1
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in a representative Gram-positive and Gram-negative species. PLoS Pathog 2025; 21:e1013128. [PMID: 40258067 PMCID: PMC12040237 DOI: 10.1371/journal.ppat.1013128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/29/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P.
Collapse
Affiliation(s)
- Nicholas D. Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Christman ND, Dalia AB. The molecular basis for DNA-binding by competence T4P is distinct in Gram-positive and Gram-negative species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638644. [PMID: 40027803 PMCID: PMC11870608 DOI: 10.1101/2025.02.17.638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during horizontal gene transfer by natural transformation. These dynamic structures actively extend from the cell surface, bind to DNA in the environment, and then retract to import bound DNA into the cell. Competence T4P are found in diverse Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA-binding by diderm competence T4P has been the recent focus of intensive study, relatively little is known about DNA-binding by monoderm competence T4P. Here, we use Streptococcus pneumoniae as a model system to address this question. Competence T4P likely bind to DNA via a tip-associated complex of proteins called minor pilins, and recent work highlights a high degree of structural conservation between the minor pilin tip complexes of monoderm and diderm competence T4P. In diderms, positively charged residues in one minor pilin, FimT, are critical for DNA-binding. We show that while these residues are conserved in ComGD, the FimT homolog of monoderms, they only play a minor role in DNA uptake for natural transformation. Instead, we find that two-positively charged residues in the neighboring minor pilin, ComGF (the PilW homolog of monoderms), play the dominant role in DNA uptake for natural transformation. Furthermore, we find that these residues are conserved in other monoderms, but not diderms. Together, these results suggest that the molecular basis for DNA-binding has either diverged or evolved independently in monoderm and diderm competence T4P. AUTHOR SUMMARY Diverse bacteria use extracellular structures called competence type IV pili (T4P) to take up DNA from their environment. The uptake of DNA by T4P is the first step of natural transformation, a mode of horizontal gene transfer that contributes to the spread of antibiotic resistance and virulence traits in diverse clinically relevant Gram-negative (diderm) and Gram-positive (monoderm) bacterial species. While the mechanism of DNA binding by competence T4P in diderms has been an area of recent study, relatively little is known about how monoderm competence T4P bind DNA. Here, we explore how monoderm competence T4P bind DNA using Streptococcus pneumoniae as a model system. Our results indicate that while monoderm T4P and diderm T4P likely have conserved structural features, the DNA-binding mechanism of each system is distinct.
Collapse
|
3
|
Dalia TN, Dalia AB. SbcB facilitates natural transformation in Vibrio cholerae in an exonuclease-independent manner. J Bacteriol 2025; 207:e0041924. [PMID: 39670763 PMCID: PMC11784430 DOI: 10.1128/jb.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Natural transformation (NT) is a conserved mechanism of horizontal gene transfer in bacterial species. During this process, DNA is taken up into the cytoplasm where it can be integrated into the host genome by homologous recombination. We have previously shown that some cytoplasmic exonucleases inhibit NT by degrading ingested DNA prior to its successful recombination. However, one exonuclease, SbcB, counterintuitively promotes NT in Vibrio cholerae. Here, through a systematic analysis of the distinct steps of NT, we show that SbcB acts downstream of DNA uptake into the cytoplasm, but upstream of recombinational branch migration. Through mutational analysis, we show that SbcB promotes NT in a manner that does not rely on its exonuclease activity. Finally, we provide genetic evidence that SbcB directly interacts with the primary bacterial recombinase, RecA. Together, these data advance our molecular understanding of horizontal gene transfer in V. cholerae and reveal that SbcB promotes homologous recombination during NT in a manner that does not rely on its canonical exonuclease activity. IMPORTANCE Horizontal gene transfer by natural transformation contributes to the spread of antibiotic resistance and virulence factors in bacterial species. Here, we study how one protein, SbcB, helps facilitate this process in the facultative bacterial pathogen Vibrio cholerae. SbcB is a well-known for its exonuclease activity (i.e., the ability to degrade the ends of linear DNA). Through this study, we uncover that while SbcB is important for natural transformation, it does not facilitate this process using its exonuclease activity. Thus, this work helps further our understanding of the molecular events required for this conserved evolutionary process and uncovers a function for SbcB beyond its canonical exonuclease activity.
Collapse
Affiliation(s)
- Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Dalia TN, Dalia AB. SbcB facilitates natural transformation in Vibrio cholerae in an exonuclease-independent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615017. [PMID: 39386473 PMCID: PMC11463445 DOI: 10.1101/2024.09.25.615017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Natural transformation (NT) is a conserved mechanism of horizontal gene transfer in bacterial species. During this process, DNA is taken up into the cytoplasm where it can be integrated into the host genome by homologous recombination. We have previously shown that some cytoplasmic exonucleases inhibit NT by degrading ingested DNA prior to its successful recombination. However, one exonuclease, SbcB, counterintuitively promotes NT in Vibrio cholerae . Here, through a systematic analysis of the distinct steps of NT, we show that SbcB acts downstream of DNA uptake into the cytoplasm, but upstream of recombinational branch migration. Through mutational analysis, we show that SbcB promotes NT in a manner that does not rely on its exonuclease activity. Finally, we provide genetic evidence that SbcB directly interacts with the primary bacterial recombinase, RecA. Together, these data advance our molecular understanding of horizontal gene transfer in V. cholerae , and reveal that SbcB promotes homologous recombination during NT in a manner that does not rely on its canonical exonuclease activity. IMPORTANCE Horizontal gene transfer by natural transformation contributes to the spread of antibiotic resistance and virulence factors in bacterial species. Here, we study how one protein, SbcB, helps facilitate this process in the facultative bacterial pathogen Vibrio cholerae . SbcB is a well-known for its exonuclease activity ( i . e ., the ability to degrade the ends of linear DNA). Through this study we uncover that while SbcB is important for natural transformation, it does not facilitate this process using its exonuclease activity. Thus, this work helps further our understanding of the molecular events required for this conserved evolutionary process, and uncovers a function for SbcB beyond its canonical exonuclease activity.
Collapse
|
5
|
Wuckelt M, Laurent A, Mouville C, Meyer J, Jamet A, Lecuyer H, Nassif X, Bille E, Pelicic V, Coureuil M. Expanding the genetic toolbox for Neisseria meningitidis with efficient tools for unmarked gene editing, complementation, and labeling. Appl Environ Microbiol 2024; 90:e0088024. [PMID: 39140741 PMCID: PMC11409642 DOI: 10.1128/aem.00880-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The efficient natural transformation of Neisseria meningitidis allows the rapid construction of bacterial mutants in which the genes of interest are interrupted or replaced by antibiotic-resistance cassettes. However, this proved to be a double-edged sword, i.e., although facilitating the genetic characterization of this important human pathogen, it has limited the development of strategies for constructing markerless mutants without antibiotic-resistance markers. In addition, efficient tools for complementation or labeling are also lacking in N. meningitidis. In this study, we significantly expand the meningococcal genetic toolbox by developing new and efficient tools for the construction of markerless mutants (using a dual counterselection strategy), genetic complementation (using integrative vectors), and cell labeling (using a self-labeling protein tag). This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.IMPORTANCENeisseria meningitidis and Neisseria gonorrhoeae are two important human pathogens. Research focusing on these bacteria requires genetic engineering, which is facilitated by their natural ability to undergo transformation. However, the ease of mutant engineering has led the Neisseria community to neglect the development of more sophisticated tools for gene editing, particularly for N. meningitidis. In this study, we have significantly expanded the meningococcal genetic toolbox by developing novel and efficient tools for markerless mutant construction, genetic complementation, and cell tagging. This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.
Collapse
Affiliation(s)
- Morgane Wuckelt
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Audrey Laurent
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Clémence Mouville
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Julie Meyer
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Anne Jamet
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Hervé Lecuyer
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Emmanuelle Bille
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS (UMR 7283), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Mathieu Coureuil
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| |
Collapse
|
6
|
Beltrán L, Torsilieri H, Patkowski JB, Yang JE, Casanova J, Costa TRD, Wright ER, Egelman EH. The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer. mBio 2024; 15:e0285723. [PMID: 38051116 PMCID: PMC10790687 DOI: 10.1128/mbio.02857-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli, we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.
Collapse
Affiliation(s)
- Leticia Beltrán
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Holly Torsilieri
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonasz B. Patkowski
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Casanova
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Tiago R. D. Costa
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Vesel N, Iseli C, Guex N, Lemopoulos A, Blokesch M. DNA modifications impact natural transformation of Acinetobacter baumannii. Nucleic Acids Res 2023; 51:5661-5677. [PMID: 37178001 PMCID: PMC10287943 DOI: 10.1093/nar/gkad377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Acinetobacter baumannii is a dangerous nosocomial pathogen, especially due to its ability to rapidly acquire new genetic traits, including antibiotic resistance genes (ARG). In A. baumannii, natural competence for transformation, one of the primary modes of horizontal gene transfer (HGT), is thought to contribute to ARG acquisition and has therefore been intensively studied. However, knowledge regarding the potential role of epigenetic DNA modification(s) on this process remains lacking. Here, we demonstrate that the methylome pattern of diverse A. baumannii strains differs substantially and that these epigenetic marks influence the fate of transforming DNA. Specifically, we describe a methylome-dependent phenomenon that impacts intra- and inter-species DNA exchange by the competent A. baumannii strain A118. We go on to identify and characterize an A118-specific restriction-modification (RM) system that impairs transformation when the incoming DNA lacks a specific methylation signature. Collectively, our work contributes towards a more holistic understanding of HGT in this organism and may also aid future endeavors towards tackling the spread of novel ARGs. In particular, our results suggest that DNA exchanges between bacteria that share similar epigenomes are favored and could therefore guide future research into identifying the reservoir(s) of dangerous genetic traits for this multi-drug resistant pathogen.
Collapse
Affiliation(s)
- Nina Vesel
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Seow VY, Tsygelnytska O, Biais N. Multisite transformation in Neisseria gonorrhoeae: insights on transformations mechanisms and new genetic modification protocols. Front Microbiol 2023; 14:1178128. [PMID: 37408636 PMCID: PMC10319059 DOI: 10.3389/fmicb.2023.1178128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Natural transformation, or the uptake of naked DNA from the external milieu by bacteria, holds a unique place in the history of biology. This is both the beginning of the realization of the correct chemical nature of genes and the first technical step to the molecular biology revolution that sees us today able to modify genomes almost at will. Yet the mechanistic understanding of bacterial transformation still presents many blind spots and many bacterial systems lag behind power horse model systems like Escherichia coli in terms of ease of genetic modification. Using Neisseria gonorrhoeae as a model system and using transformation with multiple DNA molecules, we tackle in this paper both some aspects of the mechanistic nature of bacterial transformation and the presentation of new molecular biology techniques for this organism. We show that similarly to what has been demonstrated in other naturally competent bacteria, Neisseria gonorrhoeae can incorporate, at the same time, different DNA molecules modifying DNA at different loci within its genome. In particular, co-transformation of a DNA molecule bearing an antibiotic selection cassette and another non-selected DNA piece can lead to the integration of both molecules in the genome while selecting only through the selective cassette at percentages above 70%. We also show that successive selections with two selection markers at the same genetic locus can drastically reduce the number of genetic markers needed to do multisite genetic modifications in Neisseria gonorrhoeae. Despite public health interest heightened with the recent rise in antibiotic resistance, the causative agent of gonorrhea still does not possess a plethora of molecular techniques. This paper will extend the techniques available to the Neisseria community while providing some insights into the mechanisms behind bacterial transformation in Neisseria gonorrhoeae. We are providing a suite of new techniques to quickly obtain modifications of genes and genomes in the Neisserial naturally competent bacteria.
Collapse
Affiliation(s)
- Vui Yin Seow
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| | - Olga Tsygelnytska
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Nicolas Biais
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Cj0683 Is a Competence Protein Essential for Efficient Initialization of DNA Uptake in Campylobacter jejuni. Biomolecules 2023; 13:biom13030514. [PMID: 36979449 PMCID: PMC10046745 DOI: 10.3390/biom13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
C. jejuni is an important food-borne pathogen displaying high genetic diversity, substantially based on natural transformation. The mechanism of DNA uptake from the environment depends on a type II secretion/type IV pilus system, whose components are partially known. Here, we quantified DNA uptake in C. jejuni at the single cell level and observed median transport capacities of approximately 30 kb per uptake location. The process appeared to be limited by the initialization of DNA uptake, was finite, and, finalized within 30 min of contact to DNA. Mutants lacking either the outer membrane pore PilQ or the inner membrane channel ComEC were deficient in natural transformation. The periplasmic DNA binding protein ComE was negligible for DNA uptake, which is in contrast to its proposed function. Intriguingly, a mutant lacking the unique periplasmic protein Cj0683 displayed rare but fully functional DNA uptake events. We conclude that Cj0683 was essential for the efficient initialization of DNA uptake, consistent with the putative function as a competence pilus protein. Unravelling features important in natural transformation might lead to target identification, reducing the adaptive potential of pathogens.
Collapse
|
11
|
Structure-function studies reveal ComEA contains an oligomerization domain essential for transformation in gram-positive bacteria. Nat Commun 2022; 13:7724. [PMID: 36513643 PMCID: PMC9747964 DOI: 10.1038/s41467-022-35129-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
An essential step in bacterial transformation is the uptake of DNA into the periplasm, across the thick peptidoglycan cell wall of Gram-positive bacteria, or the outer membrane and thin peptidoglycan layer of Gram-negative bacteria. ComEA, a DNA-binding protein widely conserved in transformable bacteria, is required for this uptake step. Here we determine X-ray crystal structures of ComEA from two Gram-positive species, Bacillus subtilis and Geobacillus stearothermophilus, identifying a domain that is absent in Gram-negative bacteria. X-ray crystallographic, genetic, and analytical ultracentrifugation (AUC) analyses reveal that this domain drives ComEA oligomerization, which we show is required for transformation. We use multi-wavelength AUC (MW-AUC) to characterize the interaction between DNA and the ComEA DNA-binding domain. Finally, we present a model for the interaction of the ComEA DNA-binding domain with DNA, suggesting that ComEA oligomerization may provide a pulling force that drives DNA uptake across the thick cell walls of Gram-positive bacteria.
Collapse
|
12
|
Hughes-Games A, Davis SA, Hill DJ. Direct visualization of sequence-specific DNA binding by gonococcal type IV pili. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920810 DOI: 10.1099/mic.0.001224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhoea, is a major burden on global healthcare systems, with an estimated ~80-90 million new global cases annually. This burden is exacerbated by increasing levels of antimicrobial resistance, which has greatly limited viable antimicrobial therapies. Decreasing gonococcal drug susceptibility has been driven largely by accumulation of chromosomal resistance determinants, which can be acquired through natural transformation, whereby DNA in the extracellular milieu is imported into cells and incorporated into the genome by homologous recombination. N. gonorrhoeae possesses a specialized system for DNA uptake, which strongly biases transformation in favour of DNA from closely related bacteria by recognizing a 10-12 bp DNA uptake sequence (DUS) motif, which is highly overrepresented in their chromosomal DNA. This process relies on numerous proteins, including the DUS-specific receptor ComP, which assemble retractile protein filaments termed type IV pili (T4P) extending from the cell surface, and one model for neisserial DNA uptake proposes that these filaments bind DNA in a DUS-dependent manner before retracting to transport DNA into the periplasm. However, conflicting evidence indicates that elongated pilus filaments may not have such a direct role in DNA binding uptake as this model suggests. Here, we quantitatively measured DNA binding to gonococcal T4P fibres by directly visualizing binding complexes with confocal fluorescence microscopy in order to confirm the sequence-specific, comP-dependent DNA binding capacity of elongated T4P fibres. This supports the idea that pilus filaments could be responsible for initially capturing DNA in the first step of sequence-specific DNA uptake.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK.,School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Bender N, Hennes M, Maier B. Mobility of extracellular DNA within gonococcal colonies. Biofilm 2022; 4:100078. [PMID: 35647521 PMCID: PMC9136125 DOI: 10.1016/j.bioflm.2022.100078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Transformation enables bacteria to acquire genetic information from extracellular DNA (eDNA). Close proximity between bacteria in colonies and biofilms may inhibit escape of eDNA from the colony but it also hinders its diffusion between donor and recipient. In this study, we investigate the mobility of DNA within colonies formed by Neisseria gonorrhoeae, and relate it to transformation efficiency. We characterize the penetration dynamics of fluorescent DNA into the colony at a time scale of hours and find that 300 bp fragments diffuse through the colony without hindrance. For DNA length exceeding 3 kbp, a concentration gradient between the edge and the center of the colony develops, indicating hindered diffusion. Accumulation of DNA within the colony increases with increasing DNA length. The presence of the gonococcal DNA uptake sequence (DUS), which mediates specific binding to type 4 pili (T4P) and uptake into the cell, steepens the radial concentration gradient within the colony, suggesting that the DUS reduces DNA mobility. In particular, DNA of N. gonorrhoeae containing multiple DUS is trapped at the periphery. Under conditions, where DUS containing DNA fragments readily enter the colony center, we investigate the efficiency of transformation. We show that despite rapid diffusion of DNA, the transformation is limited to the edge of young colonies. We conclude that DNA mobility depends on DNA length and specific binding mediated by the DUS, resulting in restricted mobility of gonococcal DNA. Yet gonococcal colonies accumulate DNA, and may therefore act as a reservoir for eDNA. DNA fragments encompassing the length of a typical operon efficiently penetrate bacterial colonies. Bacterial colonies accumulate eDNA with an efficiency that depends on the length and the DNA uptake sequence. Genomic DNA from a distinct species spreads efficiently through gonococcal colonies, while gonococcal DNA and DNA from a closely related species are trapped. Transformation is most efficient at the periphery of freshly assembled gonococcal colonies.
Collapse
|
14
|
Sacharok AL, Porsch EA, Yount TA, Keenan O, St. Geme JW. Kingella kingae PilC1 and PilC2 are adhesive multifunctional proteins that promote bacterial adherence, twitching motility, DNA transformation, and pilus biogenesis. PLoS Pathog 2022; 18:e1010440. [PMID: 35353876 PMCID: PMC9000118 DOI: 10.1371/journal.ppat.1010440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/11/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain. Kingella kingae is an emerging pediatric pathogen that is a leading cause of osteoarticular infections in children under the age of four. Adherence to epithelial cells is thought to be the first step in K. kingae colonization of the host and a prerequisite for invasive disease. Previous work has established that type IV pili are responsible for K. kingae adherence to host cells. In this work we identify the K. kingae pilus adhesins and localize the adhesive region to the N-terminal domain of these two proteins. We further establish that the two adhesins have distinct binding specificities and also influence other biologic processes. Our study provides new insights into the adherence mechanisms of an increasingly recognized pediatric pathogen and furthers our understanding of K. kingae interactions with host cells, identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Alexandra L. Sacharok
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eric A. Porsch
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Taylor A. Yount
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Orlaith Keenan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph W. St. Geme
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Single molecule dynamics of DNA receptor ComEA, membrane permease ComEC and taken up DNA in competent Bacillus subtilis cells. J Bacteriol 2021; 204:e0057221. [PMID: 34928178 DOI: 10.1128/jb.00572-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In competent Gram-negative and Gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility as a protein, in spite of being a large polymer. DNA dynamics are similar within the periplasm as those of ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol. Importance Bacteria can take up DNA from the environment and incorporate it into their chromosome, termed "natural competence" that can result in the uptake of novel genetic information. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells, with similar dynamics as DNA receptor ComEA. This indicates that DNA can accumulate in the periplasm, likely bound by ComEA, and thus can be stored before uptake at the cell pole, via integral membrane DNA permease ComEC. Assembly of the latter assembles at the cell pole likely occurs by a diffusion-capture mechanism. DNA uptake into cells thus takes a detour through the entire periplasm, and involves a high degree of free diffusion along and within the cell membrane.
Collapse
|
16
|
Hahn J, DeSantis M, Dubnau D. Mechanisms of Transforming DNA Uptake to the Periplasm of Bacillus subtilis. mBio 2021; 12:e0106121. [PMID: 34126763 PMCID: PMC8262900 DOI: 10.1128/mbio.01061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
We demonstrate here that the acquisition of DNase resistance by transforming DNA, often assumed to indicate transport to the cytoplasm, reflects uptake to the periplasm, requiring a reevaluation of conclusions about the roles of several proteins in transformation. The new evidence suggests that the transformation pilus is needed for DNA binding to the cell surface near the cell poles and for the initiation of uptake. The cellular distribution of the membrane-anchored ComEA of Bacillus subtilis does not dramatically change during DNA uptake as does the unanchored ComEA of Vibrio and Neisseria. Instead, our evidence suggests that ComEA stabilizes the attachment of transforming DNA at localized regions in the periplasm and then mediates uptake, probably by a Brownian ratchet mechanism. Following that, the DNA is transferred to periplasmic portions of the channel protein ComEC, which plays a previously unsuspected role in uptake to the periplasm. We show that the transformation endonuclease NucA also facilitates uptake to the periplasm and that the previously demonstrated role of ComFA in the acquisition of DNase resistance derives from the instability of ComGA when ComFA is deleted. These results prompt a new understanding of the early stages of DNA uptake for transformation. IMPORTANCE Transformation is a widely distributed mechanism of bacterial horizontal gene transfer that plays a role in the spread of antibiotic resistance and virulence genes and more generally in evolution. Although transformation was discovered nearly a century ago and most, if not all the proteins required have been identified in several bacterial species, much remains poorly understood about the molecular mechanism of DNA uptake. This study uses epifluorescence microscopy to investigate the passage of labeled DNA into the compartment between the cell wall and the cell membrane of Bacillus subtilis, a necessary early step in transformation. The roles of individual proteins in this process are identified, and their modes of action are clarified.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
17
|
Lu J, Yue Y, Xiong S. Extracellular HMGB1 augments macrophage inflammation by facilitating the endosomal accumulation of ALD-DNA via TLR2/4-mediated endocytosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166184. [PMID: 34087422 DOI: 10.1016/j.bbadis.2021.166184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unclear pathogenesis. We previously reported that syngenetic, activated lymphocyte-derived DNA (ALD-DNA) could robustly elicit macrophage activation, which plays an important role in the pathogenesis of murine lupus nephritis. In addition, extracellular HMGB1 obviously facilitated the accumulation of ALD-DNA in endosomes and promoted macrophage inflammation. While the detailed mechanism was still unknown. In this study, we found that HMGB1 could obviously change the DNA uptake pathways in macrophages. ALD-DNA alone was mainly uptake by the low efficient and unselective macropinocytosis, while extracellular HMGB1 potently promoted the more efficient and specific clathrin-/caveolin-1-dependent receptor-mediated endocytosis pathways, and led to the rapid and abundant aggregation of ALD-DNA in endosomes. This effect relied on the DNA binding ability and TLR2/TLR4 of HMGB1. Our study not only helped us to understand the promotion mechanisms of extracellular HMGB1 on ALD-DNA-induced macrophage inflammation, but also provided some clues to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Jincheng Lu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
18
|
Silale A, Lea SM, Berks BC. The DNA transporter ComEC has metal-dependent nuclease activity that is important for natural transformation. Mol Microbiol 2021; 116:416-426. [PMID: 33772889 PMCID: PMC8579336 DOI: 10.1111/mmi.14720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
In the process of natural transformation bacteria import extracellular DNA molecules for integration into their genome. One strand of the incoming DNA molecule is degraded, whereas the remaining strand is transported across the cytoplasmic membrane. The DNA transport channel is provided by the protein ComEC. Many ComEC proteins have an extracellular C-terminal domain (CTD) with homology to the metallo-β-lactamase fold. Here we show that this CTD binds Mn2+ ions and exhibits Mn2+ -dependent phosphodiesterase and nuclease activities. Inactivation of the enzymatic activity of the CTD severely inhibits natural transformation in Bacillus subtilis. These data suggest that the ComEC CTD is a nuclease responsible for degrading the nontransforming DNA strand during natural transformation and that this process is important for efficient DNA import.
Collapse
Affiliation(s)
- Augustinas Silale
- Department of Biochemistry, University of Oxford, Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
De Santis M, Hahn J, Dubnau D. ComEB protein is dispensable for the transformation but must be translated for the optimal synthesis of comEC. Mol Microbiol 2021; 116:71-79. [PMID: 33527432 DOI: 10.1111/mmi.14690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/05/2023]
Abstract
We show that the ComEB protein is not required for transformation in Bacillus subtilis, despite its expression from within the comE operon under competence control, nor is it required for the correct polar localization of ComGA. We show further that the synthesis of the putative channel protein ComEC is translationally coupled to the upstream comEB open reading frame, so that the translation of comEB and a suboptimal ribosomal-binding site embedded in its sequence are needed for proper comEC expression. Translational coupling appears to be a common mechanism in three major competence operons for the adjustment of protein amounts independent of transcriptional control, probably ensuring the correct stoichiometries for assembly of the transformation machinery. comEB and comFC, respectively, encode cytidine deaminase and a protein resembling type 1 phosphoribosyl transferases and we speculate that nucleotide scavenging proteins are produced under competence control for efficient reutilization of the products of degradation of the non-transforming strand during DNA uptake.
Collapse
Affiliation(s)
- Micaela De Santis
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jeanette Hahn
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
20
|
Liu M, Huang M, Wang M, Zhu D, Jia R, Chen S, Zhang L, Pan L, Cheng A. The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation? Front Microbiol 2020; 11:593301. [PMID: 33193265 PMCID: PMC7642515 DOI: 10.3389/fmicb.2020.593301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) systems and prokaryotic Argonaute proteins (Agos) have been shown to defend bacterial and archaeal cells against invading nucleic acids. Indeed, they are important elements for inhibiting horizontal gene transfer between bacterial and archaeal cells. The CRISPR system employs an RNA-guide complex to target invading DNA or RNA, while Agos target DNA using single stranded DNA or RNA as guides. Thus, the CRISPR and Agos systems defend against exogenous nucleic acids by different mechanisms. It is not fully understood how antagonization of these systems occurs during natural transformation, wherein exogenous DNA enters a host cell as single stranded DNA and is then integrated into the host genome. In this review, we discuss the functions and mechanisms of the CRISPR system and Agos in cellular defense against natural transformation.
Collapse
Affiliation(s)
- Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2020; 17:429-440. [PMID: 30988511 DOI: 10.1038/s41579-019-0195-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
23
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Identification of the periplasmic DNA receptor for natural transformation of Helicobacter pylori. Nat Commun 2019; 10:5357. [PMID: 31767852 PMCID: PMC6877725 DOI: 10.1038/s41467-019-13352-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Horizontal gene transfer through natural transformation is a major driver of antibiotic resistance spreading in many pathogenic bacterial species. In the case of Gram-negative bacteria, and in particular of Helicobacter pylori, the mechanisms underlying the handling of the incoming DNA within the periplasm are poorly understood. Here we identify the protein ComH as the periplasmic receptor for the transforming DNA during natural transformation in H. pylori. ComH is a DNA-binding protein required for the import of DNA into the periplasm. Its C-terminal domain displays strong affinity for double-stranded DNA and is sufficient for the accumulation of DNA in the periplasm, but not for DNA internalisation into the cytoplasm. The N-terminal region of the protein allows the interaction of ComH with a periplasmic domain of the inner-membrane channel ComEC, which is known to mediate the translocation of DNA into the cytoplasm. Our results indicate that ComH is involved in the import of DNA into the periplasm and its delivery to the inner membrane translocator ComEC. Some bacteria can take up DNA molecules from the environment. Here, Damke et al. identify a DNA-binding protein in Helicobacter pylori that is required for DNA import into the periplasm and that interacts with an inner-membrane channel that translocates the DNA into the cytoplasm.
Collapse
|
25
|
The quorum sensing transcription factor AphA directly regulates natural competence in Vibrio cholerae. PLoS Genet 2019; 15:e1008362. [PMID: 31658256 PMCID: PMC6855506 DOI: 10.1371/journal.pgen.1008362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 10/16/2019] [Indexed: 01/30/2023] Open
Abstract
Many bacteria use population density to control gene expression via quorum sensing. In Vibrio cholerae, quorum sensing coordinates virulence, biofilm formation, and DNA uptake by natural competence. The transcription factors AphA and HapR, expressed at low and high cell density respectively, play a key role. In particular, AphA triggers the entire virulence cascade upon host colonisation. In this work we have mapped genome-wide DNA binding by AphA. We show that AphA is versatile, exhibiting distinct modes of DNA binding and promoter regulation. Unexpectedly, whilst HapR is known to induce natural competence, we demonstrate that AphA also intervenes. Most notably, AphA is a direct repressor of tfoX, the master activator of competence. Hence, production of AphA markedly suppressed DNA uptake; an effect largely circumvented by ectopic expression of tfoX. Our observations suggest dual regulation of competence. At low cell density AphA is a master repressor whilst HapR activates the process at high cell density. Thus, we provide deep mechanistic insight into the role of AphA and highlight how V. cholerae utilises this regulator for diverse purposes. Cholera remains a devastating diarrhoeal disease responsible for millions of cases, thousands of deaths, and a $3 billion financial burden every year. Although notorious for causing human disease, the microorganism responsible for cholera is predominantly a resident of aquatic environments. Here, the organism survives in densely packed communities on the surfaces of crustaceans. Remarkably, in this situation, the microbe can feast on neighbouring cells and acquire their DNA. This provides a useful food source and an opportunity to obtain new genetic information. In this paper, we have investigated how acquisition of DNA from the local environment is regulated. We show that a “switch” within the microbial cell, known to activate disease processes in the human host, also controls DNA uptake. Our results explain why DNA scavenging only occurs in suitable environments and illustrates how interactions between common regulatory switches affords precise control of microbial behaviours.
Collapse
|
26
|
Zöllner R, Cronenberg T, Maier B. Motor Properties of PilT-Independent Type 4 Pilus Retraction in Gonococci. J Bacteriol 2019; 201:e00778-18. [PMID: 30692169 PMCID: PMC6707916 DOI: 10.1128/jb.00778-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial type 4 pili (T4P) belong to the strongest molecular machines. The gonococcal T4P retraction ATPase PilT supports forces exceeding 100 pN during T4P retraction. Here, we address the question of whether gonococcal T4P retract in the absence of PilT. We show that pilT deletion strains indeed retract their T4P, but the maximum force is reduced to 5 pN. Similarly, the speed of T4P retraction is lower by orders of magnitude compared to that of T4P retraction driven by PilT. Deleting the pilT paralogue pilT2 further reduces the speed of T4P retraction, yet T4P retraction is detectable in the absence of all three pilT paralogues. Furthermore, we show that depletion of proton motive force (PMF) slows but does not inhibit pilT-independent T4P retraction. We conclude that the retraction ATPase is not essential for gonococcal T4P retraction. However, the force generated in the absence of PilT is too low to support important functions of T4P, including twitching motility, fluidization of colonies, and induction of host cell response.IMPORTANCE Bacterial type 4 pili (T4P) have been termed the "Swiss Army knives" of bacteria because they perform numerous functions, including host cell interaction, twitching motility, colony formation, DNA uptake, protein secretion, and surface sensing. The pilus fiber continuously elongates or retracts, and these dynamics are functionally important. Curiously, only a subset of T4P systems employ T4P retraction ATPases to power T4P retraction. Here, we show that one of the strongest T4P machines, the gonococcal T4P, retracts without a retraction ATPase. Biophysical characterization reveals strongly reduced force and speed compared to retraction with ATPase. We propose that bacteria encode retraction ATPases when T4P have to generate high-force-supporting functions like twitching motility, triggering host cell response, or fluidizing colonies.
Collapse
Affiliation(s)
- Robert Zöllner
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Tom Cronenberg
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Berenike Maier
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| |
Collapse
|
27
|
DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat Microbiol 2019; 4:1545-1557. [PMID: 31182799 PMCID: PMC6708440 DOI: 10.1038/s41564-019-0479-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/01/2019] [Indexed: 12/02/2022]
Abstract
How bacteria colonise surfaces and how they distinguish the individuals around them are fundamental biological questions. Type IV pili are a widespread and multi-purpose class of cell surface polymers. Here we directly visualise the DNA-uptake pilus of Vibrio cholerae, which is produced specifically during growth upon its natural habitat - chitinous surfaces. As predicted, these pili are highly dynamic and retract prior to DNA-uptake during competence for natural transformation. Interestingly, DNA-uptake pili can also self-interact to mediate auto-aggregation. This capability is conserved in disease-causing pandemic strains, which typically encode the same major pilin subunit, PilA. Unexpectedly, however, we discovered that extensive strain-to-strain variability in PilA, present in environmental isolates, creates a set of highly specific interactions, enabling cells producing pili composed of different PilA subunits to distinguish between one another. We go on to show that DNA-uptake pili bind to chitinous surfaces, are required for chitin colonisation under flow, and that pili capable of self-interaction connect cells on chitin within dense pili networks. Our results suggest a model whereby DNA-uptake pili function to promote inter-bacterial interactions during surface colonisation. Moreover, they provide evidence that type IV pili could offer a simple and potentially widespread mechanism for bacterial kin recognition.
Collapse
|
28
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
29
|
Abstract
Laboratory techniques for transformation of the pathogenic Neisseria are well developed, and take advantage of the natural transformability of these species. More recently, these techniques have been successfully applied to some nonpathogenic species of Neisseria as well. This chapter provides foundational information on the mechanism of Neisseria transformation, considerations for DNA transformation substrate design, two methods for transforming Neisseria in the laboratory, and guidelines for identifying successful transformants.
Collapse
Affiliation(s)
- Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Obergfell KP, Schaub RE, Priniski LL, Dillard JP, Seifert HS. The low-molecular-mass, penicillin-binding proteins DacB and DacC combine to modify peptidoglycan cross-linking and allow stable Type IV pilus expression in Neisseria gonorrhoeae. Mol Microbiol 2018; 109:135-149. [PMID: 29573486 PMCID: PMC6153085 DOI: 10.1111/mmi.13955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae strain FA1090 genes encoding two predicted low-molecular-mass, penicillin-binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross-linking. Loss of the DacB peptidase resulted in global alterations to the PG composition, while loss of the DacC protein affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross-linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics and increased sensitivity to detergent-mediated death. Loss of the two proteins also drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper envelope function and expression of factors critical for pathogenesis.
Collapse
Affiliation(s)
- Kyle P. Obergfell
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Lauren L. Priniski
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Ellison CK, Dalia TN, Vidal Ceballos A, Wang JCY, Biais N, Brun YV, Dalia AB. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol 2018; 3:773-780. [PMID: 29891864 PMCID: PMC6582970 DOI: 10.1038/s41564-018-0174-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alfredo Vidal Ceballos
- Biology Department, CUNY Brooklyn College, Brooklyn, NY, USA.,Graduate Center of CUNY, New York, NY, USA
| | | | - Nicolas Biais
- Biology Department, CUNY Brooklyn College, Brooklyn, NY, USA.,Graduate Center of CUNY, New York, NY, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
32
|
Fitness cost of reassortment in human influenza. PLoS Pathog 2017; 13:e1006685. [PMID: 29112968 PMCID: PMC5675378 DOI: 10.1371/journal.ppat.1006685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10−2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage. The genome of the human influenza virus consists of 8 disjoint RNA polymer segments. These segments can undergo reassortment: when two viruses co-infect a host cell, they can produce viral offspring with a new combination of segments. In this paper, we show that reassortment within a given influenza lineage induces a fitness cost that increases in strength with increasing genetic distance of the parent viruses. Our finding suggests that evolution continuously produces viral proteins whose fitness depends on each other; reassortment reduces fitness by breaking up successful combinations of proteins. Thus, selection across proteins constrains viral evolution within a given lineage, and it may be an important factor in defining a viral species.
Collapse
|
33
|
Hepp C, Maier B. Bacterial Translocation Ratchets: Shared Physical Principles with Different Molecular Implementations: How bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules. Bioessays 2017; 39. [PMID: 28895164 DOI: 10.1002/bies.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism.
Collapse
Affiliation(s)
- Christof Hepp
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| | - Berenike Maier
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| |
Collapse
|
34
|
Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc Natl Acad Sci U S A 2016; 113:12467-12472. [PMID: 27791096 DOI: 10.1073/pnas.1608110113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Horizontal gene transfer can speed up adaptive evolution and support chromosomal DNA repair. A particularly widespread mechanism of gene transfer is transformation. The initial step to transformation, namely the uptake of DNA from the environment, is supported by the type IV pilus system in most species. However, the molecular mechanism of DNA uptake remains elusive. Here, we used single-molecule techniques for characterizing the force-dependent velocity of DNA uptake by Neisseria gonorrhoeae We found that the DNA uptake velocity depends on the concentration of the periplasmic DNA-binding protein ComE, indicating that ComE is directly involved in the uptake process. The velocity-force relation of DNA uptake is in very good agreement with a translocation ratchet model where binding of chaperones in the periplasm biases DNA diffusion through a membrane pore in the direction of uptake. The model yields a speed of DNA uptake of 900 bp⋅s-1 and a reversal force of 17 pN. Moreover, by comparing the velocity-force relation of DNA uptake and type IV pilus retraction, we can exclude pilus retraction as a mechanism for DNA uptake. In conclusion, our data strongly support the model of a translocation ratchet with ComE acting as a ratcheting chaperone.
Collapse
|
35
|
Single-Stranded DNA Uptake during Gonococcal Transformation. J Bacteriol 2016; 198:2515-23. [PMID: 27381919 DOI: 10.1128/jb.00464-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Neisseria gonorrhoeae is naturally competent for transformation. The first step of the transformation process is the uptake of DNA from the environment into the cell. This transport step is driven by a powerful molecular machine. Here, we addressed the question whether this machine imports single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) at similar rates. The fluorescence signal associated with the uptake of short DNA fragments labeled with a single fluorescent marker molecule was quantified. We found that ssDNA with a double-stranded DNA uptake sequence (DUS) was taken up with a similar efficiency as dsDNA. Imported ssDNA was degraded rapidly, and the thermonuclease Nuc was required for degradation. In a nuc deletion background, dsDNA and ssDNA with a double-stranded DUS were imported and used as the substrates for transformation, whereas the import and transformation efficiencies of ssDNA with single-stranded DUS were below the detection limits. We conclude that the DNA uptake machine requires a double-stranded DUS for efficient DNA recognition and transports ssDNA and dsDNA with comparable efficiencies. IMPORTANCE Bacterial transformation enables bacteria to exchange genetic information. It can speed up adaptive evolution and enhances the potential of DNA repair. The transport of DNA through the outer membrane is the first step of transformation in Gram-negative species. It is driven by a powerful molecular machine whose mechanism remains elusive. Here, we show for Neisseria gonorrhoeae that the machine transports single- and double-stranded DNA at comparable rates, provided that the species-specific DNA uptake sequence is double stranded. Moreover, we found that single-stranded DNA taken up into the periplasm is rapidly degraded by the thermonuclease Nuc. We conclude that the secondary structure of transforming DNA is important for the recognition of self DNA but not for the process of transport through the outer membrane.
Collapse
|
36
|
Corbinais C, Mathieu A, Kortulewski T, Radicella JP, Marsin S. Following transforming DNA inHelicobacter pylorifrom uptake to expression. Mol Microbiol 2016; 101:1039-53. [DOI: 10.1111/mmi.13440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Christopher Corbinais
- CEA; Institute of Molecular and Cellular Radiobiology; F-92265 Fontenay aux Roses France
- INSERM, U967, F-92265 Fontenay-aux-Roses, France
- Universités Paris Diderot et Paris Sud; UMR967, F-92265 Fontenay-aux-Roses France
| | - Aurélie Mathieu
- CEA; Institute of Molecular and Cellular Radiobiology; F-92265 Fontenay aux Roses France
| | - Thierry Kortulewski
- CEA; Institute of Molecular and Cellular Radiobiology; F-92265 Fontenay aux Roses France
- INSERM, U967, F-92265 Fontenay-aux-Roses, France
- Universités Paris Diderot et Paris Sud; UMR967, F-92265 Fontenay-aux-Roses France
| | - J. Pablo Radicella
- CEA; Institute of Molecular and Cellular Radiobiology; F-92265 Fontenay aux Roses France
- INSERM, U967, F-92265 Fontenay-aux-Roses, France
- Universités Paris Diderot et Paris Sud; UMR967, F-92265 Fontenay-aux-Roses France
| | - Stéphanie Marsin
- CEA; Institute of Molecular and Cellular Radiobiology; F-92265 Fontenay aux Roses France
- INSERM, U967, F-92265 Fontenay-aux-Roses, France
- Universités Paris Diderot et Paris Sud; UMR967, F-92265 Fontenay-aux-Roses France
| |
Collapse
|
37
|
Krüger NJ, Knüver MT, Zawilak-Pawlik A, Appel B, Stingl K. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle. PLoS Pathog 2016; 12:e1005626. [PMID: 27166672 PMCID: PMC4864210 DOI: 10.1371/journal.ppat.1005626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development. Natural transformation, i.e. the capacity to take up DNA from the environment, is one of the crucial means for horizontal gene transfer and genetic diversity in bacteria. The human gastric pathogen Helicobacter pylori is confronted with acid stress before entering its multiplication site, the gastric mucosa. The bacterium causes lifelong chronic gastritis and is perfectly adapted to the human host, crucially by displaying unusual genetic diversity. Using a single cell approach and well-controlled conditions, we show here that the amount of imported DNA in competent H. pylori is outstanding, far exceeding previous measurement with other Gram-negative bacteria. Furthermore, DNA uptake activity was tightly regulated and limited to pH above 6.5, conditions thought to be met in close contact with the gastric mucosa. In addition, we show that within this pH competence window, competence development was triggered by an increase in pH in combination with the level of oxidative stress. Our data provide explanations for the extraordinary high genetic diversity, often referred to as genome plasticity of this unusual microaerobic pathogen.
Collapse
Affiliation(s)
- Nora-Johanna Krüger
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Marie-Theres Knüver
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Wroclaw, Poland
| | - Bernd Appel
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
- * E-mail:
| |
Collapse
|
38
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
39
|
Frye SA, Lång E, Beyene GT, Balasingham SV, Homberset H, Rowe AD, Ambur OH, Tønjum T. The Inner Membrane Protein PilG Interacts with DNA and the Secretin PilQ in Transformation. PLoS One 2015; 10:e0134954. [PMID: 26248334 PMCID: PMC4527729 DOI: 10.1371/journal.pone.0134954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of type IV pili (Tfp), filamentous appendages emanating from the bacterial surface, is indispensable for efficient neisserial transformation. Tfp pass through the secretin pore consisting of the membrane protein PilQ. PilG is a polytopic membrane protein, conserved in Gram-positive and Gram-negative bacteria, that is required for the biogenesis of neisserial Tfp. PilG null mutants are devoid of pili and non-competent for transformation. Here, recombinant full-length, truncated and mutated variants of meningococcal PilG were overexpressed, purified and characterized. We report that meningococcal PilG directly binds DNA in vitro, detected by both an electromobility shift analysis and a solid phase overlay assay. PilG DNA binding activity was independent of the presence of the consensus DNA uptake sequence. PilG-mediated DNA binding affinity was mapped to the N-terminus and was inactivated by mutation of residues 43 to 45. Notably, reduced meningococcal transformation of DNA in vivo was observed when PilG residues 43 to 45 were substituted by alanine in situ, defining a biologically significant DNA binding domain. N-terminal PilG also interacted with the N-terminal region of PilQ, which previously was shown to bind DNA. Collectively, these data suggest that PilG and PilQ in concert bind DNA during Tfp-mediated transformation.
Collapse
Affiliation(s)
- Stephan A. Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Emma Lång
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Ole Herman Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci U S A 2015; 112:10485-90. [PMID: 26240317 DOI: 10.1073/pnas.1509097112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Natural transformation is one mechanism of horizontal gene transfer (HGT) in Vibrio cholerae, the causative agent of cholera. Recently, it was found that V. cholerae isolates from the Haiti outbreak were poorly transformed by this mechanism. Here, we show that an integrating conjugative element (ICE)-encoded DNase, which we name IdeA, is necessary and sufficient for inhibiting natural transformation of Haiti outbreak strains. We demonstrate that IdeA inhibits this mechanism of HGT in cis via DNA endonuclease activity that is localized to the periplasm. Furthermore, we show that natural transformation between cholera strains in a relevant environmental context is inhibited by IdeA. The ICE encoding IdeA is globally distributed. Therefore, we analyzed the prevalence and role for this ICE in limiting natural transformation of isolates from Bangladesh collected between 2001 and 2011. We found that IdeA(+) ICEs were nearly ubiquitous in isolates from 2001 to 2005; however, their prevalence decreased to ∼40% from 2006 to 2011. Thus, IdeA(+) ICEs may have limited the role of natural transformation in V. cholerae. However, the rise in prevalence of strains lacking IdeA may now increase the role of this conserved mechanism of HGT in the evolution of this pathogen.
Collapse
|
41
|
Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation. J Bacteriol 2015; 197:2422-31. [PMID: 25962915 DOI: 10.1128/jb.00171-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. IMPORTANCE Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of double-resistant bacteria under selective conditions was strongly enhanced in loose biofilms. We propose that while biofilms help generating multiresistant strains, selection takes place mostly after dispersal from the biofilm.
Collapse
|
42
|
Dewenter L, Volkmann TE, Maier B. Oxygen governs gonococcal microcolony stability by enhancing the interaction force between type IV pili. Integr Biol (Camb) 2015; 7:1161-70. [PMID: 25892255 DOI: 10.1039/c5ib00018a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of small bacterial clusters, called microcolonies, is the first step towards the formation of bacterial biofilms. The human pathogen Neisseria gonorrhoeae requires type IV pili (T4P) for microcolony formation and for surface motility. Here, we investigated the effect of oxygen on the dynamics of microcolony formation. We found that an oxygen concentration exceeding 3 μM is required for formation and maintenance of microcolonies. Depletion of proton motive force triggers microcolony disassembly. Disassembly of microcolonies is actively driven by T4P retraction. Using laser tweezers we showed that under aerobic conditions T4P-T4P interaction forces exceed 50 pN. Under anaerobic conditions T4P-T4P interaction is severely inhibited. We conclude that oxygen is required for gonococcal microcolony formation by enhancing pilus-pilus interaction.
Collapse
Affiliation(s)
- Lena Dewenter
- Department of Physics, Universität zu Köln, Köln, Germany.
| | | | | |
Collapse
|
43
|
Salzer R, Kern T, Joos F, Averhoff B. The Thermus thermophilus comEA/comEC operon is associated with DNA binding and regulation of the DNA translocator and type IV pili. Environ Microbiol 2015; 18:65-74. [PMID: 25727469 DOI: 10.1111/1462-2920.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Kern
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Friederike Joos
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt am Main, 60438, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
45
|
DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 2014; 5:mBio.01409-14. [PMID: 25139903 PMCID: PMC4147865 DOI: 10.1128/mbio.01409-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The physiological state of natural competence for transformation allows certain bacteria to take up free DNA from the environment and to recombine such newly acquired DNA into their chromosomes. However, even though conserved components that are required to undergo natural transformation have been identified in several naturally competent bacteria, our knowledge of the underlying mechanisms of the DNA uptake process remains very limited. To better understand these mechanisms, we investigated the competence-mediated DNA transport in the naturally transformable pathogen Vibrio cholerae. Previously, we used a cell biology-based approach to experimentally address an existing hypothesis, which suggested the competence protein ComEA plays a role in the DNA uptake process across the outer membrane of Gram-negative bacteria. Here, we extended this knowledge by investigating the dynamics of DNA translocation across both membranes. More precisely, we indirectly visualized the transfer of the external DNA from outside the cell into the periplasm followed by the shuttling of the DNA into the cytoplasm. Based on these data, we conclude that for V. cholerae, the DNA translocation across the outer and inner membranes is spatially but not temporally coupled. As a mode of horizontal gene transfer, natural competence for transformation has contributed substantially to the plasticity of genomes and to bacterial evolution. Natural competence is often a tightly regulated process and is induced by diverse environmental cues. This is in contrast to the mechanistic aspects of the DNA translocation event, which are most likely conserved among naturally transformable bacteria. However, the DNA uptake process is still not well understood. We therefore investigated how external DNA reaches the cytosol of the naturally transformable bacterium V. cholerae. More specifically, we provide evidence that the DNA translocation across the membranes is spatially but not temporally coupled. We hypothesize that this model also applies to other competent Gram-negative bacteria and that our study contributes to the general understanding of this important biological process.
Collapse
|