as a biomarker. Results TREM1 was elevated in most cancers as verified with clinical samples. Overexpression of TREM1 was linked with undesirable prognosis in patients. Further analysis revealed that TREM1 was positively correlated with immune response, pro-tumor pathways, and myeloid cell infiltration, while being negatively correlated with CD8+ T cell (including infiltration level and biological processes). Concordantly, tumors with high TREM1 levels were more resistant to immunotherapy. Through connective map analysis, therapeutically potential compounds like tozasertib and TPCA-1 were identified, which can be used synergistically with immunotherapy to improve the poor prognosis of patients with high TREM1 levels. Conclusion Through a systematic and comprehensive pan-cancer analysis, we demonstrated that overexpression of TREM1 in tumors correlated closely with unfavorable outcome, infiltration of immune-suppressive cells, and immune regulation, which highlights its potential use as a tumor prognostic biomarker and a novel target for immunotherapy.
Collapse
Affiliation(s)
- Xinwei Zhou
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Jiangmen, People’s Republic of China
- Jiazheng Cao, Department of Urology, Jiangmen Central Hospital, Haibang Street 23, Jiangmen, 529030, People’s Republic of China, Tel +86-750-3165500, Email
| | - Pengju Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Pengju Li, Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, People’s Republic of China, Tel +86-20-87618227, Email
| |
Collapse
|
27
|
Zhong WJ, Liu T, Yang HH, Duan JX, Yang JT, Guan XX, Xiong JB, Zhang YF, Zhang CY, Zhou Y, Guan CX. TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. Int J Biol Sci 2023; 19:242-257. [PMID: 36594089 PMCID: PMC9760435 DOI: 10.7150/ijbs.77304] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Tian Liu
- College of Physiology Education, Chongqing University of Arts and Science, Chongqing 412160, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jin-Tong Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yan-Feng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China,✉ Corresponding authors: Prof. Cha-Xiang Guan or Yong Zhou; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China. Tel.: +86-731-82355051; Fax: +86-731-82355056; E-mail: or
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China,✉ Corresponding authors: Prof. Cha-Xiang Guan or Yong Zhou; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China. Tel.: +86-731-82355051; Fax: +86-731-82355056; E-mail: or
| |
Collapse
|
28
|
Panagopoulos A, Samant S, Bakhos JJ, Liu M, Khan B, Makadia J, Muhammad F, Kievit FM, Agrawal DK, Chatzizisis YS. Triggering receptor expressed on myeloid cells-1 (TREM-1) inhibition in atherosclerosis. Pharmacol Ther 2022; 238:108182. [DOI: 10.1016/j.pharmthera.2022.108182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
29
|
Sigalov AB. Inhibition of TREM-2 Markedly Suppresses Joint Inflammation and Damage in Experimental Arthritis. Int J Mol Sci 2022; 23:ijms23168857. [PMID: 36012120 PMCID: PMC9408405 DOI: 10.3390/ijms23168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The triggering receptors expressed on myeloid cells (TREMs) are a family of activating immune receptors that regulate the inflammatory response. TREM-1, which is expressed on monocytes and/or macrophages and neutrophils, functions as an inflammation amplifier and plays a role in the pathogenesis of rheumatoid arthritis (RA). Unlike TREM-1, the role in RA of TREM-2, which is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, remains unclear and controversial. TREM-2 ligands are still unknown, adding further uncertainty to our understanding of TREM-2 function. Previously, we demonstrated that TREM-1 blockade, using a ligand-independent TREM-1 inhibitory peptide sequence GF9 rationally designed by our signaling chain homooligomerization (SCHOOL) model of cell signaling, ameliorates collagen-induced arthritis (CIA) severity in mice. Here, we designed a TREM-2 inhibitory peptide sequence IA9 and tested it in the therapeutic CIA model, either as a free 9-mer peptide IA9, or as a part of a 31-mer peptide IA31 incorporated into lipopeptide complexes (IA31-LPC), for targeted delivery. We demonstrated that administration of IA9, but not a control peptide, after induction of arthritis diminished release of proinflammatory cytokines and dramatically suppressed joint inflammation and damage, suggesting that targeting TREM-2 may be a promising approach for the treatment of RA.
Collapse
|
30
|
Siskind S, Brenner M, Wang P. TREM-1 Modulation Strategies for Sepsis. Front Immunol 2022; 13:907387. [PMID: 35784361 PMCID: PMC9240770 DOI: 10.3389/fimmu.2022.907387] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor, which can be upregulated in inflammatory diseases as an amplifier of immune responses. Once activated, TREM-1 induces the production and release of pro-inflammatory cytokines and chemokines, in addition to increasing its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). This amplification of the inflammatory response by TREM-1 has now been considered as a critical contributor to the dysregulated immune responses in sepsis. Studies have shown that in septic patients there is an elevated expression of TREM-1 on immune cells and increased circulating levels of sTREM-1, associated with increased mortality. As a result, a considerable effort has been made towards identifying endogenous ligands of TREM-1 and developing TREM-1 inhibitory peptides to attenuate the exacerbated inflammatory response in sepsis. TREM-1 modulation has proven a promising strategy for the development of therapeutic agents to treat sepsis. Therefore, this review encompasses the ligands investigated as activators of TREM-1 thus far and highlights the development and efficacy of novel inhibitors for the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Sara Siskind
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
31
|
Chronic Exposure to the Food Additive tBHQ Modulates Expression of Genes Related to SARS-CoV-2 and Influenza Viruses. Life (Basel) 2022; 12:life12050642. [PMID: 35629310 PMCID: PMC9147452 DOI: 10.3390/life12050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background. tert-butylhydroquinone (tBHQ) is an antioxidant commonly used as a food additive. Studies suggest that tBHQ could modulate immune responses to influenza and SARS-CoV-2 infection. In our transcriptomic analysis we explored the molecular mechanisms behind tBHQ’s modulatory properties and the relationships to respiratory viral infections. Methods. tBHQ was administered per os to BALB/c mice (1.5% [w/w]) for 20 days. Splenic T cells were isolated with magnetic separation and subjected to transcriptomic analysis. Gene-set enrichment analysis and g:Profiler was conducted to provide a functional interpretation of significantly changed genes. Further analysis for AHR/NRF2 binding sites was performed with GeneHancer. Results. In CD4+ cells, we found significantly altered expression of 269 genes by tBHQ. Of them, many had relevance in influenza infection such as genes responsible for virus entry (Anxa1/2, Cd14), interferon signaling (Dusp10, Tnfsf13), or prostaglandin synthesis (Ptgs1/2). In SARS-CoV-2 infections, interferon signaling (Ifitm1), proteolytic enzymes (CtsB), and also cell-surface proteins (Cd14, Cd151) were among the prominent alterations after tBHQ exposure. Of these genes, many had one or more binding sites for AHR and NRF2, two major xenosensors triggered by tBHQ. Conclusions. Our results strongly suggest that a common food additive, tBHQ, can modulate virus-dependent processes in both influenza and SARS-CoV-2 infections.
Collapse
|
32
|
Vandestienne M, Joffre J, Lemarié J, Ait-Oufella H. [Role of TREM-1 in cardiovascular diseases]. Med Sci (Paris) 2022; 38:32-37. [PMID: 35060884 DOI: 10.1051/medsci/2021242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The innate immune system plays a crucial role in cardiovascular disease initiation, progression and complications. TREM-1, a receptor mainly expressed by myeloid cells, orchestrates inflammatory responses and amplifies cytokine and chemokine production as well as oxidative burst. Recent experimental studies have demonstrated that TREM-1 blockade is protective, limiting atherosclerosis and abdominal aortic aneurysm development, as well as adverse tissue remodeling after cardiac or cerebral ischemic injuries. Plasma soluble TREM-1 level is a promising biomarker in patients with cardiovascular diseases for risk stratification, paving the way for personalized immune-modulatory approaches.
Collapse
Affiliation(s)
- Marie Vandestienne
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France
| | - Jérémie Joffre
- Service de Médecine intensive-Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Jérémie Lemarié
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France - Service de Médecine intensive-Réanimation, CHU de Nantes, Nantes, France
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, PARCC (Paris Cardiovascular Research Center), Paris, France - Service de Médecine intensive-Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
33
|
da Silva-Neto PV, de Carvalho JCS, Pimentel VE, Pérez MM, Toro DM, Fraga-Silva TFC, Fuzo CA, Oliveira CNS, Rodrigues LC, Argolo JGM, Carmona-Garcia I, Neto NT, Souza COS, Fernandes TM, Bastos VAF, Degiovani AM, Constant LF, Ostini FM, Feitosa MR, Parra RS, Vilar FC, Gaspar GG, da Rocha JJR, Feres O, Frantz FG, Gerlach RF, Maruyama SR, Russo EMS, Viana AL, Fernandes APM, Santos IKFM, Bonato VLD, Boechat AL, Malheiro A, Sadikot RT, Dias-Baruffi M, Cardoso CRB, Faccioli LH, Sorgi CA, on behalf of the IMUNOCOVID Study Group. sTREM-1 Predicts Disease Severity and Mortality in COVID-19 Patients: Involvement of Peripheral Blood Leukocytes and MMP-8 Activity. Viruses 2021; 13:2521. [PMID: 34960790 PMCID: PMC8708887 DOI: 10.3390/v13122521] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.
Collapse
Affiliation(s)
- Pedro V. da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, AM, Brazil; (A.L.B.); (A.M.)
| | - Jonatan C. S. de Carvalho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto—FFCLRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil
| | - Vinícius E. Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Malena M. Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Diana M. Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, AM, Brazil; (A.L.B.); (A.M.)
| | - Thais F. C. Fraga-Silva
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Camilla N. S. Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Lilian C. Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Jamille G. M. Argolo
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Ingryd Carmona-Garcia
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Nicola T. Neto
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Camila O. S. Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Talita M. Fernandes
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Victor A. F. Bastos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Augusto M. Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto 14085-000, SP, Brazil; (A.M.D.); (L.F.C.); (F.M.O.)
| | - Leticia F. Constant
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto 14085-000, SP, Brazil; (A.M.D.); (L.F.C.); (F.M.O.)
| | - Fátima M. Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto 14085-000, SP, Brazil; (A.M.D.); (L.F.C.); (F.M.O.)
| | - Marley R. Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14048-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
| | - Rogerio S. Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14048-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
| | - Fernando C. Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.V.); (G.G.G.)
| | - Gilberto G. Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.V.); (G.G.G.)
| | - José J. R. da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14048-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo (USP), Ribeirão Preto 14048-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
| | - Fabiani G. Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Raquel F. Gerlach
- Departamento de Morfologia, Fisiologia e Patologia básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-904, SP, Brazil;
| | - Sandra R. Maruyama
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Elisa M. S. Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Angelina L. Viana
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Ana P. M. Fernandes
- Escola de Enfermagem de Ribeirão Preto—EERP, Universidade de São Paulo—USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (I.C.-G.); (N.T.N.); (T.M.F.); (A.L.V.); (A.P.M.F.)
| | - Isabel K. F. M. Santos
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Vânia L. D. Bonato
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Antonio L. Boechat
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, AM, Brazil; (A.L.B.); (A.M.)
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, AM, Brazil; (A.L.B.); (A.M.)
| | - Ruxana T. Sadikot
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Cristina R. B. Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto—FCFRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (V.E.P.); (M.M.P.); (D.M.T.); (C.A.F.); (C.N.S.O.); (L.C.R.); (C.O.S.S.); (V.A.F.B.); (F.G.F.); (E.M.S.R.); (M.D.-B.); (C.R.B.C.)
| | - Carlos A. Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, AM, Brazil; (A.L.B.); (A.M.)
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto—FFCLRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil
- Departamento de Bioquímica e Imunologia. Faculdade de Medicina de Ribeirão Preto—FMRP, Universidade de São Paulo—USP, Ribeirão Preto 14040-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | | |
Collapse
|
34
|
Li J, Yang S, Liu S, Chen Y, Liu H, Su Y, Liu R, Cui Y, Song Y, Teng Y, Wang T. Transcriptomic Profiling Reveals a Role for TREM-1 Activation in Enterovirus D68 Infection-Induced Proinflammatory Responses. Front Immunol 2021; 12:749618. [PMID: 34887856 PMCID: PMC8650217 DOI: 10.3389/fimmu.2021.749618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing cases related to the pathogenicity of Enterovirus D68 (EV-D68) have made it a growing worldwide public health concern, especially due to increased severe respiratory illness and acute flaccid myelitis (AFM) in children. There are currently no vaccines or medicines to prevent or treat EV-D68 infections. Herein, we performed genome-wide transcriptional profiling of EV-D68-infected human rhabdomyosarcoma (RD) cells to investigate host-pathogen interplay. RNA sequencing and subsequent experiments revealed that EV-D68 infection induced a profound transcriptional dysregulation of host genes, causing significantly elevated inflammatory responses and altered antiviral immune responses. In particular, triggering receptor expressed on myeloid cells 1 (TREM-1) is involved in highly activated TREM-1 signaling processes, acting as an important mediator in EV-D68 infection, and it is related to upregulation of interleukin 8 (IL-8), IL-6, IL-12p70, IL-1β, and tumor necrosis factor alpha (TNF-α). Further results demonstrated that NF-κB p65 was essential for EV-D68-induced TREM-1 upregulation. Moreover, inhibition of the TREM1 signaling pathway by the specific inhibitor LP17 dampened activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade, suggesting that TREM-1 mainly transmits activation signals to phosphorylate p38 MAPK. Interestingly, treatment with LP17 to inhibit TREM-1 inhibited viral replication and infection. These findings imply the pathogenic mechanisms of EV-D68 and provide critical insight into therapeutic intervention in enterovirus diseases.
Collapse
Affiliation(s)
- Jinyu Li
- School of Life Sciences, Tianjin University, Tianjin, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yulu Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongyun Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yazhi Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China.,Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| |
Collapse
|
35
|
Abstract
Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) amplifies the immune response, operating synergistically with Toll-Like Receptors (TLRs) in the production of inflammatory mediators. TREM-1 signaling depends on the adapter protein DAP12, which results in the activation of NFkB, the expression of inflammatory genes, and the release of antimicrobial peptides, such as Beta-defensin 2. We evaluated the activation of the TREM-1 signaling pathways in Cutaneous Leishmaniasis (CL) caused by Leishmania braziliensis and linage human keratinocytes exposed to these parasites since the host immune response against Leishmania plays a critical role in promoting parasite killing but also participates in inflammation and tissue damage. We analyzed publicly available transcriptome data from the lesions of CL patients. In the CL biopsies, we found increased expression of the molecules involved in the TREM-1 pathway. We then validated these findings with RT-qPCR and immunohistochemistry in newly obtained biopsies. Surprisingly, we found a strong labeling of TREM-1 in keratinocytes, prompting the hypothesis that increased TREM-1 activation may be the result of tissue damage. However, increased TREM-1 expression was only seen in human lineage keratinocytes following parasite stimulation. Moreover, no up-regulation of TREM-1 expression was observed in the skin lesions caused by other non-infectious inflammatory diseases. Together, these findings indicate that L. braziliensis (Lb) induces the expression of the TREM-1 receptor in tissue keratinocytes regardless of tissue damage, suggesting that non-immune skin cells may play a role in the inflammatory response of CL.
Collapse
|
36
|
Reduced uterine tissue damage during Chlamydia muridarum infection in TREM-1,3 deficient mice. Infect Immun 2021; 89:e0007221. [PMID: 34125599 DOI: 10.1128/iai.00072-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with TLR-signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 in immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower genital tract infection. We also observed a similar incidence of oviduct hydrosalpinx 45 days post-infection in trem1,3-/- compared to WT mice. However, compared to WT, trem1,3-/- mice developed significantly fewer uterine horn hydrometra. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased G-CSF. Trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the development of uterine hydrometra in infected mice.
Collapse
|
37
|
Triggering receptor expressed on myeloid cells-1 (TREM-1) contributes to Bordetella pertussis inflammatory pathology. Infect Immun 2021; 89:e0012621. [PMID: 34097504 DOI: 10.1128/iai.00126-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation, without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics which specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in TLR9-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced TNF-α and CCL-2 expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.
Collapse
|
38
|
TREM1 rs2234237 (Thr25Ser) Polymorphism in Patients with Cutaneous Leishmaniasis Caused by Leishmania guyanensis: A Case-Control Study in the State of Amazonas, Brazil. Pathogens 2021; 10:pathogens10040498. [PMID: 33924130 PMCID: PMC8074324 DOI: 10.3390/pathogens10040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Leishmaniasis is an infectious disease caused by Leishmania parasites. A Th1 immune response is necessary in the acute phase to control the pathogen. The triggering receptor expressed on myeloid cells (TREM)-1 is a potent amplifier of inflammation. Our aim is to identify whether the TREM1 variant rs2234237 A/T (Thr25Ser) is associated with the disease development of cutaneous leishmaniasis (CL) in Leishmania guyanensis-infected individuals. The effects of the rs2234237 genotypes on plasma cytokines IL-1β, IL-6, IL-8, IL-10, MCP-1 and TNF-α are also investigated. Methods: 838 patients with CL and 818 healthy controls (HCs) living in the same endemic areas were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. Plasma cytokines were assayed in 400 patients with CL and 400 HCs using the BioPlex assay. Results: The genotypes’ and alleles’ frequencies were similar in both patients with CL (AA = 618, 74%; AT = 202, 24%; TT = 18, 2%) and in HCs (AA = 580, 71%; AT = 220, 27%; TT = 18, 2%). Rs2234237 showed a modest effect on plasma IL-10 that disappeared when correction of the p-value was applied. Plasma IL-10 by rs2234237 genotypes were (mean ± SEM; AA = 2.91 pg/mL ± 0.14; AT = 2.35 pg/mL ± 0.12; TT = 3.14 pg/mL ± 0.56; p = 0.05). Conclusion: The TREM1 rs2234237 (Thr25Ser) seems to have no influence on the susceptibility or resistance to L. guyanensis infections.
Collapse
|
39
|
Park WB, Kim S, Shim S, Yoo HS. Identification of Dendritic Cell Maturation, TLR, and TREM1 Signaling Pathways in the Brucella canis Infected Canine Macrophage Cells, DH82, Through Transcriptomic Analysis. Front Vet Sci 2021; 8:619759. [PMID: 33829052 PMCID: PMC8020338 DOI: 10.3389/fvets.2021.619759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Research has been undertaken to understand the host immune response to Brucella canis infection because of the importance of the disease in the public health field and the clinical field. However, the previous mechanisms governing this infection have not been elucidated. Therefore, in vitro models, which mimic the in vivo infection route using a canine epithelial cell line, D17, and a canine macrophage, DH82, were established to determine these mechanisms by performing an analysis of the transcriptomes in the cells. In this study, a coculture model was constructed by using the D17 cell line and DH82 cell line in a transwell plate. Also, a single cell line culture system using DH82 was performed. After the stimulation of the cells in the two different systems infected with B. canis, the gene expression in the macrophages of the two different systems was analyzed by using RNA-sequencing (RNA-seq), and a transcriptomic analysis was performed by using the Ingenuity Pathway Analysis (IPA). Gene expression patterns were analyzed in the DH82 cell line at 2, 12, and 24 h after the stimulation with B. canis. Changes in the upregulated or downregulated genes showing 2-fold or higher were identified at each time point by comparing with the non-stimulated group. Differentially expressed genes (DEGs) between the two culture models were identified by using the IPA program. Generally, the number of genes expressed in the single cell line culture was higher than the number of genes expressed in the coculture model for all-time points. The expression levels of those genes were higher in the single cell line culture (p < 0.05). This analysis indicated that the immune response-related pathways, especially, the dendritic cell maturation, Triggering receptor expression on myeloid cells 1 (TREM1) signaling, and Toll-like receptor (TLR) signaling pathway, were significantly induced in both the culture systems with higher p-values and z-scores. An increase in the expression level of genes related to the pathways was observed over time. All pathways are commonly associated with a manifestation of pro-inflammatory cytokines and early immune responses. However, the Peroxisome proliferator-activation receptor (PPAR) signaling and Liver X Receptor/Retinoid X Receptor (LXR/RXR) signaling associated with lipid metabolism were reduced. These results indicate that early immune responses might be highly activated in B. canis infection. Therefore, these results might suggest clues to reveal the early immune response of the canine to B. canis infection, particularly TLR signaling.
Collapse
Affiliation(s)
- Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
40
|
Seo DH, Che X, Kim S, Kim DH, Ma HW, Kim JH, Kim TI, Kim WH, Kim SW, Cheon JH. Triggering Receptor Expressed on Myeloid Cells-1 Agonist Regulates Intestinal Inflammation via Cd177 + Neutrophils. Front Immunol 2021; 12:650864. [PMID: 33767714 PMCID: PMC7985452 DOI: 10.3389/fimmu.2021.650864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Triggering receptor expressed on myeloid cell-1 (TREM-1) signaling is expressed on neutrophils and monocytes that is necessary for the successful antimicrobial response and resolution of inflammation in the gut. In this study, we determined the effect of an anti-TREM-1 agonistic antibody (α-TREM-1) on colitis and identify its underlying mechanism of action. Administration of α-TREM-1 alleviated colitis in mice and resolved dysbiosis, which required TLR4/Myd88 signaling. α-TREM-1 increased the production of neutrophil extracellular traps and interleukin-22 by CD177+ neutrophils, which led to pathogen clearance and protection of the intestinal barrier. TREM-1 activation using an α-TREM-1 antibody protects against colitis by rebalancing the microbiota and protecting the epithelium against the immune response as well as modulates the function of neutrophils and macrophages. These results highlight the importance of the TREM-1 pathway in intestinal homeostasis and suggest that α-TREM-1 treatment may be an effective therapeutic strategy for inflammatory bowel disease.
Collapse
Affiliation(s)
- Dong Hyuk Seo
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Xiumei Che
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soochan Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Hye Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hyeon Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
41
|
Singh H, Rai V, Nooti SK, Agrawal DK. Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates. Expert Opin Ther Pat 2021; 31:549-561. [PMID: 33507843 DOI: 10.1080/13543776.2021.1883587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Triggering receptors expressed on myeloid cells (TREMs) are inflammatory amplifiers with defined pathophysiological role in various infectious diseases, acute and chronic aseptic inflammations, and a variety of cancers, depicting TREMs as prominent therapeutic targets.Areas covered: Herein, updates from 2015 to 2020 are discussed to divulge the TREM ligands, as well as their peptide blockers, claimed to modulate their expression. The article also presents different strategies employed during the last five years to block interactions between TREMs and their ligands to treat various disease conditions by modulating their expression and activity.Expert opinion: There has been significant progress in the discovery of novel ligands and modulators of TREMs in the last five years that mainly revolved around the function of TREM molecules. A few peptides showed encouraging results to modulate the expression and activity of TREMs in preclinical studies, and these peptides are currently under clinical investigation. Based on the findings so far in several careful studies, we expect novel therapeutics in the near future which could have the ability to treat various disease conditions associated with TREM expression.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Sunil K Nooti
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| |
Collapse
|
42
|
Caër C, Gorreja F, Forsskåhl SK, Brynjolfsson SF, Szeponik L, Magnusson MK, Börjesson LG, Block M, Bexe-Lindskog E, Wick MJ. TREM-1+ Macrophages Define a Pathogenic Cell Subset in the Intestine of Crohn's Disease Patients. J Crohns Colitis 2021; 15:1346-1361. [PMID: 33537747 PMCID: PMC8328300 DOI: 10.1093/ecco-jcc/jjab022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Uncontrolled activation of intestinal mononuclear phagocytes [MNPs] drives chronic inflammation in inflammatory bowel disease [IBD]. Triggering receptor expressed on myeloid cells 1 [TREM-1] has been implicated in the pathogenesis of IBD. However, the role of TREM-1+ cell subsets in driving IBD pathology and the link with clinical parameters are not understood. We investigated TREM-1 expression in human intestinal MNP subsets and examined blocking TREM-1 as a potential IBD therapy. METHODS TREM-1 gene expression was analysed in intestinal mucosa, enriched epithelial and lamina propria [LP] layers, and purified cells from controls and IBD patients. TREM-1 protein on immune cells was assessed by flow cytometry and immunofluorescence microscopy. Blood monocyte activation was examined by large-scale gene expression using a TREM-1 agonist or LP conditioned media [LP-CM] from patients in the presence or absence of TREM-1 and tumour necrosis factor [TNF] antagonist antibodies. RESULTS TREM-1 gene expression increases in intestinal mucosa from IBD patients and correlates with disease score. TREM-1+ cells, which are mainly immature macrophages and CD11b+ granulocytes, increase among LP cells from Crohn's disease patients and their frequency correlates with inflammatory molecules in LP-CM. LP-CM from Crohn's disease patients induces an inflammatory transcriptome in blood monocytes, including increased IL-6 expression, which is reduced by simultaneous blocking of TREM-1 and TNF. CONCLUSIONS High intestinal TREM-1 expression, reflecting a high frequency of TREM-1+ immature macrophages and TREM-1+CD11b+ granulocytes, is linked to the deleterious inflammatory microenvironment in IBD patients. Therefore, blocking the TREM-1 pathway, especially simultaneously with anti-TNF therapy, has potential as a new IBD therapy.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sophia K Forsskåhl
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Siggeir F Brynjolfsson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars G Börjesson
- Colorectal Unit, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias Block
- Colorectal Unit, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elinor Bexe-Lindskog
- Colorectal Unit, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Corresponding author: Mary Jo Wick, Department of Microbiology and Immunology, Institute for Biomedicine, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden. Tel.: +46 786 6325;
| |
Collapse
|
43
|
Bernal-Martínez L, Gonçalves SM, de Andres B, Cunha C, Gonzalez Jimenez I, Lagrou K, Mellado E, Gaspar ML, Maertens JA, Carvalho A, Alcazar-Fuoli L. TREM1 regulates antifungal immune responses in invasive pulmonary aspergillosis. Virulence 2021; 12:570-583. [PMID: 33525982 PMCID: PMC7872058 DOI: 10.1080/21505594.2021.1879471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are responsible for Aspergillus fumigatus recognition by innate immunity and its subsequent immune signaling. The triggering receptor expressed on myeloid cells 1 (TREM1) is a recently characterized pro-inflammatory receptor constitutively expressed on the surface of neutrophils and macrophages. A soluble form (sTREM1) of this protein that can be detected in human body fluids has been identified. Here we investigated the role of TREM1 during invasive pulmonary aspergillosis (IPA). IPA patients displayed significantly higher levels of sTREM1 in bronchoalveolar lavages when compared to control patients. Functional analysis in TREM1 showed that the levels of sTREM1 and TREM1 pathway-related cytokines were influenced by single nucleotide polymorphisms in TREM1. In addition, we confirmed a role of TREM1 on antifungal host defense against A. fumigatus in a murine model of IPA. TREM1 deficiency increased susceptibility to infection in the immunosuppressed murine host. Deletion of TREM1 showed delayed innate and adaptive immune responses and impaired pro-inflammatory cytokine responses. The absence of TREM1 in primary macrophages attenuated the TLR signaling by altering the expression of both receptor and effector proteins that are critical to the response against A. fumigatus. In this study, and for the first time, we demonstrate the key role for the TREM1 receptor pathway during IPA.
Collapse
Affiliation(s)
- L Bernal-Martínez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| | - S M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães , Portugal
| | - B de Andres
- Department of Immunology, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain
| | - C Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães , Portugal
| | - I Gonzalez Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain
| | - K Lagrou
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical Bacteriology and Mycology , KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven , Leuven, Belgium
| | - E Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| | - M L Gaspar
- Department of Immunology, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain
| | - J A Maertens
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical Bacteriology and Mycology , KU Leuven, Leuven, Belgium.,Department of Haematology, University Hospitals Leuven , Leuven, Belgium
| | - A Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães , Portugal
| | - L Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III , Madrid, Spain.,Spanish Network for the Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
44
|
Surface TREM-1 as a Prognostic Biomarker in Pediatric Sepsis. Indian J Pediatr 2021; 88:134-140. [PMID: 32572693 DOI: 10.1007/s12098-020-03355-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To investigate the association between the triggering receptor expressed on myeloid cells-1 (TREM-1) levels and prognosis in septic children. METHODS Patients admitted to pediatric intensive care units (PICU) of three tertiary centers were included in this prospective observational study. Serum samples were taken at admission from patients who were hospitalized with sepsis. RESULTS Of the 87 patients included, 34 (39.1%) had severe sepsis and 53 (60.9%) had septic shock. The median age was 2 y (2 mo to 16 y). TREM-1 values were found to be significantly higher in septic shock patients 129 pg/ml (min 9.85- max 494.90) compared to severe sepsis 105 pg/ml (min 8.21- max 289.17) (p = 0.048). Despite higher TREM-1 levels been measured in non-survivors compared to survivors, it was not statistically significant [168.98 pg/ml (min 9.85- max 494.90) vs. 110.79 pg/ml (min 8.21- max 408.90), (p = 0.075)]. CONCLUSIONS Admission TREM-1 levels were higher in septic shock compared to severe sepsis patients. There was no association between mortality and TREM-1 levels in sepsis. TREM-1 measurements should be used carefully in pediatric sepsis prognosis.
Collapse
|
45
|
Matos ADO, Dantas PHDS, Silva-Sales M, Sales-Campos H. TREM-1 isoforms in bacterial infections: to immune modulation and beyond. Crit Rev Microbiol 2021; 47:290-306. [PMID: 33522328 DOI: 10.1080/1040841x.2021.1878106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is an innate immunity receptor associated with the amplification of inflammation in sterile and non-sterile inflammatory disorders. Since its first description, the two isoforms of the receptor, membrane and soluble (mTREM-1 and sTREM-1, respectively) have been largely explored in the immunopathogenesis of several bacterial diseases and sepsis. The role of the receptor in these scenarios seems to be at least partly dependent on the source/type of bacteria, host and context. As uncontrolled inflammation is a result of several bacterial infections, the inhibition of the receptor has been considered as a promising approach to treat such conditions. Further, sTREM-1 has been explored as a biomarker for diagnosis and/or prognosis of several bacterial diseases. Therefore, this review aims to provide an updated insight into how the receptor influences and is influenced by bacterial infections, highlighting the advances regarding the use/manipulation of TREM-1 isoforms in biomedical research and clinical practice.
Collapse
Affiliation(s)
| | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
46
|
Pan P, Liu X, Wu L, Li X, Wang K, Wang X, Zhou X, Long Y, Liu D, Xie L, Su L. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-κB pathway. Int J Med Sci 2021; 18:8-17. [PMID: 33390769 PMCID: PMC7738954 DOI: 10.7150/ijms.50893] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Triggering receptor expressed by myeloid cells (TREM-1) is an amplifier of inflammatory responses triggered by bacterial or fungal infection. Soluble TREM-1 (sTREM-1) expression was found to be upregulated in sepsis-associated acute kidney injury (SA-AKI) and predicted to be a potential biomarker. However, the mechanism remains unclear. The human kidney-2 (HK-2) cell line was treated with lipopolysaccharide (LPS) and used to examine the potential roles of TREM-1 in apoptosis and autophagy. A cell viability assay was employed to assess the number of viable cells and as a measure of the proliferative index. The concentrations of sTREM-1, interleukin (IL)-1β, tumor necrosis factor-α (TNFα) and IL-6 in cell-free culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to analyze apoptosis, autophagy and the relevant signaling pathways. The results suggested that TREM-1 overexpression after LPS treatment decreased proliferation and increased apoptosis. The concentrations of sTREM-1, IL-1β, TNFα and IL-6 in cell-free culture supernatants were increased in the TREM-1 overexpression group after LPS treatment. Expression of the antiapoptotic gene Bcl-2 was downregulated in the TREM-1 overexpression group, while that of the proapoptotic genes Bax, cleaved caspase-3 and cleaved caspase-9 was upregulated. Overexpression of TREM-1 downregulated expression of the autophagy genes Beclin-1, Atg-5 and LC3b and increased the gene expression of p62, which inhibits autophagy. Conversely, treatment with TREM-1-specific shRNA had the opposite effects. The nuclear factor-κB (NF-κB) signaling pathway (P-p65/p65 and P-IκBα/IκBα) in LPS-induced HK-2 cells was regulated by TREM-1. In summary, TREM-1 promoted apoptosis and inhibited autophagy in HK-2 cells in the context of LPS exposure potentially through the NF-κB pathway.
Collapse
Affiliation(s)
- Pan Pan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Xudong Liu
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - LingLing Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Xiaogang Li
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, 17th Heishanhujia, Haidian District, Beijing 100091, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
47
|
Thompson D, Watt JA, Brissette CA. Host transcriptome response to Borrelia burgdorferi sensu lato. Ticks Tick Borne Dis 2020; 12:101638. [PMID: 33360384 DOI: 10.1016/j.ttbdis.2020.101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - John A Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
48
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
49
|
Sigalov AB. SCHOOL of nature: ligand-independent immunomodulatory peptides. Drug Discov Today 2020; 25:1298-1306. [PMID: 32405248 PMCID: PMC7217646 DOI: 10.1016/j.drudis.2020.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Groundbreaking studies in protein biophysics have identified the mechanisms of transmembrane signaling at the level of druggable protein-protein interactions (PPIs). This resulted in the development of the signaling chain homooligomerization (SCHOOL) strategy to modulate cell responses using receptor-specific peptides. Inspired by nature, these short peptides use ligand-independent mechanisms of receptor inhibition and demonstrate potent efficacy in vitro and in vivo. The SCHOOL strategy is especially important when receptor ligands are unknown. An example is the triggering receptor expressed on myeloid cells-1 (TREM-1) receptor, an emerging therapeutic target involved in the pathogenesis of most inflammatory diseases. Here, I discuss advances in the field with a focus on TREM-1 inhibitory SCHOOL peptides that offer new hope for a 'magic bullet' cure for cancer, arthritis, sepsis, retinopathy, and other medical challenges.
Collapse
|
50
|
Ulusan Ö, Mert U, Sadıqova A, Öztürk S, Caner A. Identification of gene expression profiles in Leishmania major infection by integrated bioinformatics analyses. Acta Trop 2020; 208:105517. [PMID: 32360239 DOI: 10.1016/j.actatropica.2020.105517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Gene expression profiling in mouse models of leishmaniasis has given useful information to understand the molecular pathways active in lesions and to discover new diagnostic/therapeutic targets. Although the host response plays a critical role in protection from leishmaniasis and promoting disease severity, there are still unexplained aspects in the mechanism of non-healing cutaneous lesions, which need biomarkers for both targeted- therapy and diagnosis. To address this, transcriptional profiling of the skin lesions obtained from BALB/c mice infected with Leishmania major and healthy skin from naïve mice were evaluated by bioinformatics analysis, and then the results were validated by Revers Transcriptase-PCR. Five genes among the up-regulated differentially expressed genes named FCGR4, CCL4, CXCL9, Arg1 and IL-1β were found to have relatively high diagnostic value for CL due to L. major. Pathway analysis revealed that Triggering Receptor Expressed On Myeloid Cells 1 (TREM1) signaling pathways are active in cutaneous lesions, providing new insights for the understanding and treatment of leishmaniasis.
Collapse
Affiliation(s)
- Özlem Ulusan
- Department of Parasitology, Ege University Medical School, Izmir, Turkey
| | - Ufuk Mert
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Aygül Sadıqova
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Sercan Öztürk
- Departments of Computer Science, Dokuz Eylül University, Izmir, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Medical School, Izmir, Turkey; Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey; Department of Bioinformatics, Ege University, Institute of Health Sciences, Izmir, Turkey; Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|