1
|
Singh AK, Majumder S, Wang X, Song R, Sun W. Lung Resident Memory T Cells Activated by Oral Vaccination Afford Comprehensive Protection against Pneumonic Yersinia pestis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:259-270. [PMID: 36480265 PMCID: PMC9851976 DOI: 10.4049/jimmunol.2200487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023]
Abstract
A growing body of evidence has shown that resident memory T (TRM) cells formed in tissue after mucosal infection or vaccination are crucial for counteracting reinfection by pathogens. However, whether lung TRM cells activated by oral immunization with Yptb1(pYA5199) play a protective role against pneumonic plague remains unclear. In this study, we demonstrated that lung CD4+ and CD8+ TRM cells significantly accumulated in the lungs of orally Yptb1(pYA5199)-vaccinated mice and dramatically expanded with elevated IL-17A, IFN-γ, and/or TNF-α production after pulmonary Yersinia pestis infection and afforded significant protection. Short-term or long-term treatment of immunized mice with FTY720 did not affect lung TRM cell formation and expansion or protection against pneumonic plague. Moreover, the intratracheal transfer of both lung CD4+ and CD8+ TRM cells conferred comprehensive protection against pneumonic plague in naive recipient mice. Lung TRM cell-mediated protection was dramatically abolished by the neutralization of both IFN-γ and IL-17A. Our findings reveal that lung TRM cells can be activated via oral Yptb1(pYA5199) vaccination, and that IL-17A and IFN-γ production play an essential role in adaptive immunity against pulmonary Y. pestis infection. This study highlights an important new target for developing an effective pneumonic plague vaccine.
Collapse
Affiliation(s)
- Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Renjie Song
- Immunology Core at Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
2
|
Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, Beau R, Elli D, Patino MI, Redfern R, DeWitte SN, Gamble JA, Boldsen JL, Carmichael A, Varlik N, Eaton K, Grenier JC, Golding GB, Devault A, Rouillard JM, Yotova V, Sindeaux R, Ye CJ, Bikaran M, Dumaine A, Brinkworth JF, Missiakas D, Rouleau GA, Steinrücken M, Pizarro-Cerdá J, Poinar HN, Barreiro LB. Evolution of immune genes is associated with the Black Death. Nature 2022; 611:312-319. [PMID: 36261521 PMCID: PMC9580435 DOI: 10.1038/s41586-022-05349-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
Collapse
Affiliation(s)
- Jennifer Klunk
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Tauras P Vilgalys
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Xiaoheng Cheng
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Julien Madej
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Rémi Beau
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Derek Elli
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Maria I Patino
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rebecca Redfern
- Centre for Human Bioarchaeology, Museum of London, London, UK
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, SC, USA
| | - Julia A Gamble
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jesper L Boldsen
- Department of Forensic Medicine, Unit of Anthropology (ADBOU), University of Southern Denmark, Odense S, Denmark
| | - Ann Carmichael
- History Department, Indiana University, Bloomington, IN, USA
| | - Nükhet Varlik
- Department of History, Rutgers University, Newark, NJ, USA
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Christophe Grenier
- Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - G Brian Golding
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | - Jean-Marie Rouillard
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Vania Yotova
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Renata Sindeaux
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Matin Bikaran
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Anne Dumaine
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Luis B Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
<i>In silico</i> Research at the Stages of Designing Modern Means for Prevention of Plague (by the Example of Subunit Vaccines). PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-6-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The purpose of this review was to analyze the findings of domestic and foreign researchers on the development of modern drugs for the specific prevention of plague and to illustrate the possibilities of using bioinformatics analysis at the design stages to create an effective and safe vaccine. Work on the creation of an effective new-generation plague vaccine is hampered by several factors associated primarily with the presence of mechanisms of evasion from the immune system of the macroorganism, as well as a large number of pathogenicity determinants in the plague agent. Due to the development of approaches that are based on in silico studies, there is a progressive development of vaccine technologies oriented primarily to the use of the most important immunogens of the plague microbe (F1 and V antigen). Studies aimed at improving the antigenic properties of F1 and LcrV, as well as work on bioinformatic search and analysis of additional promising components to be included in the composition of subunit vaccines are considered as topical applications of bioinformatics data analysis in developing the tools for enhancing the effectiveness of protection through vaccination with subunit preparations.
Collapse
|
4
|
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus 2021; 9:eESP00142021. [PMID: 34910573 DOI: 10.1128/ecosalplus.esp-0014-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
Collapse
|
5
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Precursor Abundance Influences Divergent Antigen-Specific CD8 + T Cell Responses after Yersinia pseudotuberculosis Foodborne Infection. Infect Immun 2021; 89:e0026521. [PMID: 34031132 DOI: 10.1128/iai.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.
Collapse
|
7
|
Cote CK, Biryukov SS, Klimko CP, Shoe JL, Hunter M, Rosario-Acevedo R, Fetterer DP, Moody KL, Meyer JR, Rill NO, Dankmeyer JL, Worsham PL, Bozue JA, Welkos SL. Protection Elicited by Attenuated Live Yersinia pestis Vaccine Strains against Lethal Infection with Virulent Y. pestis. Vaccines (Basel) 2021; 9:vaccines9020161. [PMID: 33669472 PMCID: PMC7920443 DOI: 10.3390/vaccines9020161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The etiologic agent of plague, Yersinia pestis, is a globally distributed pathogen which poses both a natural and adversarial threat. Due largely to the rapid course and high mortality of pneumonic plague, vaccines are greatly needed. Two-component protein vaccines have been unreliable and potentially vulnerable to vaccine resistance. We evaluated the safety and efficacy of eight live Y. pestis strains derived from virulent strains CO92 or KIM6+ and mutated in one or more virulence-associated gene(s) or cured of plasmid pPst. Stringent, single-dose vaccination allowed down-selection of the two safest and most protective vaccine candidates, CO92 mutants pgm- pPst- and ΔyscN. Both completely protected BALB/c mice against subcutaneous and aerosol challenge with Y. pestis. Strain CD-1 outbred mice were more resistant to bubonic (but not pneumonic) plague than BALB/c mice, but the vaccines elicited partial protection of CD-1 mice against aerosol challenge, while providing full protection against subcutaneous challenge. A ΔyscN mutant of the nonencapsulated C12 strain was expected to display antigens previously concealed by the capsule. C12 ΔyscN elicited negligible titers to F1 but comparable antibody levels to whole killed bacteria, as did CO92 ΔyscN. Although one dose of C12 ΔyscN was not protective, vaccination with two doses of either CO92 ΔyscN, or a combination of the ΔyscN mutants of C12 and CO92, protected optimally against lethal bubonic or pneumonic plague. Protection against encapsulated Y. pestis required inclusion of F1 in the vaccine and was associated with high anti-F1 titers.
Collapse
|
8
|
Hamzabegovic F, Goll JB, Hooper WF, Frey S, Gelber CE, Abate G. Flagellin adjuvanted F1/V subunit plague vaccine induces T cell and functional antibody responses with unique gene signatures. NPJ Vaccines 2020; 5:6. [PMID: 31993217 PMCID: PMC6978331 DOI: 10.1038/s41541-020-0156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis, the cause of plague, could be weaponized. Unfortunately, development of new vaccines is limited by lack of correlates of protection. We used pre- and post-vaccination sera and peripheral blood mononuclear cells from a flagellin adjuvanted F1/V vaccine trial to evaluate for protective markers. Here, we report for the first time in humans that inverse caspase-3 levels, which are measures of protective antibody, significantly increased by 29% and 75% on days 14 and 28 post-second vaccination, respectively. In addition, there were significant increases in T-cell responses on day 28 post-second vaccination. The strongest positive and negative correlations between protective antibody levels and gene expression signatures were identified for IFNG and ENSG00000225107 genes, respectively. Flagellin/F1/V subunit vaccine induced macrophage-protective antibody and significant CD4+ T-cell responses. Several genes associated with these responses were identified that could serve as potential correlates of protection.
Collapse
Affiliation(s)
- Fahreta Hamzabegovic
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | | | - Sharon Frey
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | - Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| |
Collapse
|
9
|
Wagner DA, Kelly SM, Petersen AC, Peroutka-Bigus N, Darling RJ, Bellaire BH, Wannemuehler MJ, Narasimhan B. Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomater 2019; 100:326-337. [PMID: 31610342 PMCID: PMC7012387 DOI: 10.1016/j.actbio.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023]
Abstract
Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this pathogen; however, USAMRIID has developed a recombinant fusion protein, F1-V, that has been shown to induce protection against pneumonic plague. Many F1-V-based vaccine formulations require prime-boost immunization to achieve protective immunity, and there are limited reports of rapid induction of protective immunity (≤ 14 days post-immunization (DPI)). The STimulator of INterferon Genes agonists cyclic dinucleotides (CDNs) have been shown to be promising vaccine adjuvants. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have also shown to enhance immune responses due to their dual functionality as adjuvants and delivery vehicles. In this work, a combination nanovaccine was designed that comprised F1-V-loaded nanoparticles combined with the CDN, dithio-RP,RP-cyclic di-guanosine monophosphate, to induce rapid and long-lived protective immunity against pneumonic plague. All mice immunized with a single dose combination nanovaccine were protected from Y. pestis lethal challenge within 14 DPI and demonstrated enhanced protection over F1-V adjuvanted with CDNs alone at challenge doses ≥7000 CFU Y. pestis CO92. In addition, 75% of mice receiving the single dose of the combination nanovaccine were protected from challenge at 182 DPI, while maintaining high levels of antigen-specific serum IgG. ELISPOT analysis of vaccinated animals at 218 DPI revealed F1-V-specific long-lived plasma cells in bone marrow in mice vaccinated with CDN adjuvanted F1-V or the combination nanovaccine. Microarray analysis of serum from these vaccinated mice revealed the presence of serum antibody that bound to a broad range of F1 and V linear epitopes. These results demonstrate that combining the adjuvanticity of CDNs with a nanovaccine delivery system enables induction of both rapid and long-lived protective immunity against Y. pestis. STATEMENT OF SIGNIFICANCE: • Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this biodefense pathogen. • We designed a combination nanovaccine comprising of F1-V antigen-loaded polyanhydride nanoparticles and a cyclic dinucleotide adjuvant to induce both rapid and long-lived protective immunity against pneumonic plague. • Animals immunized with the combination nanovaccine maintained high levels of antigen-specific serum IgG and long-lived plasma cells in bone marrow and the serum antibody showed a high affinity for a broad range of F1 and V linear epitopes. • The combination nanovaccine is a promising next-generation vaccine platform against weaponized Y. pestis based on its ability to induce both rapid and long-lived protective immunity.
Collapse
Affiliation(s)
- Danielle A Wagner
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Andrew C Petersen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States
| | - Ross J Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| |
Collapse
|
10
|
Clark GC, Essex-Lopresti A, Moore KA, Williamson ED, Lukaszewski R, Paszkiewicz K, David J. Common Host Responses in Murine Aerosol Models of Infection Caused by Highly Virulent Gram-Negative Bacteria from the Genera Burkholderia, Francisella and Yersinia. Pathogens 2019; 8:pathogens8040159. [PMID: 31546628 PMCID: PMC6963870 DOI: 10.3390/pathogens8040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Highly virulent bacterial pathogens cause acute infections which are exceptionally difficult to treat with conventional antibiotic therapies alone. Understanding the chain of events that are triggered during an infection of a host has the potential to lead to new therapeutic strategies. For the first time, the transcriptomic responses within the lungs of Balb/C mice have been compared during an acute infection with the intracellular pathogens Burkholderia pseudomallei, Francisella tularensis and Yersinia pestis. Temporal changes were determined using RNAseq and a bioinformatics pipeline; expression of protein was also studied from the same sample. Collectively it was found that early transcriptomic responses within the infected host were associated with the (a) slowing down of critical cellular functions, (b) production of circulatory system components, (c) lung tissue integrity, and (d) intracellular regulatory processes. One common molecule was identified, Errfi1 (ErbB receptor feedback inhibitor 1); upregulated in response to all three pathogens and a potential novel marker of acute infection. Based upon the pro-inflammatory responses observed, we sought to synchronise each infection and report that 24 h p.i. of B. pseudomallei infection closely aligned with 48 h p.i. of infection with F. tularensis and Y. pestis. Post-transcriptional modulation of RANTES expression occurred across all pathogens, suggesting that these infections directly or indirectly modulate cell trafficking through chemokine expression/detection. Collectively, this unbiased NGS approach has provided an in-depth characterisation of the host transcriptome following infection with these highly virulent pathogens ultimately aiding in the development of host-directed therapies as adjuncts or alternatives to antibiotic treatment.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Karen A Moore
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - E Diane Williamson
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Roman Lukaszewski
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| | - Konrad Paszkiewicz
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK.
| |
Collapse
|
11
|
Yersinia pestis Pla Protein Thwarts T Cell Defense against Plague. Infect Immun 2019; 87:IAI.00126-19. [PMID: 30804102 DOI: 10.1128/iai.00126-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Plague is a rapidly lethal human disease caused by the bacterium Yersinia pestis This study demonstrated that the Y. pestis plasminogen activator Pla, a protease that promotes fibrin degradation, thwarts T cell-mediated defense against fully virulent Y. pestis Introducing a single point mutation into the active site of Pla suffices to render fully virulent Y. pestis susceptible to primed T cells. Mechanistic studies revealed essential roles for fibrin during T cell-mediated defense against Pla-mutant Y. pestis Moreover, the efficacy of T cell-mediated protection against various Y. pestis strains displayed an inverse relationship with their levels of Pla activity. Together, these data indicate that Pla functions to thwart fibrin-dependent T cell-mediated defense against plague. Other important human bacterial pathogens, including staphylococci, streptococci, and borrelia, likewise produce virulence factors that promote fibrin degradation. The discovery that Y. pestis thwarts T cell defense by promoting fibrinolysis suggests novel therapeutic approaches to amplifying T cell responses against human pathogens.
Collapse
|
12
|
Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol 2019; 12:258-264. [PMID: 30361537 PMCID: PMC6301144 DOI: 10.1038/s41385-018-0100-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 02/04/2023]
Abstract
Epidemiological data and animal studies suggest that helminth infection exerts potent immunomodulatory effects that dampen host immunity against unrelated pathogens. Despite this notion, we unexpectedly discovered that prior helminth infection resulted in enhanced protection against subsequent systemic and enteric bacterial infection. A population of virtual memory CD8 T (CD8 TVM) cells underwent marked expansion upon infection with the helminth Heligmosomoides polygurus by an IL-4-regulated, antigen-independent mechanism. CD8 TVM cells disseminated to secondary lymphoid organs and established a major population of the systemic CD8 T cell pool. IL-4 production elicited by protein immunization or selective activation of natural killer T cells also results in the expansion of CD8 TVM cells. Notably, CD8 TVM cells expanded by helminth infection are sufficient to transfer innate non-cognate protection against bacteria to naïve animals. This innate non-cognate "collateral protection" mediated by CD8 TVM might provide parasitized animals an advantage against subsequent unrelated infections, and represents a potential novel strategy for vaccination.
Collapse
|
13
|
Lutzky VP, Ratnatunga CN, Smith DJ, Kupz A, Doolan DL, Reid DW, Thomson RM, Bell SC, Miles JJ. Anomalies in T Cell Function Are Associated With Individuals at Risk of Mycobacterium abscessus Complex Infection. Front Immunol 2018; 9:1319. [PMID: 29942313 PMCID: PMC6004551 DOI: 10.3389/fimmu.2018.01319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
The increasing global incidence and prevalence of non-tuberculous mycobacteria (NTM) infection is of growing concern. New evidence of person-to-person transmission of multidrug-resistant NTM adds to the global concern. The reason why certain individuals are at risk of NTM infections is unknown. Using high definition flow cytometry, we studied the immune profiles of two groups that are at risk of Mycobacterium abscessus complex infection and matched controls. The first group was cystic fibrosis (CF) patients and the second group was elderly individuals. CF individuals with active M. abscessus complex infection or a history of M. abscessus complex infection exhibited a unique surface T cell phenotype with a marked global deficiency in TNFα production during mitogen stimulation. Importantly, immune-based signatures were identified that appeared to predict at baseline the subset of CF individuals who were at risk of M. abscessus complex infection. In contrast, elderly individuals with M. abscessus complex infection exhibited a separate T cell phenotype underlined by the presence of exhaustion markers and dysregulation in type 1 cytokine release during mitogen stimulation. Collectively, these data suggest an association between T cell signatures and individuals at risk of M. abscessus complex infection, however, validation of these immune anomalies as robust biomarkers will require analysis on larger patient cohorts.
Collapse
Affiliation(s)
- Viviana P Lutzky
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Champa N Ratnatunga
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Centre for Biosecurity and Tropical Infectious Diseases, AITHM, James Cook University, Cairns, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel J Smith
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biodiscovery and Molecular Development of Therapeutics, Centre for Biosecurity and Tropical Infectious Diseases, AITHM, James Cook University, Cairns, QLD, Australia
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Centre for Biosecurity and Tropical Infectious Diseases, AITHM, James Cook University, Cairns, QLD, Australia
| | - David W Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Rachel M Thomson
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John J Miles
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Centre for Biosecurity and Tropical Infectious Diseases, AITHM, James Cook University, Cairns, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
14
|
Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia. Sci Rep 2018; 8:7009. [PMID: 29725025 PMCID: PMC5934503 DOI: 10.1038/s41598-018-24581-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023] Open
Abstract
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Collapse
|
15
|
CCR2 + Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun 2018; 86:IAI.00782-17. [PMID: 29263104 DOI: 10.1128/iai.00782-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023] Open
Abstract
Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.
Collapse
|
16
|
Bergsbaken T, Bevan MJ, Fink PJ. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8 + Tissue-Resident Memory T Cells. Cell Rep 2017; 19:114-124. [PMID: 28380351 DOI: 10.1016/j.celrep.2017.03.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103-CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103-CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103- Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.
Collapse
Affiliation(s)
- Tessa Bergsbaken
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Michael J Bevan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Liu L, Wei D, Qu Z, Sun L, Miao Y, Yang Y, Lu J, Du W, Wang B, Li B. A safety and immunogenicity study of a novel subunit plague vaccine in cynomolgus macaques. J Appl Toxicol 2017; 38:408-417. [PMID: 29134676 DOI: 10.1002/jat.3550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
Plague has led to millions of deaths in history and outbreaks continue to the present day. The efficacy limitations and safety concerns of the existing killed whole cell and live-attenuated vaccines call for the development of new vaccines. In this study, we evaluated the immunogenicity and safety of a novel subunit plague vaccine, comprising native F1 antigen and recombinant V antigen. The cynomolgus macaques in low- and high-dose vaccine groups were vaccinated at weeks 0, 2, 4 and 6, at dose levels of 15 μg F1 + 15 μg rV and 30 μg F1 + 30 μg rV respectively. Specific antibodies and interferon-γ and interleukin-2 expression in lymphocytes were measured. For safety, except for the general toxicity and local irritation, we made a systematic immunotoxicity study on the vaccine including immunostimulation, autoimmunity and anaphylactic reaction. The vaccine induced high levels of serum anti-F1 and anti-rV antibodies, and caused small increases of interferon-γ and interleukin-2 in monkeys. The vaccination led to a reversible increase in the number of peripheral blood eosinophils, the increases in serum IgE level in a few animals and histopathological change of granulomas at injection sites. The vaccine had no impact on general conditions, most clinical pathology parameters, percentages of T-cell subsets, organ weights and gross pathology of treated monkeys and had passable local tolerance. The F1 + rV subunit plague vaccine can induce very strong humoral immunity and low level of cellular immunity in cynomolgus macaques and has a good safety profile.
Collapse
Affiliation(s)
- Li Liu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Dong Wei
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Li Sun
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Jinbiao Lu
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Weixin Du
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Bingxiang Wang
- Lanzhou Institute of Biological Products Co., Ltd. 888 Yanchang Road, Lanzhou, 730046, China
| | - Bo Li
- National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| |
Collapse
|
18
|
Leal EA, Moreira JD, Nunes FF, Souza LR, Martins JM, Toledo VPC, Almeida AMP, Guimarães TMP. Humoral and cellular immune response of mice challenged with Yersinia pestis antigenic preparations. Braz J Infect Dis 2017; 21:620-626. [PMID: 29031042 PMCID: PMC9425539 DOI: 10.1016/j.bjid.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The plague, which is an infectious disease caused by Yersinia pestis, still threatens many populations in several countries. The worldwide increase in human plague cases and the potential use of the bacteria as a biological weapon reinforce the need to study the immunity that is induced by potential vaccine candidates. To determine the immunogenicity of antigenic preparations based on the F1 protein and the total extract from Y. pestis, we assessed the role of these antigens in inducing an immune response. Methods The immunogenicity of antigenic preparations based on the Y. pestis (YP) total extract and the Y. pestis fraction 1 capsular antigen protein (F1) was determined in Swiss-Webster mice immunized with 40 μg or 20 μg for each preparation. Immunophenotyping was performed by flow cytometry. Results Animals immunized with the YP total extract did not elicit detectable anti-F1 antibodies (Ab) in the hemaglutination/inhibition (HA/HI) test. Animals immunized with 40 μg or 20 μg of the F1 protein produced anti-F1 Abs, with titres ranging from 1/16 to 1/8132. The average of CD3+–CD4+ and CD3+–CD8+ T cells did not differ significantly between the groups. Neither YP total extract nor F1 protein induced a significant expression of IFN-γ and IL-10 in CD4+ T lymphocytes. In addition, F1 failed to induce IFN-γ expression in CD8+ T cells, unlike the YP total extract. Conclusion The results showed that F1 protein is not an immunogenic T cell antigen, although the YP total extract (40 μg dose) favoured CD8+ T cell-mediated cellular immunity.
Collapse
Affiliation(s)
- Elida A Leal
- Instituto Octavio Magalhães, Divisão de Epidemologia e Controle de Doenças, Serviço de Doenças Bacterianas e Fúngicas, Belo Horizonte, MG, Brazil.
| | - Josimar D Moreira
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| | - Fernanda F Nunes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| | - Larissa R Souza
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| | - Janaina M Martins
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| | - Vicente P C Toledo
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| | - Alzira M P Almeida
- Fundação Oswaldo Cruz, Centro de Pesquisa Aggeu Magalhães, Departamento de Microbiologia, Recife, PE, Brazil
| | - Tania M P Guimarães
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brazil
| |
Collapse
|
19
|
Abstract
As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.
Collapse
Affiliation(s)
- Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
20
|
Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague. Vaccine 2017; 35:5995-6006. [PMID: 28606812 DOI: 10.1016/j.vaccine.2017.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022]
Abstract
The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to attest their protective potential, and hence their contribution to a future potent subunit vaccine.
Collapse
|
21
|
González-Juarbe N, Shen H, Bergman MA, Orihuela CJ, Dube PH. YopE specific CD8+ T cells provide protection against systemic and mucosal Yersinia pseudotuberculosis infection. PLoS One 2017; 12:e0172314. [PMID: 28207901 PMCID: PMC5313184 DOI: 10.1371/journal.pone.0172314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Prior studies indicated that CD8+ T cells responding to a surrogate single antigen expressed by Y. pseudotuberculosis, ovalbumin, were insufficient to protect against yersiniosis. Herein we tested the hypothesis that CD8+ T cells reactive to the natural Yersinia antigen YopE would be more effective at providing mucosal protection. We first confirmed that immunization with the attenuated ksgA- strain of Y. pseudotuberculosis generated YopE-specific CD8+ T cells. These T cells were protective against challenge with virulent Listeria monocytogenes expressing secreted YopE. Mice immunized with an attenuated L. monocytogenes YopE+ strain generated large numbers of functional YopE-specific CD8+ T cells, and initially controlled a systemic challenge with virulent Y. pseudotuberculosis, yet eventually succumbed to yersiniosis. Mice vaccinated with a YopE peptide and cholera toxin vaccine generated robust T cell responses, providing protection to 60% of the mice challenged mucosally but failed to show complete protection against systemic infection with virulent Y. pseudotuberculosis. These studies demonstrate that vaccination with recombinant YopE vaccines can generate YopE-specific CD8+ T cells, that can provide significant mucosal protection but these cells are insufficient to provide sterilizing immunity against systemic Y. pseudotuberculosis infection. Our studies have implications for Yersinia vaccine development studies.
Collapse
Affiliation(s)
- Norberto González-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United states of America
| | - Haiqian Shen
- Department of Microbiology & Immunology, The University of Texas Health Science Center San Antonio, San Antonio, TX, United states of America
| | - Molly A. Bergman
- Department of Microbiology & Immunology, The University of Texas Health Science Center San Antonio, San Antonio, TX, United states of America
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United states of America
| | - Peter H. Dube
- Department of Microbiology & Immunology, The University of Texas Health Science Center San Antonio, San Antonio, TX, United states of America
- * E-mail:
| |
Collapse
|
22
|
Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague. Vaccine 2016; 34:5768-5776. [PMID: 27745954 DOI: 10.1016/j.vaccine.2016.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
Yersinia pestis, one of history's deadliest pathogens, has killed millions over the course of human history. It has attributes that make it an ideal choice to produce mass casualties and is a prime candidate for use as a biological weapon. When aerosolized, Y. pestis causes pneumonic plague, a pneumonia that is 100% lethal if not promptly treated with effective antibiotics. Currently, there is no FDA approved plague vaccine. The current lead vaccine candidate, a parenterally administered protein subunit vaccine comprised of the Y. pestis virulence factors, F1 and LcrV, demonstrated variable levels of protection in primate pneumonic plague models. As the most likely mode of exposure in biological attack with Y. pestis is by aerosol, this raises a question of whether this parenteral vaccine will adequately protect humans against pneumonic plague. In the present study we evaluated two distinct mucosal delivery platforms for the intranasal (IN) administration of LcrV and F1 vaccine proteins, a live bacterial vector, Lactobacillus plantarum, and a Tobacco Mosaic Virus (TMV) based delivery platform. IN administration of L. plantarum expressing LcrV, or TMV-conjugated to LcrV and F1 (TMV-LcrV+TMV-F1) resulted in the similar induction of high titers of IgG antibodies and evidence of proinflammatory cytokine secretion. However, only the TMV-conjugate delivery platform protected against subsequent lethal challenge with Y. pestis. TMV-LcrV+TMV-F1 co-vaccinated mice had no discernable morbidity and no mortality, while mice vaccinated with L. plantarum expressing LcrV or rLcrV+rF1 without TMV succumbed to infection or were only partially protected. Thus, TMV is a suitable mucosal delivery platform for an F1-LcrV subunit vaccine that induces complete protection against pneumonic infection with a lethal dose of Y. pestis in mice.
Collapse
|
23
|
Shen H, Gonzalez-Juarbe N, Blanchette K, Crimmins G, Bergman MA, Isberg RR, Orihuela CJ, Dube PH. CD8(+) T cells specific to a single Yersinia pseudotuberculosis epitope restrict bacterial replication in the liver but fail to provide sterilizing immunity. INFECTION GENETICS AND EVOLUTION 2016; 43:289-96. [PMID: 27268148 DOI: 10.1016/j.meegid.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/03/2016] [Indexed: 01/30/2023]
Abstract
CD8(+) T cells use contact-dependent cytolysis of target cells to protect the host against intracellular pathogens. We have previously shown that CD8(+) T cells and perforin are required to protect against the extracellular pathogen Yersinia pseudotuberculosis. Here we establish an experimental system where CD8(+) T cells specific to a single model antigen are the only memory response present at time of challenge. Using mice immunized with a vaccine strain of Listeria monocytogenes that expresses secreted ovalbumin (Lm-OVA), we show that OVA-specific CD8(+) T cells are generated and provide limited protection against challenge with virulent OVA(+)Y. pseudotuberculosis. Perforin expression by OVA-specific CD8(+) T cells was required, as Lm-OVA-immunized perforin-deficient mice showed higher bacterial burden as compared to Lm-OVA-immunized perforin-sufficient mice. Surprisingly, antigen-specific T cell protection waned over time, as Lm-OVA-immune mice eventually succumbed to Yersinia infection. Kinetic analysis of infection in mice with and without OVA-specific CD8(+) T cells revealed that bacterial numbers increased sharply in OVA-naïve mice until death, while OVA-immune mice held bacterial burden to a lower level throughout the duration of illness until death. Clonal analysis of bacterial populations in OVA-naïve and OVA-immune mice at distinct time points revealed equivalent and severe bottle-neck effects for bacteria in both sets of mice immediately after intravenous challenge, demonstrating a dominant role for other aspects of the immune system regardless of CD8(+) T cell status. These studies indicate that CD8(+) T cells against a single antigen can restrict Y. pseudotuberculosis colonization in a perforin-dependent manner, but ultimately are insufficient in their ability to provide sterilizing immunity and protect against death.
Collapse
Affiliation(s)
- Haiqian Shen
- Department of Microbiology & Immunology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, USA
| | | | - Krystle Blanchette
- Department of Microbiology & Immunology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, USA
| | - Gregory Crimmins
- Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Molly A Bergman
- Department of Microbiology & Immunology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, USA
| | - Ralph R Isberg
- Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter H Dube
- Department of Microbiology & Immunology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
24
|
Ratner D, Orning MPA, Starheim KK, Marty-Roix R, Proulx MK, Goguen JD, Lien E. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence. J Biol Chem 2016; 291:9894-905. [PMID: 26884330 DOI: 10.1074/jbc.m115.697698] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 12/19/2022] Open
Abstract
Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence.
Collapse
Affiliation(s)
- Dmitry Ratner
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - M Pontus A Orning
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway, and
| | - Kristian K Starheim
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway, and
| | - Robyn Marty-Roix
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Megan K Proulx
- the Department of Microbiology and Physiological Systems, University of Massachusetts, Worcester, Massachusetts 01655
| | - Jon D Goguen
- the Department of Microbiology and Physiological Systems, University of Massachusetts, Worcester, Massachusetts 01655
| | - Egil Lien
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway, and
| |
Collapse
|
25
|
Gracias DT, Boesteanu AC, Fraietta JA, Hope JL, Carey AJ, Mueller YM, Kawalekar OU, Fike AJ, June CH, Katsikis PD. Phosphatidylinositol 3-Kinase p110δ Isoform Regulates CD8+ T Cell Responses during Acute Viral and Intracellular Bacterial Infections. THE JOURNAL OF IMMUNOLOGY 2016; 196:1186-98. [PMID: 26740110 DOI: 10.4049/jimmunol.1501890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022]
Abstract
The p110δ isoform of PI3K is known to play an important role in immunity, yet its contribution to CTL responses has not been fully elucidated. Using murine p110δ-deficient CD8(+) T cells, we demonstrated a critical role for the p110δ subunit in the generation of optimal primary and memory CD8(+) T cell responses. This was demonstrated in both acute viral and intracellular bacterial infections in mice. We show that p110δ signaling is required for CD8(+) T cell activation, proliferation and effector cytokine production. We provide evidence that the effects of p110δ signaling are mediated via Akt activation and through the regulation of TCR-activated oxidative phosphorylation and aerobic glycolysis. In light of recent clinical trials that employ drugs targeting p110δ in certain cancers and other diseases, our study suggests caution in using these drugs in patients, as they could potentially increase susceptibility to infectious diseases. These studies therefore reveal a novel and direct role for p110δ signaling in in vivo CD8(+) T cell immunity to microbial pathogens.
Collapse
Affiliation(s)
- Donald T Gracias
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Alina C Boesteanu
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Joseph A Fraietta
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| | - Alison J Carey
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Yvonne M Mueller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| | - Omkar U Kawalekar
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Adam J Fike
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Peter D Katsikis
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| |
Collapse
|
26
|
Chung LK, Bliska JB. Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Curr Opin Microbiol 2015; 29:56-62. [PMID: 26638030 DOI: 10.1016/j.mib.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 02/09/2023]
Abstract
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, United States
| | - James B Bliska
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, United States.
| |
Collapse
|
27
|
Zhang Y, Tam JW, Mena P, van der Velden AWM, Bliska JB. CCR2+ Inflammatory Dendritic Cells and Translocation of Antigen by Type III Secretion Are Required for the Exceptionally Large CD8+ T Cell Response to the Protective YopE69-77 Epitope during Yersinia Infection. PLoS Pathog 2015; 11:e1005167. [PMID: 26468944 PMCID: PMC4607306 DOI: 10.1371/journal.ppat.1005167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/25/2015] [Indexed: 12/24/2022] Open
Abstract
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response. Dendritic cells (DCs) direct host protective adaptive immune responses during infection. How different subpopulations of DCs contribute to the formation of antigen-specific CD8+ T cells is incompletely understood. Infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis results in the production of an exceptionally large CD8+ T cell response to an epitope in the type III secretion system effector YopE. Here, we show that this large CD8+ T cell response requires translocation of YopE into inflammatory DCs, which express CCR2 and accumulate in infected tissues. In contrast, when mice are infected with a Y. pseudotuberculosis strain that can secrete but not translocate YopE, a smaller response is seen, and under these conditions the generation of YopE-specific CD8+ T cell requires CD8α+ DCs. Our results indicate that distinct DC subsets participate in constructing the CD8+ T cell response to secreted, versus translocated, YopE. Furthermore our data indicate that inflammatory DCs are a driving force behind the massive CD8+ T cell response to a protective epitope in a bacterial virulence factor that is translocated into host cells.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason W. Tam
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Patricio Mena
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adrianus W. M. van der Velden
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rosenheinrich M, Heine W, Schmühl CM, Pisano F, Dersch P. Natural Killer Cells Mediate Protection against Yersinia pseudotuberculosis in the Mesenteric Lymph Nodes. PLoS One 2015; 10:e0136290. [PMID: 26296209 PMCID: PMC4546584 DOI: 10.1371/journal.pone.0136290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/02/2015] [Indexed: 01/11/2023] Open
Abstract
Natural killer cells play a crucial role in the initial defense against bacterial pathogens. The crosstalk between host cells infected with intracellular pathogens and NK cells has been studied intensively, but not much attention has been given to characterize the role of NK cells in the response to extracellular bacterial pathogens such as yersiniae. In this study we used antibody-mediated NK cell depletion to address the importance of this immune cell type in controlling a Y. pseudotuberculosis infection. Analysis of the bacterial counts was used to follow the infection and flow cytometry was performed to characterize the composition and dynamic of immune cells. Depletion of NK cells led to higher bacterial loads within the mesenteric lymph nodes. We further show that in particular CD11b+ CD27+ NK cells which express higher levels of the activation marker CD69 increase within the mesenteric lymph nodes during a Y. pseudotuberculosis infection. Moreover, in response to the activation NK cells secrete higher levels of IFNy, which in turn triggers the production of the proinflammatory cytokine TNFα. These results suggest, that NK cells aid in the clearance of Y. pseudotuberculosis infections mainly by triggering the expression of proinflammatory cytokines manipulating the host immune response.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/microbiology
- B-Lymphocytes/pathology
- Female
- Gene Expression
- Immunophenotyping
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/microbiology
- Killer Cells, Natural/pathology
- Lymph Nodes/immunology
- Lymph Nodes/microbiology
- Lymph Nodes/pathology
- Lymphocyte Count
- Lymphocyte Depletion
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/pathology
- Mesentery/immunology
- Mesentery/microbiology
- Mesentery/pathology
- Mice
- Mice, Inbred C57BL
- Neutrophils/immunology
- Neutrophils/microbiology
- Neutrophils/pathology
- Spleen/immunology
- Spleen/microbiology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Yersinia pseudotuberculosis/immunology
- Yersinia pseudotuberculosis Infections/immunology
- Yersinia pseudotuberculosis Infections/microbiology
- Yersinia pseudotuberculosis Infections/pathology
Collapse
Affiliation(s)
- Maik Rosenheinrich
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carina M. Schmühl
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
29
|
Boyd A, Almeida JR, Darrah PA, Sauce D, Seder RA, Appay V, Gorochov G, Larsen M. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection. PLoS One 2015; 10:e0128714. [PMID: 26046523 PMCID: PMC4457486 DOI: 10.1371/journal.pone.0128714] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality.
Collapse
Affiliation(s)
- Anders Boyd
- Inserm UMR-S1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Jorge R. Almeida
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patricia A. Darrah
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Delphine Sauce
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Robert A. Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Victor Appay
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Guy Gorochov
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
| | - Martin Larsen
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun 2014; 82:3033-44. [PMID: 24799630 DOI: 10.1128/iai.01687-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
YopE is a virulence factor that is secreted into host cells infected by Yersinia species. The YopE C-terminal domain has GTPase-activating protein (GAP) activity. The YopE N-terminal domain contains an epitope that is an immunodominant CD8(+) T cell antigen during primary infection of C57BL/6 mice with Yersinia pseudotuberculosis. The characteristics of the CD8(+) T cells generated in response to the epitope, which comprises YopE amino acid residues 69 to 77 (YopE(69-77)), and the features of YopE that are important for antigenicity during primary infection, are unknown. Following intravenous infection of naïve C57BL/6 mice with a yopE GAP mutant (the R144A mutant), flow cytometry analysis of splenocytes by tetramer and intracellular cytokine staining over a time course showed that YopE69-77-specific CD8(+) T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) were generated by day 7, with a peak at day 14. In addition, ∼80% of YopE(69-77)-specific CD8(+) T cells were positive for KLRG1, a memory phenotype marker, at day 21. To determine if residues that regulate YopE activity by ubiquitination or membrane localization affect the antigenicity of YopE(69-77), mice were infected with a yopE ubiquitination or membrane localization mutant (the R62K or L55N I59N L63N mutant, respectively). These mutants elicited YopE(69-77)-specific CD8(+) T cells producing IFN-γ and TNF-α with kinetics and magnitudes similar to those of the parental R144A strain, indicating that primary infection primes effector CD8(+) T cells independently of the ubiquitination or membrane localization of YopE. Additionally, at day 7, there was an unexpected positive correlation between the numbers of YopE(69-77)-specific CD8(+) T cells and CD11b(+) cells, but not between the numbers of YopE(69-77)-specific CD8(+) T cells and bacterial cells, in spleens, suggesting that the innate immune response contributes to the immunodominance of YopE(69-77).
Collapse
|