1
|
Liu J, Ma T, Liang J, Yang B, Chen S, Li X, Wu W, Lu J, Fu P. A core Plasmopara viticola effector attenuates the DNA-binding activity of bZIP transcription factor to compromise plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70143. [PMID: 40298085 PMCID: PMC12038878 DOI: 10.1111/tpj.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Grapevine (Vitis vinifera L.) frequently faces challenges from various pathogens, among which Plasmopara viticola is the most devastating one hindering grape production. During infection, P. viticola secretes a series of effectors into host cells to manipulate plant immune responses. Here, an RXLR effector of P. viticola, PvRXLR13, was identified as one that could disrupt immune processes and thus promote pathogen colonization. PvRXLR13 contained a functional signal peptide and was highly conserved across different destructive oomycetes. PvRXLR13 was significantly induced during P. viticola infection and could suppress elicitor chitin-induced reactive oxygen species (ROS), callose deposition, and INF1-triggered cell death. Furthermore, PvRXLR13 could also inhibit P. viticola- and P. capsici-triggered H2O2 accumulation and promote pathogen colonization in both grapevine and Nicotiana benthamiana, respectively. VvHY5, a basic leucine zipper (bZIP) transcription factor, was found to be the host target of PvRXLR13. Further analysis revealed that overexpression of VvHY5 enhanced grapevine resistance to P. viticola and P. viticola-triggered H2O2 accumulation. Furthermore, we found that VvHY5 directly bound to the promoter of the positive immune factor VvEDS1 and activated its expression, whereas PvRXLR13 attenuated the DNA-binding activity of VvHY5 during P. viticola infection. Further analysis revealed that other members of grape bZIPs, VvbZIP6/9/21/32/34/37, were also involved in the defense response against P. viticola invasion. Just like HY5/HYH, all these bZIP family members were targeted by the effector PvRXLR13. Collectively, our findings suggest that P. viticola secretes a key effector PvRXLR13 to compromise the function in immune regulation of bZIP transcription factors to promote infection in grapevine.
Collapse
Affiliation(s)
- Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Tao Ma
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Jianxiang Liang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Shuyun Chen
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xinlong Li
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
2
|
Pellegrin C, Damm A, Sperling AL, Molloy B, Shin DS, Long J, Brett P, Iguh TC, Kranse OP, Bravo ADT, Lynch SJ, Senatori B, Vieira P, Mejias J, Kumar A, Masonbrink RE, Maier TR, Baum TJ, Eves-van den Akker S. The SUbventral-Gland Regulator (SUGR-1) of nematode virulence. Proc Natl Acad Sci U S A 2025; 122:e2415861122. [PMID: 40063806 PMCID: PMC11929438 DOI: 10.1073/pnas.2415861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/29/2025] [Indexed: 03/25/2025] Open
Abstract
Pathogens must precisely tailor their gene expression to cause infection. However, a signaling cascade from host signal to effector production has remained elusive for metazoan pathogens. Here, we show that plants contain molecular signals, termed effectostimulins, that activate the first identified regulator of plant-parasitic nematode effectors. SUGR-1 directly binds effector promoters, and is central to a transcriptional network that activates 58 effector genes. Importantly, we demonstrate that downregulation of sugr-1 inhibits parasitism, underlining SUGR-1 signaling as a valuable target for crop protection and food security. This, in the wider context of nematodes as parasites of humans and other animals, has scope for potentially broader impact: Disrupting effector production could, in principle, be applied to any pathogen that secrets effectors.
Collapse
Affiliation(s)
- Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Anika Damm
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Alexis L. Sperling
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Beth Molloy
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Dio S. Shin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Jonathan Long
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Paul Brett
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Tochukwu Chisom Iguh
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Olaf P. Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Andrea Díaz-Tendero Bravo
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Sarah Jane Lynch
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Paulo Vieira
- Department of Agriculture—Agricultural Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD20705
| | - Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Anil Kumar
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Tom R. Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Thomas J. Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Sebastian Eves-van den Akker
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| |
Collapse
|
3
|
Kortsinoglou AM, Wood MJ, Myridakis AI, Andrikopoulos M, Roussis A, Eastwood D, Butt T, Kouvelis VN. Comparative genomics of Metarhizium brunneum strains V275 and ARSEF 4556: unraveling intraspecies diversity. G3 (BETHESDA, MD.) 2024; 14:jkae190. [PMID: 39210673 PMCID: PMC11457142 DOI: 10.1093/g3journal/jkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents, as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequencing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commercially known as Lalguard Met52), achieved through Nanopore and Illumina reads. Comparative genomics for exploring intraspecies variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significantly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their predicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomopathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture and ecology.
Collapse
Affiliation(s)
- Alexandra M Kortsinoglou
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios Andrikopoulos
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dan Eastwood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
4
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Cao P, Shi H, Zhang S, Chen J, Wang R, Liu P, Zhu Y, An Y, Zhang M. A robust high-throughput functional screening assay for plant pathogen effectors using the TMV-GFP vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:617-631. [PMID: 38647454 DOI: 10.1111/tpj.16774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.
Collapse
Affiliation(s)
- Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haotian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangxi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
9
|
Lee S, Lee HY, Kang HJ, Seo YE, Lee JH, Choi D. Oomycete effector AVRblb2 targets cyclic nucleotide-gated channels through calcium sensors to suppress pattern-triggered immunity. THE NEW PHYTOLOGIST 2024; 241:1277-1291. [PMID: 38013595 DOI: 10.1111/nph.19430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Hye-Young Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Hui Jeong Kang
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Doil Choi
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
10
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
11
|
Gu B, Gao W, Liu Z, Shao G, Peng Q, Mu Y, Wang Q, Zhao H, Miao J, Liu X. A single region of the Phytophthora infestans avirulence effector Avr3b functions in both cell death induction and plant immunity suppression. MOLECULAR PLANT PATHOLOGY 2023; 24:317-330. [PMID: 36696541 PMCID: PMC10013827 DOI: 10.1111/mpp.13298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
As a destructive plant pathogen, Phytophthora infestans secretes diverse host-entering RxLR effectors to facilitate infection. One critical RxLR effector, PiAvr3b, not only induces effector-triggered immunity (ETI), which is associated with the potato resistance protein StR3b, but also suppresses pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). To date, the molecular basis underlying such dual activities remains unknown. Based on phylogenetic analysis of global P. infestans isolates, we found two PiAvr3b isoforms that differ by three amino acids. Despite this sequence variation, the two isoforms retain the same properties in activating the StR3b-mediated hypersensitive response (HR) and inhibiting necrosis induced by three PAMPs (PiNpp, PiINF1, and PsXeg1) and an RxLR effector (Pi10232). Using a combined mutagenesis approach, we found that the dual activities of PiAvr3b were tightly linked and determined by 88 amino acids at the C-terminus. We further determined that either the W60 or the E134 residue of PiAvr3b was essential for triggering StR3b-associated HR and inhibiting PiNpp- and Pi10232-associated necrosis, while the S99 residue partially contributed to PTI suppression. Additionally, nuclear localization of PiAvr3b was required to stimulate HR and suppress PTI, but not to inhibit Pi10232-associated cell death. Our study revealed that PiAvr3b suppresses the plant immune response at different subcellular locations and provides an example in which a single amino acid of an RxLR effector links ETI induction and cell death suppression.
Collapse
Affiliation(s)
- Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenxin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zeqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangda Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yinyu Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Hua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
12
|
Qiu X, Kong L, Chen H, Lin Y, Tu S, Wang L, Chen Z, Zeng M, Xiao J, Yuan P, Qiu M, Wang Y, Ye W, Duan K, Dong S, Wang Y. The Phytophthora sojae nuclear effector PsAvh110 targets a host transcriptional complex to modulate plant immunity. THE PLANT CELL 2023; 35:574-597. [PMID: 36222564 PMCID: PMC9806631 DOI: 10.1093/plcell/koac300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/18/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.
Collapse
Affiliation(s)
- Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqun Tu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Helm M, Singh R, Hiles R, Jaiswal N, Myers A, Iyer-Pascuzzi AS, Goodwin SB. Candidate Effector Proteins from the Maize Tar Spot Pathogen Phyllachora maydis Localize to Diverse Plant Cell Compartments. PHYTOPATHOLOGY 2022; 112:2538-2548. [PMID: 35815936 DOI: 10.1094/phyto-05-22-0181-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins, of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmEC) proteins remain unknown, and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super yellow fluorescent protein-tagged PmEC proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating that the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed that most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane, whereas an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest that effector candidate proteins from P. maydis target diverse cellular organelles and could thus provide valuable insights into their putative functions, as well as host processes potentially manipulated by this fungal pathogen.
Collapse
Affiliation(s)
- Matthew Helm
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Raksha Singh
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Rachel Hiles
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Namrata Jaiswal
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Ariana Myers
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | | | - Stephen B Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| |
Collapse
|
14
|
Daly P, Zhou D, Shen D, Chen Y, Xue T, Chen S, Zhang Q, Zhang J, McGowan J, Cai F, Pang G, Wang N, Sheikh TMM, Deng S, Li J, Soykam HO, Kara I, Fitzpatrick DA, Druzhinina IS, Bayram Akcapinar G, Wei L. Genome of Pythium myriotylum Uncovers an Extensive Arsenal of Virulence-Related Genes among the Broad-Host-Range Necrotrophic Pythium Plant Pathogens. Microbiol Spectr 2022; 10:e0226821. [PMID: 35946960 PMCID: PMC9430622 DOI: 10.1128/spectrum.02268-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.
Collapse
Affiliation(s)
- Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Taiqiang Xue
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Qimeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jamie McGowan
- Genome Evolution Laboratory, Maynooth University, Maynooth, Ireland
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Nan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Taha Majid Mahmood Sheikh
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Li
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kara
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Irina S. Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London, United Kingdom
| | - Günseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
McLellan H, Harvey SE, Steinbrenner J, Armstrong MR, He Q, Clewes R, Pritchard L, Wang W, Wang S, Nussbaumer T, Dohai B, Luo Q, Kumari P, Duan H, Roberts A, Boevink PC, Neumann C, Champouret N, Hein I, Falter-Braun P, Beynon J, Denby K, Birch PRJ. Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance. Proc Natl Acad Sci U S A 2022; 119:e2114064119. [PMID: 35994659 PMCID: PMC9436328 DOI: 10.1073/pnas.2114064119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sarah E. Harvey
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Miles R. Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Rachel Clewes
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Shumei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Thomas Nussbaumer
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Bushra Dohai
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Qingquan Luo
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Priyanka Kumari
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID 83707
| | - Ana Roberts
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Petra C. Boevink
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christina Neumann
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | | | - Ingo Hein
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Pascal Falter-Braun
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Jim Beynon
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine Denby
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul R. J. Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
16
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
17
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
19
|
Zhu J, Tang X, Sun Y, Li Y, Wang Y, Jiang Y, Shao H, Yong B, Li H, Tao X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions Between Potato and Phytophthora infestans. Front Microbiol 2022; 13:857160. [PMID: 35464908 PMCID: PMC9024415 DOI: 10.3389/fmicb.2022.857160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Late blight is one of the main biological stresses limiting the potato yield; however, the biochemical mechanisms underlying the infection process of Phytophthora infestans remain unrevealed. In this study, the late blight-resistant potato cultivar Ziyun No.1 (R) and the susceptible cultivar Favorita (S) were inoculated with P. infestans. Untargeted metabolomics was used to study the changes of metabolites in the compatible and incompatible interactions of the two cultivars and the pathogen at 0, 48, and 96 h postinoculation (hpi). A total of 819 metabolites were identified, and the metabolic differences mainly emerged after 48 hpi. There were 198 and 115 differentially expressed metabolites (DEMs) in the compatible and incompatible interactions. These included 147 and 100 upregulated metabolites during the compatible and incompatible interactions, respectively. Among them, 73 metabolites were identified as the P. infestans-responsive DEMs. Furthermore, the comparisons between the two cultivars identified 57 resistance-related metabolites. Resistant potato cultivar had higher levels of salicylic acid and several upstream phenylpropanoid biosynthesis metabolites, triterpenoids, and hydroxycinnamic acids and their derivatives, such as sakuranetin, ferulic acid, ganoderic acid Mi, lucidenic acid D2, and caffeoylmalic acid. These metabolites play crucial roles in cell wall thickening and have antibacterial and antifungal activities. This study reports the time-course metabolomic responses of potatoes to P. infestans. The findings reveal the responses involved in the compatible and incompatible interactions of potatoes and P. infestans.
Collapse
Affiliation(s)
- Jingyu Zhu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xue Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yajie Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Honghao Li
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Ministry of Agriculture, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Honghao Li,
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Xiang Tao,
| |
Collapse
|
20
|
Li H, Hu R, Fan Z, Chen Q, Jiang Y, Huang W, Tao X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between Solanum tuberosum and Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:817199. [PMID: 35401650 PMCID: PMC8993506 DOI: 10.3389/fpls.2022.817199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is a devastating plant disease. P. infestans genome encodes hundreds of effectors, complicating the interaction between the pathogen and its host and making it difficult to understand the interaction mechanisms. In this study, the late blight-resistant potato cultivar Ziyun No.1 and the susceptible potato cultivar Favorita were infected with P. infestans isolate SCPZ16-3-1 to investigate the global expression profiles during the compatible and incompatible interactions using dual RNA sequencing (RNA-seq). Most of the expressed Arg-X-Leu-Arg (RXLR) effector genes were suppressed during the first 24 h of infection, but upregulated after 24 h. Moreover, P. infestans induced more specifically expressed genes (SEGs), including RXLR effectors and cell wall-degrading enzymes (CWDEs)-encoding genes, in the compatible interaction. The resistant potato activated a set of biotic stimulus responses and phenylpropanoid biosynthesis SEGs, including kirola-like protein, nucleotide-binding site-leucine-rich repeat (NBS-LRR), disease resistance, and kinase genes. Conversely, the susceptible potato cultivar upregulated more kinase, pathogenesis-related genes than the resistant cultivar. This study is the first study to characterize the compatible and incompatible interactions between P. infestans and different potato cultivars and provides the genome-wide expression profiles for RXLR effector, CWDEs, NBS-LRR protein, and kinase-encoding genes.
Collapse
Affiliation(s)
- Honghao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Rongping Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonghan Fan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
21
|
Luo M, Sun X, Qi Y, Zhou J, Wu X, Tian Z. Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC PLANT BIOLOGY 2021; 21:582. [PMID: 34886813 PMCID: PMC8656059 DOI: 10.1186/s12870-021-03364-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xinyuan Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China.
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China.
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China.
- Hubei Hongshan laboratory. Huazhong Agricultural University (HZAU), No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
22
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
23
|
Cui B, Ma X, Li Y, Zhou Y, Ju X, Hussain A, Umbreen S, Yuan B, Tabassum A, Lubega J, Shan W, Loake GJ, Pan Q. Perturbations in nitric oxide homeostasis promote Arabidopsis disease susceptibility towards Phytophthora parasitica. MOLECULAR PLANT PATHOLOGY 2021; 22:1134-1148. [PMID: 34242483 PMCID: PMC8359001 DOI: 10.1111/mpp.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 05/08/2023]
Abstract
Phytophthora species can infect hundreds of different plants, including many important crops, causing a number of agriculturally relevant diseases. A key feature of attempted pathogen infection is the rapid production of the redox active molecule nitric oxide (NO). However, the potential role(s) of NO in plant resistance against Phytophthora is relatively unexplored. Here we show that the level of NO accumulation is crucial for basal resistance in Arabidopsis against Phytophthora parasitica. Counterintuitively, both relatively low or relatively high NO accumulation leads to reduced resistance against P. parasitica. S-nitrosylation, the addition of a NO group to a protein cysteine thiol to form an S-nitrosothiol, is an important route for NO bioactivity and this process is regulated predominantly by S-nitrosoglutathione reductase 1 (GSNOR1). Loss-of-function mutations in GSNOR1 disable both salicylic acid accumulation and associated signalling, and also the production of reactive oxygen species, leading to susceptibility towards P. parasitica. Significantly, we also demonstrate that secreted proteins from P. parasitica can inhibit Arabidopsis GSNOR1 activity.
Collapse
Affiliation(s)
- Beimi Cui
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
- Jiangsu Normal University–Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food PlantsJiangsu Normal UniversityXuzhouChina
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Xiangren Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
| | - Yuan Li
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Yu Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
| | - Adil Hussain
- Department of AgricultureAbdul Wali Khan UniversityMardanPakistan
| | - Saima Umbreen
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
- Jiangsu Normal University–Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food PlantsJiangsu Normal UniversityXuzhouChina
| | - Anika Tabassum
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Jibril Lubega
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Gary J. Loake
- Jiangsu Normal University–Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food PlantsJiangsu Normal UniversityXuzhouChina
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Qiaona Pan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina
- Jiangsu Normal University–Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food PlantsJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
24
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021. [PMID: 33677602 DOI: 10.1101/2020.09.24.308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
25
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021; 33:1447-1471. [PMID: 33677602 PMCID: PMC8254500 DOI: 10.1093/plcell/koab069] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
26
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Gao RF, Wang JY, Liu KW, Yoshida K, Hsiao YY, Shi YX, Tsai KC, Chen YY, Mitsuda N, Liang CK, Wang ZW, Wang Y, Zhang DY, Huang L, Zhao X, Zhong WY, Cheng YH, Jiang ZD, Li MH, Sun WH, Yu X, Hu W, Zhou Z, Zhou XF, Yeh CM, Katoh K, Tsai WC, Liu ZJ, Martin F, Zhang GM. Comparative analysis of Phytophthora genomes reveals oomycete pathogenesis in crops. Heliyon 2021; 7:e06317. [PMID: 33665461 PMCID: PMC7907477 DOI: 10.1016/j.heliyon.2021.e06317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 01/19/2023] Open
Abstract
The oomycete genus Phytophthora includes devastating plant pathogens that are found in almost all ecosystems. We sequenced the genomes of two quarantined Phytophthora species–P. fragariae and P. rubi. Comparing these Phytophthora species and related genera allowed reconstruction of the phylogenetic relationships within the genus Phytophthora and revealed Phytophthora genomic features associated with infection and pathogenicity. We found that several hundred Phytophthora genes are putatively inherited from red algae, but Phytophthora does not have vestigial plastids originating from phototrophs. The horizontally-transferred Phytophthora genes are abundant transposons that “transmit” exogenous gene to Phytophthora species thus bring about the gene recombination possibility. Several expansion events of Phytophthora gene families associated with cell wall biogenesis can be used as mutational targets to elucidate gene function in pathogenic interactions with host plants. This work enhanced the understanding of Phytophthora evolution and will also be helpful for the design of phytopathological control strategies.
Collapse
Affiliation(s)
- Rui-Fang Gao
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Jie-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ke-Wei Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy State Key Laboratory of Health Sciences and Technology (prep), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Kouki Yoshida
- Technology Center, Taisei Corporation, Nase-cho 344-1, Totsuka-ku, Yokohama, Kanagawa 245-0051, Japan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Xiang Shi
- Shanghai Major Bio-pharm Technology Co., Ltd., Shanghai 201203, China
| | | | - You-Yi Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Chieh-Kai Liang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Ying Wang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Di-Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy State Key Laboratory of Health Sciences and Technology (prep), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | | | - Ying-Hui Cheng
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Zi-De Jiang
- College of Agriculture, South China Agricultural University, Guangzhou 510640, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqi Hu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Xiao-Fan Zhou
- College of Agriculture, South China Agricultural University, Guangzhou 510640, China
| | - Chuan-Ming Yeh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan.,Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.,Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kazutaka Katoh
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan.,Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy State Key Laboratory of Health Sciences and Technology (prep), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.,Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Francis Martin
- Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Centre INRA Grand Est-Nancy, Université de Lorraine, 54280 Champenoux, France
| | - Gui-Ming Zhang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| |
Collapse
|
28
|
Liu J, Chen S, Ma T, Gao Y, Song S, Ye W, Lu J. Plasmopara viticola effector PvRXLR53 suppresses innate immunity in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2021; 16:1846927. [PMID: 33210976 PMCID: PMC7849728 DOI: 10.1080/15592324.2020.1846927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 05/29/2023]
Abstract
Plasmopara viticola, the casual oomycete of grapevine downy mildew, could cause yield loss and compromise berry quantity. Previously, we have identified several PvRXLR effectors that could suppress plant immunity to promote infection and disease development. In this study, the role of effector, PvRXLR53, in plant-microbe interaction was investigated. PvRXLR53 has several orthologs in other oomycetes and contains a functional signal peptide. Expression level of PvRXLR53 was already detected upon inoculation, further induced in the early stage after P. viticola inoculation and decreased to low level in the late infection stage in grapevine (Vitis vinifera 'Cabernet Sauvignon'). PvRXLR53 is localized in both nucleus and cytoplasm. When transiently expressed in Nicotiana benthamiana, PvRXLR53 suppressed oomycete elicitor INF1-triggered programmed cell death and defense gene expression, and Phytophthora capsici-induced reactive oxygen species production (ROS) and eventually resistance to P. capsici. In summary, these findings suggest that P. viticola secretes PvRXLR53 to suppress host immunity from the very early stage of infection.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Reilly A, Karki SJ, Twamley A, Tiley AMM, Kildea S, Feechan A. Isolate-Specific Responses of the Nonhost Grass Brachypodium distachyon to the Fungal Pathogen Zymoseptoria tritici Compared with Wheat. PHYTOPATHOLOGY 2021; 111:356-368. [PMID: 32720875 DOI: 10.1094/phyto-02-20-0041-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Septoria tritici blotch (STB) is an important foliar disease of wheat that is caused by the fungal pathogen Zymoseptoria tritici. The grass Brachypodium distachyon has been used previously as a model system for cereal-pathogen interactions. In this study, we examined the nonhost resistance (NHR) response of B. distachyon to two different Z. tritici isolates in comparison with wheat. These isolates vary in aggressiveness on wheat cultivar Remus, displaying significant differences in disease and pycnidia coverage. Using microscopy, we found that similar isolate-specific responses were observed for hydrogen peroxide accumulation and cell death in both wheat and B. distachyon. Despite this, induction of isolate-specific patterns of defense gene expression by Z. tritici did differ between B. distachyon and wheat. Our results suggest that expression of the phenylalanine ammonia lyase PAL gene may be important for NHR in B. distachyon, while pathogenesis-related PR genes and expression of genes regulating reactive oxygen species may be important to limit disease in wheat. Future studies of the B. distachyon-Z. tritici interaction may allow identification of conserved plant immunity targets that are responsible for the isolate-specific responses observed in both plant species.
Collapse
Affiliation(s)
- Aisling Reilly
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sujit Jung Karki
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anthony Twamley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna M M Tiley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Kildea
- Department of Crop Science, Teagasc Crops Environment and Land Use Programme, Teagasc, Oak Park, County Carlow, Ireland
| | - Angela Feechan
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 229:501-515. [PMID: 32772378 DOI: 10.1111/nph.16861] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalu Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Houxiao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Weixing Shan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
31
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
32
|
Huang Y, Li T, Xu T, Tang Z, Guo J, Cai Y. Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22. PLANTA 2020; 252:88. [PMID: 33057902 DOI: 10.1007/s00425-020-03484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas campestris pv. campestris 8004 secretes several effector proteins that interfere with plant phosphorylation. Xanthomonas campestris pv. campestris (Xcc) can infect cruciferous plants and cause black rot. The strain Xcc8004 secretes effector proteins that interfere with plant cellular processes into host cells using a type III secretion (T3S) system. Several of the 24 predicted T3S effectors in the Xcc8004 genome have been implicated in the suppression of the Arabidopsis thaliana pattern-triggered immunity (PTI) response. We used an A. thaliana mesophyll protoplast-based assay to identify Xcc8004 T3S effectors that effectively interfere with PTI signalling induced by the bacterial peptide flg22. 11 of the 24 tested effector proteins (XopK, XopQ, HrpW, XopN, XopAC, XopD, XopZ1, XopAG, AvrBs2, XopL and XopX-1) inhibited expression of the flg22-inducible gene FRK1, and five effectors (XopK, XopG, XopQ, XopL and XopX-1) inhibited the expression of the flg22-inducible gene WRKY33. Therefore, there are 12 effector proteins that can inhibit the expression of relevant flg22-inducible genes. It was further investigated whether the 12 effector proteins affect the phosphorylation activation of mitogen-activated protein (MAP) kinases MPK3/MPK6, and four effector proteins (XopK, XopQ, XopZ1 and XopX-1) were found to markedly inhibit MPK3/MPK6 activation. Moreover, a subcellular localisation analysis revealed that the tested effectors were localised within various subcellular compartments. These results indicate that multiple T3S effectors in the Xcc8004 genome interfere with flg22-induced PTI signalling via various molecular mechanisms.
Collapse
Affiliation(s)
- Yan Huang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Tongqi Li
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ting Xu
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zizhong Tang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jingya Guo
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yi Cai
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
33
|
Huang J, Lu X, Wu H, Xie Y, Peng Q, Gu L, Wu J, Wang Y, Reddy ASN, Dong S. Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. MOLECULAR PLANT 2020; 13:1470-1484. [PMID: 32693165 DOI: 10.1016/j.molp.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs increases transcriptome and proteome diversity, regulates gene expression through multiple mechanisms, and plays important roles in plant development and stress responses. However, the prevalence of genome-wide plant AS changes during infection and the mechanisms by which pathogens modulate AS remain poorly understood. Here, we examined the global AS changes in tomato leaves infected with Phytophthora infestans, the infamous Irish famine pathogen. We show that more than 2000 genes exhibiting significant changes in AS are not differentially expressed, indicating that AS is a distinct layer of transcriptome reprogramming during plant-pathogen interactions. Furthermore, our results show that P. infestans subverts host immunity by repressing the AS of positive regulators of plant immunity and promoting the AS of susceptibility factors. To study the underlying mechanism, we established a luminescence-based AS reporter system in Nicotiana benthamiana to screen pathogen effectors modulating plant AS. We identified nine splicing regulatory effectors (SREs) from 87 P. infestans effectors. Further studies revealed that SRE3 physically binds U1-70K to manipulate the plant AS machinery and subsequently modulates AS-mediated plant immunity. Our study not only unveils genome-wide plant AS reprogramming during infection but also establishes a novel AS screening tool to identify SREs from a wide range of plant pathogens, providing opportunities to understand the splicing regulatory mechanisms through which pathogens subvert plant immunity.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchen Xie
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Anireddy S N Reddy
- Colorado State University, Program in Cell and Molecular Biology, Fort Collins, CO 80523, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Tintor N, Paauw M, Rep M, Takken FLW. The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. THE NEW PHYTOLOGIST 2020; 227:1479-1492. [PMID: 32323328 PMCID: PMC7496899 DOI: 10.1111/nph.16618] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 05/08/2023]
Abstract
Plant pathogens use effector proteins to promote host colonisation. The mode of action of effectors from root-invading pathogens, such as Fusarium oxysporum (Fo), is poorly understood. Here, we investigated whether Fo effectors suppress pattern-triggered immunity (PTI), and whether they enter host cells during infection. Eight candidate effectors of an Arabidopsis-infecting Fo strain were expressed with and without signal peptide for secretion in Nicotiana benthamiana and their effect on flg22-triggered and chitin-triggered reactive oxidative species (ROS) burst was monitored. To detect uptake, effector biotinylation by an intracellular Arabidopsis-produced biotin ligase was examined following root infection. Four effectors suppressed PTI signalling; two acted intracellularly and two apoplastically. Heterologous expression of a PTI-suppressing effector in Arabidopsis enhanced bacterial susceptibility. Consistent with an intracellular activity, host cell uptake of five effectors, but not of the apoplastically acting ones, was detected in Fo-infected Arabidopsis roots. Multiple Fo effectors targeted PTI signalling, uncovering a surprising overlap in infection strategies between foliar and root pathogens. Extracellular targeting of flg22 signalling by a microbial effector provides a new mechanism on how plant pathogens manipulate their host. Effector translocation appears independent of protein size, charge, presence of conserved motifs or the promoter driving its expression.
Collapse
Affiliation(s)
- Nico Tintor
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Misha Paauw
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Martijn Rep
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Frank L. W. Takken
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| |
Collapse
|
35
|
Tomczynska I, Stumpe M, Doan TG, Mauch F. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. THE NEW PHYTOLOGIST 2020; 227:1467-1478. [PMID: 32396661 DOI: 10.1111/nph.16653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Tu Giang Doan
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
36
|
Ai G, Yang K, Ye W, Tian Y, Du Y, Zhu H, Li T, Xia Q, Shen D, Peng H, Jing M, Xia A, Dou D. Prediction and Characterization of RXLR Effectors in Pythium Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1046-1058. [PMID: 32330072 DOI: 10.1094/mpmi-01-20-0010-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RXLR effectors, a class of secreted proteins that are transferred into host cells to manipulate host immunity, have been reported to widely exist in oomycetes, including those from genera Phytophthora, Hyaloperonospora, Albugo, and Saprolegnia. However, in Pythium species, no RXLR effector has yet been characterized, and the origin and evolution of such virulent effectors are still unknown. Here, we developed a modified regular expression method for de novo identification of RXLRs and characterized 359 putative RXLR effectors in nine Pythium species. Phylogenetic analysis revealed that all oomycetous RXLRs formed a single superfamily, suggesting that they might have a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures, and genome locations. In particular, there were significantly more RXLR proteins in the mosquito biological control agent P. guiyangense than in the other eight Pythium species, and P. guiyangense RXLRs might be the result of gene duplication and genome rearrangement events, as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts of the majority of the predicted RXLR genes, with some RXLR effectors induced in infection stages and one RXLR showing necrosis-inducing activity. Furthermore, all predicted RXLR genes were cloned from two biocontrol agents, P. oligandrum and P. periplocum, and three of the RXLR genes were found to induce a defense response in Nicotiana benthamiana. Taken together, our findings represent the first evidence of RXLR effectors in Pythium species, providing valuable information on their evolutionary patterns and the mechanisms of their interactions with diverse hosts.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuee Tian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Yaxin Du
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyue Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, U.S.A
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
37
|
Morales JG, Gaviria AE, Gilchrist E. Allelic Variation and Selection in Effector Genes of Phytophthora infestans (Mont.) de Bary. Pathogens 2020; 9:pathogens9070551. [PMID: 32659973 PMCID: PMC7400436 DOI: 10.3390/pathogens9070551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phytophthora infestans is a devastating plant pathogen in several crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicum) and Andean fruits such as tree tomato (Solanum betaceum), lulo (Solanum quitoense), uchuva (Physalis peruviana) and wild species in the genus Solanum sp. Despite intense research performed around the world, P. infestans populations from Colombia, South America, are poorly understood. Of particular importance is knowledge about pathogen effector proteins, which are responsible for virulence. The present work was performed with the objective to analyze gene sequences coding for effector proteins of P. infestans from isolates collected from different hosts and geographical regions. Several genetic parameters, phylogenetic analyses and neutrality tests for non-synonymous and synonymous substitutions were calculated. Non-synonymous substitutions were identified for all genes that exhibited polymorphisms at the DNA level. Significant negative selection values were found for two genes (PITG_08994 and PITG_12737) suggesting active coevolution with the corresponding host resistance proteins. Implications for pathogen virulence mechanisms and disease management are discussed.
Collapse
Affiliation(s)
- Juan G. Morales
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Correspondence: ; Tel.: +0057-4-4309088
| | - Astrid E. Gaviria
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
| | - Elizabeth Gilchrist
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Universidad EAFIT, 050034 Medellín, Colombia
| |
Collapse
|
38
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
39
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
40
|
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. Surface Sensor Systems in Plant Immunity. PLANT PHYSIOLOGY 2020; 182:1582-1596. [PMID: 31822506 PMCID: PMC7140916 DOI: 10.1104/pp.19.01299] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Protein complexes at the cell surface facilitate the detection of danger signals from diverse pathogens and initiate a series of complex intracellular signaling events that result in various immune responses.
Collapse
Affiliation(s)
- Isabell Albert
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
41
|
Gold KM, Townsend PA, Larson ER, Herrmann I, Gevens AJ. Contact Reflectance Spectroscopy for Rapid, Accurate, and Nondestructive Phytophthora infestans Clonal Lineage Discrimination. PHYTOPATHOLOGY 2020; 110:851-862. [PMID: 31880984 DOI: 10.1094/phyto-08-19-0294-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Populations of Phytophthora infestans, the oomycete causal agent of potato late blight in the United States, are predominantly asexual, and isolates are characterized by clonal lineage or asexual descendants of a single genotype. Current tools for clonal lineage identification are time consuming and require laboratory equipment. We previously found that foliar spectroscopy can be used for high-accuracy pre- and postsymptomatic detection of P. infestans infections caused by clonal lineages US-08 and US-23. In this work, we found subtle but distinct differences in spectral responses of potato foliage infected by these clonal lineages in both growth-chamber time-course experiments (12- to 24-h intervals over 5 days) and naturally infected samples from commercial production fields. In both settings, we measured continuous visible to shortwave infrared reflectance (400 to 2,500 nm) on leaves using a portable spectrometer with contact probe. We consistently discriminated between infections caused by the two clonal lineages across all stages of disease progression using partial least squares (PLS) discriminant analysis, with total accuracies ranging from 88 to 98%. Three-class random forest differentiation between control, US-08, and US-23 yielded total discrimination accuracy ranging from 68 to 76%. Differences were greatest during presymptomatic infection stages and progressed toward uniformity as symptoms advanced. Using PLS-regression trait models, we found that total phenolics, sugar, and leaf mass per area were different between lineages. Shortwave infrared wavelengths (>1,100 nm) were important for clonal lineage differentiation. This work provides a foundation for future use of hyperspectral sensing as a nondestructive tool for pathovar differentiation.
Collapse
Affiliation(s)
- Kaitlin M Gold
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Eric R Larson
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Ittai Herrmann
- The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Amanda J Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| |
Collapse
|
42
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
43
|
Li W, Zhao D, Dong J, Kong X, Zhang Q, Li T, Meng Y, Shan W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. MOLECULAR PLANT PATHOLOGY 2020; 21:95-108. [PMID: 31701600 PMCID: PMC6913198 DOI: 10.1111/mpp.12883] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants have evolved powerful immune systems to recognize pathogens and avoid invasions, but the genetic basis of plant susceptibility is less well-studied, especially to oomycetes, which cause disastrous diseases in many ornamental plants and food crops. In this research, we identified a negative regulator of plant immunity to the oomycete Phytophthora parasitica, AtRTP5 (Arabidopsis thaliana Resistant to Phytophthora 5), which encodes a WD40 repeat domain-containing protein. The AtRTP5 protein, which was tagged with green fluorescent protein (GFP), is localized in the nucleus and plasma membrane. Both the A. thaliana T-DNA insertion rtp5 mutants and the Nicotiana benthamiana RTP5 (NbRTP5) silencing plants showed enhanced resistance to P. parasitica, while overexpression of AtRTP5 rendered plants more susceptible. The transcriptomic analysis showed that mutation of AtRTP5 suppressed the biosynthesis of endogenous jasmonic acid (JA) and JA-dependent responses. In contrast, salicylic acid (SA) biosynthesis and SA-dependent responses were activated in the T-DNA insertion mutant rtp5-3. These results show that AtRTP5 acts as a conserved negative regulator of plant immunity to Phytophthora pathogens by interfering with JA and SA signalling pathways.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jingwen Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
44
|
Hu Y, You J, Li C, Pan F, Wang C. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110271. [PMID: 31623793 DOI: 10.1016/j.plantsci.2019.110271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) is a sedentary root endoparasite that causes serious yield losses on soybean (Glycine max) worldwide. H. glycines secrets effector proteins into host cells to facilitate the success of parasitism. Nowadays, a large number of candidate effectors were identified from the genome sequence of H. glycines. However, the precise functions of these effectors in the nematode-host plant interaction are unknown. Here, an effector gene of dorsal gland protein Hg16B09 from H. glycines was cloned and functionally characterized through generating the transgenic soybean hairy roots. In situ hybridization assay and qRT-PCR analysis indicated Hg16B09 is exclusively expressed in the dorsal esophageal cells and up-regulated in the parasitic-stage juveniles. The constitutive expression of Hg16B09 in soybean hairy roots caused an enhanced susceptibility to H. glycines. In contrast, in planta silencing of Hg16B09 exhibited that nematode reproduction in hairy roots was decreased compared to the empty vector control. In addition, Hg16B09 also suppressed the expression of soybean defense-related genes induced by the pathogen-associated molecular pattern flg22. These data indicate that the effector Hg16B09 might aid H. glycines parasitism through suppressing plant basal defenses in the early parasitic stages.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; University of Chinese Academy of Science, Beijing, PR China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| |
Collapse
|
45
|
Bilir Ö, Telli O, Norman C, Budak H, Hong Y, Tör M. Small RNA inhibits infection by downy mildew pathogen Hyaloperonospora arabidopsidis. MOLECULAR PLANT PATHOLOGY 2019; 20:1523-1534. [PMID: 31557400 PMCID: PMC6804343 DOI: 10.1111/mpp.12863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene silencing exists in eukaryotic organisms as a conserved regulation of the gene expression mechanism. In general, small RNAs (sRNAs) are produced within the eukaryotic cells and incorporated into an RNA-induced silencing complex (RISC) within cells. However, exogenous sRNAs, once delivered into cells, can also silence target genes via the same RISC. Here, we explored this concept by targeting the Cellulose synthase A3 (CesA3) gene of Hyaloperonospora arabidopsidis (Hpa), the downy mildew pathogen of Arabidopsis thaliana. Hpa spore suspensions were mixed with sense or antisense sRNAs and inoculated onto susceptible Arabidopsis seedlings. While sense sRNAs had no obvious effect on Hpa pathogenicity, antisense sRNAs inhibited spore germination and hence infection. Such inhibition of infection was not race-specific, but dependent on the length and capping of sRNAs. Inhibition of infection by double stranded sRNA was more efficient than that observed with antisense sRNA. Thus, exogenous sRNA targeting conserved CesA3 could suppress Hpa infection in Arabidopsis, indicating the potential of this simple and efficient sRNA-based approach for deciphering gene functions in obligate biotrophic pathogens as well as for R-gene independent control of diseases in plants.
Collapse
Affiliation(s)
- Özlem Bilir
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
- Present address:
Directorate of Trakya Agricultural Research InstituteDepartment of BiotechnologyD‐100 Highway 22100EdirneTurkey
| | - Osman Telli
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| | - Chris Norman
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| | | | - Yiguo Hong
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Mahmut Tör
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| |
Collapse
|
46
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
47
|
Herlihy J, Ludwig NR, van den Ackerveken G, McDowell JM. Oomycetes Used in Arabidopsis Research. THE ARABIDOPSIS BOOK 2019; 17:e0188. [PMID: 33149730 PMCID: PMC7592078 DOI: 10.1199/tab.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Arabidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on Arabidopsis immunity and disease. Herein, we describe the major oomycete species used for experiments on Arabidopsis, and how these pathosystems have been used to provide significant insights into mechanistic and evolutionary aspects of plant-oomycete interactions. We also highlight understudied aspects of plant-oomycete interactions, as well as translational approaches, that can be productively addressed using the reference pathosystems described in this article.
Collapse
Affiliation(s)
- John Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nora R. Ludwig
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Guido van den Ackerveken
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
48
|
Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:104-113. [PMID: 31075541 DOI: 10.1016/j.pbi.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 05/25/2023]
Abstract
Nonhost resistance (NHR) protects plants from a large and diverse array of potential phytopathogens. Each phytopathogen can parasitise some plant species, but most plant species are nonhosts that are innately immune due to a series of physical, chemical and inducible defenses these nonadapted pathogens cannot overcome. New evidence supports the NHR paradigm that posits the inability of potential pathogens to colonise nonhost plants is frequently due to molecular incompatibility between pathogen virulence factors and plant cellular targets. While NHR is durable, it is not insurmountable. Environmental changes can facilitate pathogen host jumps or alternatively result in new encounters between previously isolated plant species and pathogens. Climate change is predicted to substantially alter the current distribution of plants and their pathogens which could result in parasitism of new plant species.
Collapse
Affiliation(s)
- Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia.
| | - Chris K Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
49
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
50
|
Ren Y, Armstrong M, Qi Y, McLellan H, Zhong C, Du B, Birch PRJ, Tian Z. Phytophthora infestans RXLR Effectors Target Parallel Steps in an Immune Signal Transduction Pathway. PLANT PHYSIOLOGY 2019; 180:2227-2239. [PMID: 31217198 PMCID: PMC6670088 DOI: 10.1104/pp.18.00625] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/12/2019] [Indexed: 05/12/2023]
Abstract
The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kβ2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kβ2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kβ2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kβ2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kβ2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kβ2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.
Collapse
Affiliation(s)
- Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Miles Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Yetong Qi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | - Cheng Zhong
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
| | - Bowen Du
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|