1
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Pian Y, OuYang X. TRIM32 positively regulates c-di-GMP-Induced type I interferon signaling pathway in Listeria monocytogenes infection. Microbes Infect 2025:105499. [PMID: 40049511 DOI: 10.1016/j.micinf.2025.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Listeria monocytogenes (Lm) poses a significant threat to human health. TRIM32, an E3 ubiquitin ligase, plays a critical role in regulating immune responses to pathogen infections. Previous studies have shown that TRIM32 deficiency significantly impairs IFN-β production. In this study, we demonstrate that TRIM32 enhances IFN-β release upon activation by cyclic di-GMP (c-di-GMP). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that TRIM32 deficiency upregulates genes associated with metabolic pathways while downregulating those involved in cytokine signaling and inflammatory responses. Western blot analysis further indicated a significant reduction in ERK and JNK phosphorylation in splenocytes and peritoneal macrophages, suggesting that TRIM32 modulates the MAPK signaling pathway. Additionally, the duration of p38, STAT, and TBK1 phosphorylation was shortened in bone marrow-derived macrophages. Collectively, these findings highlight the role of TRIM32 in enhancing the host immune response against Lm infection.
Collapse
Affiliation(s)
- Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China.
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Yang H, Dong P, Huo S, Nychas GJE, Luo X, Zhu L, Mao Y, Han G, Liu M, Liu Y, Zhang Y. Deciphering the inhibitory mechanisms of cinnamaldehyde on biofilm formation of Listeria monocytogenes and implement these strategies to control its transfer to beef surfaces. Food Res Int 2025; 204:115946. [PMID: 39986790 DOI: 10.1016/j.foodres.2025.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Natural essential oils have received widespread attention as promising microbial inhibitors, whereas a comprehensive understanding of their mechanisms underlying biofilm control and impact on biofilm cross-contamination on meat remains poorly understood. In this study, Listeria monocytogenes (Lm) biofilms were treated with sub-inhibitory concentrations of cinnamaldehyde (CA) and characterized over a 4-day period. Both 1/2 MIC (160 μg/mL) and 1/4 MIC (80 μg/mL) CA delayed the development of Lm biofilm on abiotic surfaces and reduced the maximum biofilm formation. The limited effect of 1/4 MIC CA on the flagellar-mediated motility of Lm during initial adhesion indicated that hindering bacterial motility was not the main reason for CA inhibition of biofilm formation. Transcriptomics results showed that CA was involved in inhibitory pathways dominated by energy metabolism and peptidoglycan synthesis during the initial adhesion period and the maturation period of the biofilm, respectively. This posed an obstacle to the polymers required for biofilm cell adhesion and the energy consumption required for their production. Down-regulation of genes associated with multiple signalling systems and virulence factors also suggested that CA further mitigated resistance and virulence in residual biofilm cells. In addition, quantification of biofilm cells transferred to beef surfaces confirmed that CA significantly reduces the biomass transferred and the risk of persistent biofilm contamination. This study provided the theoretical basis for the control of Lm biofilm and its cross-contamination in the food industry by natural essential oils.
Collapse
Affiliation(s)
- Huixuan Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengnan Huo
- Shandong Institute for Food and Drug Control, Jinan 250101, China; Key Laboratory of Supervising Technology for Meat and Meat Products, State Administration for Market Regulation, Jinan 250101, China
| | - George-John E Nychas
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China
| | - Guangxing Han
- Lilnyi Station of China Agriculture Research System (beef), Linyi, Shandong 276000, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China; Yangxin Yiliyuan Halal Meat Co., Ltd., Binzhou 251800, China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, China.
| |
Collapse
|
4
|
Rolon ML, Mendez Acevedo M, Sinclair P, Macarisin D, LaBorde LF, Kovac J. Impact of Improved Sanitation Standard Operating Procedures on Microbial Populations at Three Tree Fruit Packing Facilities. J Food Prot 2025; 88:100436. [PMID: 39701447 DOI: 10.1016/j.jfp.2024.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Cleaning and sanitizing are of vital importance to control Listeria monocytogenes in food processing facilities. Here, we evaluated the effect of four cleaning and sanitation standard operating procedures (SSOPs; T1, T2, T3, T4) on the reduction of total aerobic mesophilic microorganisms, the occurrence of L. monocytogenes, and the microbiota composition in three tree fruit packing facilities (F1, F2, and F3) over two packing seasons (Y1 and Y2). Environmental samples were collected from non-food contact surfaces before and after the application of SSOPs. Total aerobic bacteria were quantified using a standard plate count method, and Listeria spp. and L. monocytogenes concentration was quantified using a Most Probable Number method. Amplicon sequencing was used to determine bacterial and fungal microbiota composition, and Nanopore sequencing was used to detect functional elements in the microbiota that could promote the survival and persistence of L. monocytogenes in the studied environments. The use of SSOPs reduced the total bacterial load by 0.27-2.48 log10 CFU/swab (p ≤ 0.001). Among the treatments tested, the inclusion of a biofilm remover in T4 was most effective in significantly reducing the total Listeria spp. concentration by 1.57-1.27 log10 MPN/swab (p < 0.02) and the frequency of L. monocytogenes, although the latter was not statistically significant. We observed inconsistent changes in the bacterial and fungal microbiota composition due to the application of cleaning and sanitizing SSOPs, which may be due to the presence of dead DNA after the treatment. Using Nanopore sequencing, we detected functional elements related to biofilm formation and stress resistance in the microbiomes of the studied environments. Overall, our study shows that the implementation of SSOPs improved the sanitation outcomes in tree fruit packing facilities. There is a need for the future work to focus on optimizing and validating the standard operating procedures, especially in the areas in which SSOPs were less effective, such as those covered with wax residues.
Collapse
Affiliation(s)
- M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Priscilla Sinclair
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Dumitru Macarisin
- Human Foods Program, Office of Laboratory Operations and Applied Science, Food and Drug Administration, College Park, MD 20740, USA.
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Elbakush AM, Trunschke O, Shafeeq S, Römling U, Gomelsky M. Maple compounds prevent biofilm formation in Listeria monocytogenes via sortase inhibition. Front Microbiol 2024; 15:1436476. [PMID: 39351304 PMCID: PMC11439720 DOI: 10.3389/fmicb.2024.1436476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Pss exopolysaccharide (EPS) enhances the ability of the foodborne pathogen Listeria monocytogenes to colonize and persist on surfaces of fresh fruits and vegetables. Eradicating listeria within EPS-rich biofilms is challenging due to their increased tolerance to disinfectants, desiccation, and other stressors. Recently, we discovered that extracts of maple wood, including maple sap, are a potent source of antibiofilm agents. Maple lignans, such as nortrachelogenin-8'-O-β-D-glucopyranoside and lariciresinol, were found to inhibit the formation of, and promote the dispersion of pre-formed L. monocytogenes EPS biofilms. However, the mechanism remained unknown. Here, we report that these lignans do not affect Pss EPS synthesis or degradation. Instead, they promote EPS detachment, likely by interfering with an unidentified lectin that keeps EPS attached to the cell surfaces. Furthermore, the maple lignans inhibit the activity of L. monocytogenes sortase A (SrtA) in vitro. SrtA is a transpeptidase that covalently anchors surface proteins, including the Pss-specific lectin, to the cell wall peptidoglycan. Consistent with this, deletion of the srtA gene results in Pss EPS detachment from listerial cells. We also identified several additional maple compounds, including epicatechin gallate, isoscopoletin, scopoletin, and abscisic acid, which inhibit L. monocytogenes SrtA activity in vitro and prevent biofilm formation. Molecular modelling indicates that, despite their structural diversity, these compounds preferentially bind to the SrtA active site. Since maple products are abundant and safe for consumption, our finding that they prevent biofilm formation in L. monocytogenes offers a viable source for protecting fresh produce from this foodborne pathogen.
Collapse
Affiliation(s)
- Ahmed M Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Oliver Trunschke
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
6
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. Appl Environ Microbiol 2024; 90:e0231123. [PMID: 38446071 PMCID: PMC11022567 DOI: 10.1128/aem.02311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.
Collapse
Affiliation(s)
- Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Byun KH, Han SH, Choi MW, Kim BH, Ha SD. Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol 2024; 413:110587. [PMID: 38301541 DOI: 10.1016/j.ijfoodmicro.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Fresh produce and animal-based products contaminated with Listeria monocytogenes have been the main cause of listeriosis outbreaks for many years. The present investigation explored the potential of combination treatment of disinfectants with a bacteriophage cocktail to control L. monocytogenes contamination in the food industry. A mixture of 1 minimal inhibitory concentration (MIC) of disinfectants (sodium hypochlorite [NaOCl], hydrogen peroxide [H2O2], and lactic acid [LA]) and multiplicity of infection (MOI) 100 of phage cocktail was applied to both planktonic cells in vitro and already-formed biofilm cells on food contact materials (FCMs; polyethylene, polypropylene, and stainless steel) and foods (celery and chicken meat). All the combinations significantly lowered the population, biofilm-forming ability, and the expression of flaA, motB, hlyA, prfA, actA, and sigB genes of L. monocytogenes. Additionally, in the antibiofilm test, approximately 4 log CFU/cm2 was eradicated by 6 h treatment on FCMs, and 3 log CFU/g was eradicated within 3 days on celery. However, <2 log CFU/g was eradicated in chicken meat, and regrowth of L. monocytogenes was observed on foods after 5 days. The biofilm eradication efficacy of the combination treatment was proven through visualization using scanning electron microscopy (SEM) and confocal microscopy. In the SEM images, the unusual behavior of L. monocytogenes invading from the surface to the inside was observed after treating celery with NaOCl+P or H2O2 + P. These results suggested that combination of disinfectants (NaOCl, H2O2, and LA) with Listeria-specific phage cocktail can be employed in the food industry as a novel antimicrobial and antibiofilm approach, and further research of L. monocytogenes behavior after disinfection is needed.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea; Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
9
|
Liu X, Xia X, Liu Y, Li Z, Shi T, Zhang H, Dong Q. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Res Int 2024; 180:114067. [PMID: 38395584 DOI: 10.1016/j.foodres.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Listeria monocytogenes is an important foodborne pathogen that causes listeriosis, a severe and fatal condition. Biofilms are communities of microorganisms nested within a self-secreted extracellular polymeric substance, and they protect L. monocytogenes from environmental stresses. Biofilms, once formed, can lead to the persistence of L. monocytogenes in processing equipment and are therefore considered to be a major concern for the food industry. This paper briefly introduces the recent advancements on biofilm formation characteristics and detection methods, and focuses on analysis of the mechanism of L. monocytogenes biofilm resistance; Moreover, this paper also summarizes and discusses the existing different techniques of L. monocytogenes biofilm control according to the physical, chemical, biological, and combined strategies, to provide a theoretical reference to aid the choice of effective control technology in the food industry.
Collapse
Affiliation(s)
- Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Mougin J, Midelet G, Leterme S, Best G, Ells T, Joyce A, Whiley H, Brauge T. Benzalkonium chloride disinfectant residues stimulate biofilm formation and increase survival of Vibrio bacterial pathogens. Front Microbiol 2024; 14:1309032. [PMID: 38414711 PMCID: PMC10897976 DOI: 10.3389/fmicb.2023.1309032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024] Open
Abstract
Vibrio spp. are opportunistic human and animal pathogens found ubiquitously in marine environments. Globally, there is a predicted rise in the prevalence of Vibrio spp. due to increasing ocean temperatures, which carries significant implications for public health and the seafood industry. Consequently, there is an urgent need for enhanced strategies to control Vibrio spp. and prevent contamination, particularly in aquaculture and seafood processing facilities. Presently, these industries employ various disinfectants, including benzalkonium chloride (BAC), as part of their management strategies. While higher concentrations of BAC may be effective against these pathogens, inadequate rinsing post-disinfection could result in residual concentrations of BAC in the surrounding environment. This study aimed to investigate the adaptation and survival of Vibrio spp. exposed to varying concentrations of BAC residues. Results revealed that Vibrio bacteria, when exposed, exhibited a phenotypic adaptation characterized by an increase in biofilm biomass. Importantly, this effect was found to be strain-specific rather than species-specific. Exposure to BAC residues induced physiological changes in Vibrio biofilms, leading to an increase in the number of injured and alive cells within the biofilm. The exact nature of the "injured" bacteria remains unclear, but it is postulated that BAC might heighten the risk of viable but non-culturable (VBNC) bacteria development. These VBNC bacteria pose a significant threat, especially since they cannot be detected using the standard culture-based methods commonly employed for microbiological risk assessment in aquaculture and seafood industries. The undetected presence of VBNC bacteria could result in recurrent contamination events and subsequent disease outbreaks. This study provides evidence regarding the role of c-di-GMP signaling pathways in Vibrio adaptation mechanisms and suggests that c-di-GMP mediated repression is a potential avenue for further research. The findings underscore that the misuse and overuse of BAC may increase the risk of biofilm development and bacterial survival within the seafood processing chain.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Graziella Midelet
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
- Flinders Institute for NanoScale Science and Technology, Flinders University, Adelaide, SA, Australia
| | - Giles Best
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
| | - Thomas Brauge
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| |
Collapse
|
11
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
12
|
Elbakush AM, Fulano AM, Gomelsky M. Lignan-containing maple products inhibit Listeria monocytogenes biofilms on fresh produce. Front Microbiol 2023; 14:1258394. [PMID: 37928682 PMCID: PMC10620520 DOI: 10.3389/fmicb.2023.1258394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Major listeriosis outbreaks have been associated with fresh produce contaminated with Listeria monocytogenes. Strains that synthesize the Pss exopolysaccharide (EPS) have an estimated 102 to 104-fold advantage over nonsynthesizing strains in causing listeriosis. They more readily attach to the surfaces of fruit and vegetables forming EPS-biofilms that better withstand stresses associated with produce storage and consumption. Here, we show that the threat to fresh produce safety posed by the listerial EPS-biofilms may be countered by broadly available maple products. We serendipitously discovered that aqueous extracts of wood from several Acer (maple) and Carya (pecan, hickory) species inhibit the formation of listerial EPS-biofilms without affecting bacterial viability. One active ingredient in maple wood was identified as nortrachelogenin-8'-O-β-D-glucopyranoside (NTG). At 120 μM, this lignan decreased colonization of the EPS-synthesizing L. monocytogenes on cantaloupe pieces by approximately 150-fold, and on cut celery and lettuce by 10 to 11-fold. Another lignan, lariciresinol, which is abundant in a common food sweetener, maple syrup, had antibiofilm activity comparable to that of NTG. Diluted in the range of 1:200 to 1:800 maple syrup from two random manufacturers prevented formation of listeiral EPS-biofilms. Importantly, not only did maple products drastically decrease colonization of fresh produce by the EPS-synthesizing strains, they also decreased, by 6 to 30-fold, colonization by the L. monocytogenes strains that do not synthesize measurable EPS, including strains from the infamous 2011 cantaloupe listeriosis outbreak. Inhibition of surface colonization by various listerial strains, broad availability of maple sap and syrup as well as maple lumber processing waste position maple products as potential antibiofilm agents for protecting fresh produce from L. monocytogenes.
Collapse
Affiliation(s)
- Ahmed M. Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Alex M. Fulano
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
13
|
D'Onofrio F, Schirone M, Krasteva I, Tittarelli M, Iannetti L, Pomilio F, Torresi M, Paparella A, D'Alterio N, Luciani M. A comprehensive investigation of protein expression profiles in L. monocytogenes exposed to thermal abuse, mild acid, and salt stress conditions. Front Microbiol 2023; 14:1271787. [PMID: 37876777 PMCID: PMC10591339 DOI: 10.3389/fmicb.2023.1271787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Preventing L. monocytogenes infection is crucial for food safety, considering its widespread presence in the environment and its association with contaminated RTE foods. The pathogen's ability to persist under adverse conditions, for example, in food processing facilities, is linked to virulence and resistance mechanisms, including biofilm formation. In this study, the protein expression patterns of two L. monocytogenes 1/2a strains, grown under environmental stressors (mild acidic pH, thermal abuse, and high concentration of NaCl), were investigated. Protein identification and prediction were performed by nLC-ESI-MS/MS and nine different bioinformatic software programs, respectively. Gene enrichment analysis was carried out by STRING v11.05. A total of 1,215 proteins were identified, of which 335 were non-cytosolic proteins and 265 were immunogenic proteins. Proteomic analysis revealed differences in protein expression between L. monocytogenes strains in stressful conditions. The two strains exhibited unique protein expression profiles linked to stress response, virulence, and pathogenesis. Studying the proteomic profiles of such microorganisms provides information about adaptation and potential treatments, highlighting their genetic diversity and demonstrating the utility of bioinformatics and proteomics for a broader analysis of pathogens.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
14
|
Halbedel S, Sperle I, Lachmann R, Kleta S, Fischer MA, Wamp S, Holzer A, Lüth S, Murr L, Freitag C, Espenhain L, Stephan R, Pietzka A, Schjørring S, Bloemberg G, Wenning M, Al Dahouk S, Wilking H, Flieger A. Large Multicountry Outbreak of Invasive Listeriosis by a Listeria monocytogenes ST394 Clone Linked to Smoked Rainbow Trout, 2020 to 2021. Microbiol Spectr 2023; 11:e0352022. [PMID: 37036341 PMCID: PMC10269727 DOI: 10.1128/spectrum.03520-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Whole-genome sequencing (WGS) has revolutionized surveillance of infectious diseases. Disease outbreaks can now be detected with high precision, and correct attribution of infection sources has been improved. Listeriosis, caused by the bacterium Listeria monocytogenes, is a foodborne disease with a high case fatality rate and a large proportion of outbreak-related cases. Timely recognition of listeriosis outbreaks and precise allocation of food sources are important to prevent further infections and to promote public health. We report the WGS-based identification of a large multinational listeriosis outbreak with 55 cases that affected Germany, Austria, Denmark, and Switzerland during 2020 and 2021. Clinical isolates formed a highly clonal cluster (called Ny9) based on core genome multilocus sequence typing (cgMLST). Routine and ad hoc investigations of food samples identified L. monocytogenes isolates from smoked rainbow trout filets from a Danish producer grouping with the Ny9 cluster. Patient interviews confirmed consumption of rainbow trout as the most likely infection source. The Ny9 cluster was caused by a MLST sequence type (ST) ST394 clone belonging to molecular serogroup IIa, forming a distinct clade within molecular serogroup IIa strains. Analysis of the Ny9 genome revealed clpY, dgcB, and recQ inactivating mutations, but phenotypic characterization of several virulence-associated traits of a representative Ny9 isolate showed that the outbreak strain had the same pathogenic potential as other serogroup IIa strains. Our report demonstrates that international food trade can cause multicountry outbreaks that necessitate cross-border outbreak collaboration. It also corroborates the relevance of ready-to-eat smoked fish products as causes for listeriosis. IMPORTANCE Listeriosis is a severe infectious disease in humans and characterized by an exceptionally high case fatality rate. The disease is transmitted through consumption of food contaminated by the bacterium Listeria monocytogenes. Outbreaks of listeriosis often occur but can be recognized and stopped through implementation of whole-genome sequencing-based pathogen surveillance systems. We here describe the detection and management of a large listeriosis outbreak in Germany and three neighboring countries. This outbreak was caused by rainbow trout filet, which was contaminated by a L. monocytogenes clone belonging to sequence type ST394. This work further expands our knowledge on the genetic diversity and transmission routes of an important foodborne pathogen.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ida Sperle
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Program, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Raskit Lachmann
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sylvia Kleta
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin A. Fischer
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Alexandra Holzer
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Stefanie Lüth
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Larissa Murr
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Christin Freitag
- Institute for Food of Animal Origin, Rhineland–Palatinate State Investigation Office, Koblenz, Germany
| | - Laura Espenhain
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Guido Bloemberg
- Swiss National Center for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Switzerland
| | - Mareike Wenning
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Sascha Al Dahouk
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hendrik Wilking
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Antje Flieger
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
15
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541508. [PMID: 37292590 PMCID: PMC10245762 DOI: 10.1101/2023.05.19.541508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, secretion of beta-lactamase from resistant cells, and subsequent degradation of nearby penicillin and related antibiotics, allows neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss still occurred. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.
Collapse
Affiliation(s)
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| |
Collapse
|
16
|
Wang Z, Song L, Liu X, Shen X, Li X. Bacterial second messenger c-di-GMP: Emerging functions in stress resistance. Microbiol Res 2023; 268:127302. [PMID: 36640720 DOI: 10.1016/j.micres.2023.127302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.
Collapse
Affiliation(s)
- Zhuo Wang
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin Li
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China.
| |
Collapse
|
17
|
Buatong J, Mittal A, Mittraparp-arthorn P, Palamae S, Saetang J, Benjakul S. Bactericidal Action of Shrimp Shell Chitooligosaccharide Conjugated with Epigallocatechin Gallate (COS-EGCG) against Listeria monocytogenes. Foods 2023; 12:634. [PMID: 36766163 PMCID: PMC9914238 DOI: 10.3390/foods12030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The antibacterial effect of chitooligosaccharide conjugated with five different polyphenols, including catechin (COS-CAT), epigallocatechin gallate (COS-EGCG), gallic acid (COS-GAL), caffeic acid (COS-CAF), and ferulic acid (COS-FER), against Listeria monocytogenes was investigated. Among all the conjugates tested, COS-EGCG showed the highest inhibition toward Listeria monocytogenes, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 1024 and 1024 µg/mL, respectively. The COS-EGCG conjugate also had a bactericidal effect on the environmental and clinical strains of L. monocytogenes. The low concentration of COS-EGCG conjugate augmented the formation of biofilm and the growth of L. monocytogenes. Nevertheless, the inhibition of biofilm formation and bacterial growth was achieved when treated with the COS-EGCG conjugate at 2 × MIC for 48 h. In addition, the COS-EGCG conjugate at 2 × MIC had the potential to inactivate the pre-biofilm, and it reduced the production of the extracellular polysaccharides of L. monocytogenes. The COS-EGCG conjugate at the MIC/4 effectively impeded the motility (the swimming and swarming) of L. monocytogenes, with an 85.7-94.3% inhibition, while 100% inhibition was achieved with the MIC. Based on scanning electron microscopic (SEM) images, cell wall damage with numerous pores on the cell surface was observed. Such cell distortion resulted in protein leakage. As a result, COS-EGCG could penetrate into the cell and bind with the DNA backbone. Therefore, the COS-EGCG conjugate could be further developed as a natural antimicrobial agent for inhibiting or controlling L. monocytogenes.
Collapse
Affiliation(s)
- Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
18
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
19
|
Fulano AM, Elbakush AM, Chen LH, Gomelsky M. The Listeria monocytogenes exopolysaccharide significantly enhances colonization and survival on fresh produce. Front Microbiol 2023; 14:1126940. [PMID: 37180237 PMCID: PMC10172500 DOI: 10.3389/fmicb.2023.1126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fresh produce contaminated with Listeria monocytogenes has caused major listeriosis outbreaks in the last decades. Our knowledge about components of the listerial biofilms formed on fresh produce and their roles in causing foodborne illness remains incomplete. Here, we investigated, for the first time, the role of the listerial Pss exopolysaccharide (EPS) in plant surface colonization and stress tolerance. Pss is the main component of L. monocytogenes biofilms synthesized at elevated levels of the second messenger c-di-GMP. We developed a new biofilm model, whereby L. monocytogenes EGD-e and its derivatives are grown in the liquid minimal medium in the presence of pieces of wood or fresh produce. After 48-h incubation, the numbers of colony forming units of the Pss-synthesizing strain on pieces of wood, cantaloupe, celery and mixed salads were 2-12-fold higher, compared to the wild-type strain. Colonization of manmade materials, metals and plastics, was largely unaffected by the presence of Pss. The biofilms formed by the EPS-synthesizing strain on cantaloupe rind were 6-16-fold more tolerant of desiccation, which resembles conditions of whole cantaloupe storage and transportation. Further, listeria in the EPS-biofilms survived exposure to low pH, a condition encountered by bacteria on the contaminated produce during passage through the stomach, by 11-116-fold better than the wild-type strain. We surmise that L. monocytogenes strains synthesizing Pss EPS have an enormous, 102-104-fold, advantage over the non-synthesizing strains in colonizing fresh produce, surviving during storage and reaching small intestines of consumers where they may cause disease. The magnitude of the EPS effect calls for better understanding of factors inducing Pss synthesis and suggests that prevention of listerial EPS-biofilms may significantly enhance fresh produce safety.
Collapse
Affiliation(s)
- Alex M. Fulano
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Li-Hong Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Mark Gomelsky,
| |
Collapse
|
20
|
Aryal J, Chhetri VS, Adhikari A. Survival and attachment of Listeria monocytogenes on bell peppers and influence of attachment time on efficacy of chlorine. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
22
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
23
|
Extracellular c-di-GMP Plays a Role in Biofilm Formation and Dispersion of Campylobacter jejuni. Microorganisms 2022; 10:microorganisms10102030. [PMID: 36296307 PMCID: PMC9608569 DOI: 10.3390/microorganisms10102030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-diGMP) is a ubiquitous second messenger involved in the regulation of many signalling systems in bacteria, including motility and biofilm formation. Recently, it has been reported that c-di-GMP was detected in C. jejuni DRH212; however, the presence and the role of c-di-GMP in other C. jejuni strains are unknown. Here, we investigated extracellular c-di-GMP as an environmental signal that potentially triggers biofilm formation in C. jejuni NCTC 11168 using a crystal violet-based assay, motility-based plate assay, RT-PCR and confocal laser scanning microscopy (CLSM). We found that, in presence of extracellular c-di-GMP, the biofilm formation was significantly reduced (>50%) and biofilm dispersion enhanced (up to 60%) with no effect on growth. In addition, the presence of extracellular c-di-GMP promoted chemotactic motility, inhibited the adherence of C. jejuni NCTC 11168-O to Caco-2 cells and upregulated the expression of Cj1198 (luxS, encoding quarum sensing pathway component, autoinducer-2), as well as chemotaxis genes Cj0284c (cheA) and Cj0448c (tlp6). Unexpectedly, the expression of Cj0643 (cbrR), containing a GGDEF-like domain and recently identified as a potential diguanylate cyclase gene, required for the synthesis of c-di-GMP, was not affected. Our findings suggest that extracellular c-di-GMP could be involved in C. jejuni gene regulation, sensing and biofilm dispersion.
Collapse
|
24
|
Liu X, Wang X, Sun B, Sun L. The Involvement of Thiamine Uptake in the Virulence of Edwardsiella piscicida. Pathogens 2022; 11:464. [PMID: 35456139 PMCID: PMC9026889 DOI: 10.3390/pathogens11040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for almost all organisms. Bacteria acquire TPP by biosynthesis or by transportation of exogenous thiamine. TPP availability has been associated with bacterial pathogenicity, but the underlying mechanisms remain to be discovered. The role of thiamine in the pathogenicity of E. piscicida is unknown. In this study, we characterized a thiamine transporter (TT) operon in E. piscicida. The deletion of the TT operon resulted in an intracellular TPP lacking situation, which led to attenuated overall pathogenicity, impaired abilities associated with motility and host cell adhesion, as well as decreased expression of certain flagellar and adhesion genes. Moreover, TPP starvation led to intracellular c-di-GMP reduction, and introducing into the TPP-suppressed mutant strain an exogenous diguanylate cyclase for c-di-GMP synthesis restored the virulence loss. Taken together, this work reveals the involvement of thiamine uptake in the virulence regulation of E. piscicida, with c-di-GMP implicated in the process. These finding could be employed to explore potential drug targets against E. piscicida.
Collapse
Affiliation(s)
- Xin Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
26
|
Lee CK, Schmidt WC, Webster SS, Chen JW, O'Toole GA, Wong GCL. Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proc Natl Acad Sci U S A 2022; 119:e2112226119. [PMID: 35064082 PMCID: PMC8795499 DOI: 10.1073/pnas.2112226119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.
Collapse
Affiliation(s)
- Calvin K Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William C Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Shanice S Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jonathan W Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
27
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
28
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
29
|
NrnA is a linear dinucleotide phosphodiesterase with limited function in cyclic dinucleotide metabolism in Listeria monocytogenes. J Bacteriol 2021; 204:e0020621. [PMID: 34662239 DOI: 10.1128/jb.00206-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. C-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range, but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by E. coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides might inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP, and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.
Collapse
|
30
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis. J Bacteriol 2021; 203:e0013521. [PMID: 34096779 DOI: 10.1128/jb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.
Collapse
|
32
|
Bange G, Bedrunka P. Physiology of guanosine-based second messenger signaling in Bacillus subtilis. Biol Chem 2021; 401:1307-1322. [PMID: 32881708 DOI: 10.1515/hsz-2020-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
The guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| |
Collapse
|
33
|
Gray J, Chandry PS, Kaur M, Kocharunchitt C, Fanning S, Bowman JP, Fox EM. Colonisation dynamics of Listeria monocytogenes strains isolated from food production environments. Sci Rep 2021; 11:12195. [PMID: 34108547 PMCID: PMC8190317 DOI: 10.1038/s41598-021-91503-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium capable of colonising and persisting within food production environments (FPEs) for many years, even decades. This ability to colonise, survive and persist within the FPEs can result in food product cross-contamination, including vulnerable products such as ready to eat food items. Various environmental and genetic elements are purported to be involved, with the ability to form biofilms being an important factor. In this study we examined various mechanisms which can influence colonisation in FPEs. The ability of isolates (n = 52) to attach and grow in biofilm was assessed, distinguishing slower biofilm formers from isolates forming biofilm more rapidly. These isolates were further assessed to determine if growth rate, exopolymeric substance production and/or the agr signalling propeptide influenced these dynamics and could promote persistence in conditions reflective of FPE. Despite no strong association with the above factors to a rapid colonisation phenotype, the global transcriptome suggested transport, energy production and metabolism genes were widely upregulated during the initial colonisation stages under nutrient limited conditions. However, the upregulation of the metabolism systems varied between isolates supporting the idea that L. monocytogenes ability to colonise the FPEs is strain-specific.
Collapse
Affiliation(s)
- Jessica Gray
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | | | - Mandeep Kaur
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, D04 N2E5, Ireland.,Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast, BT5 6AG, UK
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
34
|
Stincone P, Comerlato CB, Brandelli A. Proteomic analysis of Listeria monocytogenes exposed to free and nanostructured antimicrobial lipopeptides. Mol Omics 2021; 17:426-437. [PMID: 33735358 DOI: 10.1039/d0mo00178c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, the effect of antimicrobial lipopeptide P34 on Listeria monocytogenes was evaluated for the first time through a proteomics approach. Bacteria were treated with sub-lethal doses of peptide P34 (F-P34) and P34 encapsulated into nanoliposomes (N-P34), while empty nanoliposomes (NE) and fresh buffer were used as controls. The proteomic analysis allowed the detection of one group of proteins commonly differentially represented in response to free and encapsulated P34 exposure. A second group of proteins was found to be exclusively differentially represented after exposure with encapsulated P34 only. The antimicrobial peptide P34 caused a significant downregulation of proteins associated with the transport of manganese and the over-representation of proteins related with iron transport in L. monocytogenes. In addition, reduction of stress tolerance proteins related to the σB and VirR regulons, together with the modulation of phosphoenolpyruvate phosphotransferase systems (PTS) for sugar transport were observed. The sugar and oligopeptide transporters regulated by antimicrobial action may influence the key virulence factor PrfA, reducing the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.
| | | | | |
Collapse
|
35
|
Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, Vuddhakul V, Tansila N. Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes. FEMS Microbiol Lett 2020; 367:5870657. [PMID: 32658271 DOI: 10.1093/femsle/fnaa116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial communication system known as quorum sensing (QS) is a pivotal system for bacterial survival, adaptation and pathogenesis. Members in the multicellular community may synthesize or acquire a signaling molecule in order to elicit downstream cellular processes. Roles of indole and derivatives, a new class of quorum-sensing signal molecules, in various bacterial physiologies and virulence have been reported recently. Indole is normally found in mammal gastrointestinal tract as a metabolite of tryptophan metabolism by microbiota. Therefore, interspecies connection via indole signaling among commensal bacteria and enteric pathogens could be anticipated. Effects of indole exposure on the virulence of Listeria monocytogenes were investigated by phenotypic and molecular approaches. Results demonstrated that synthetic indole and indole-rich conditioned medium significantly diminished biofilm formation and related virulence of L. monocytogenes including motility, cell aggregation and exopolysaccharide production. Transcript levels of virulence-associated (pssE, dltA, flaA, fliI, motB, agrA and hly) and regulatory genes (codY, sigB, prfA and gmaR) were substantially downregulated in indole-treated cells. Only mogR gene encoding for a repressor of motility genes was upregulated after indole exposure. Our findings raise the possibility that L. monocytogenes may acquire indole signaling from gut microbiota for resource-effective adaptation upon transition to new environment.
Collapse
Affiliation(s)
- Paramaporn Rattanaphan
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pimonsri Mittraparp-Arthorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
36
|
Pallegar P, Canuti M, Langille E, Peña-Castillo L, Lang AS. A Two-Component System Acquired by Horizontal Gene Transfer Modulates Gene Transfer and Motility via Cyclic Dimeric GMP. J Mol Biol 2020; 432:4840-4855. [PMID: 32634380 DOI: 10.1016/j.jmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is an important intracellular signaling molecule that affects diverse physiological processes in bacteria. The intracellular levels of c-di-GMP are controlled by proteins acting as diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that synthesize and degrade c-di-GMP, respectively. In the alphaproteobacterium Rhodobacter capsulatus, flagellar motility and gene exchange via production of the gene transfer agent RcGTA are regulated by c-di-GMP. One of the R. capsulatus proteins involved in this regulation is Rcc00620, which contains an N-terminal two-component system response regulator receiver (REC) domain and C-terminal DGC and PDE domains. We demonstrate that the enzymatic activity of Rcc00620 is regulated through the phosphorylation status of its REC domain, which is controlled by a cognate histidine kinase protein, Rcc00621. In this system, the phosphorylated form of Rcc00620 is active as a PDE enzyme and stimulates gene transfer and motility. In addition, we discovered that the rcc00620 and rcc00621 genes are present in only one lineage within the genus Rhodobacter and were acquired via horizontal gene transfer from a distantly related alphaproteobacterium in the order Sphingomonadales. Therefore, a horizontally acquired regulatory system regulates gene transfer in the recipient organism.
Collapse
Affiliation(s)
- Purvikalyan Pallegar
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Evan Langille
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Computer Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
37
|
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol 2020; 73:387-406. [PMID: 31500536 DOI: 10.1146/annurev-micro-020518-115555] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom;
| |
Collapse
|
38
|
Nicastro GG, Kaihami GH, Pulschen AA, Hernandez-Montelongo J, Boechat AL, de Oliveira Pereira T, Rosa CGT, Stefanello E, Colepicolo P, Bordi C, Baldini RL. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Sci Rep 2020; 10:3077. [PMID: 32080219 PMCID: PMC7033161 DOI: 10.1038/s41598-020-59536-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 01/19/2023] Open
Abstract
c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jacobo Hernandez-Montelongo
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caio Gomes Tavares Rosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eliezer Stefanello
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Pallegar P, Peña-Castillo L, Langille E, Gomelsky M, Lang AS. Cyclic di-GMP-Mediated Regulation of Gene Transfer and Motility in Rhodobacter capsulatus. J Bacteriol 2020; 202:e00554-19. [PMID: 31659012 PMCID: PMC6941535 DOI: 10.1128/jb.00554-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/19/2019] [Indexed: 02/08/2023] Open
Abstract
Gene transfer agents (GTAs) are bacteriophage-like particles produced by several bacterial and archaeal lineages that contain small pieces of the producing cells' genomes that can be transferred to other cells in a process similar to transduction. One well-studied GTA is RcGTA, produced by the alphaproteobacterium Rhodobacter capsulatus RcGTA gene expression is regulated by several cellular regulatory systems, including the CckA-ChpT-CtrA phosphorelay. The transcription of multiple other regulator-encoding genes is affected by the response regulator CtrA, including genes encoding putative enzymes involved in the synthesis and hydrolysis of the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). To investigate whether c-di-GMP signaling plays a role in RcGTA production, we disrupted the CtrA-affected genes potentially involved in this process. We found that disruption of four of these genes affected RcGTA gene expression and production. We performed site-directed mutagenesis of key catalytic residues in the GGDEF and EAL domains responsible for diguanylate cyclase (DGC) and c-di-GMP phosphodiesterase (PDE) activities and analyzed the functions of the wild-type and mutant proteins. We also measured RcGTA production in R. capsulatus strains where intracellular levels of c-di-GMP were altered by the expression of either a heterologous DGC or a heterologous PDE. This adds c-di-GMP signaling to the collection of cellular regulatory systems controlling gene transfer in this bacterium. Furthermore, the heterologous gene expression and the four gene disruptions had similar effects on R. capsulatus flagellar motility as found for gene transfer, and we conclude that c-di-GMP inhibits both RcGTA production and flagellar motility in R. capsulatusIMPORTANCE Gene transfer agents (GTAs) are virus-like particles that move cellular DNA between cells. In the alphaproteobacterium Rhodobacter capsulatus, GTA production is affected by the activities of multiple cellular regulatory systems, to which we have now added signaling via the second messenger dinucleotide molecule bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). Similar to the CtrA phosphorelay, c-di-GMP also affects R. capsulatus flagellar motility in addition to GTA production, with lower levels of intracellular c-di-GMP favoring increased flagellar motility and gene transfer. These findings further illustrate the interconnection of GTA production with global systems of regulation in R. capsulatus, providing additional support for the notion that the production of GTAs has been maintained in this and related bacteria because it provides a benefit to the producing organisms.
Collapse
Affiliation(s)
- Purvikalyan Pallegar
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Evan Langille
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
40
|
Martin M, Hiroyasu A, Guzman RM, Roberts SA, Goodman AG. Analysis of Drosophila STING Reveals an Evolutionarily Conserved Antimicrobial Function. Cell Rep 2019; 23:3537-3550.e6. [PMID: 29924997 DOI: 10.1016/j.celrep.2018.05.029] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 01/24/2023] Open
Abstract
The vertebrate protein STING, an intracellular sensor of cyclic dinucleotides, is critical to the innate immune response and the induction of type I interferon during pathogenic infection. Here, we show that a STING ortholog (dmSTING) exists in Drosophila, which, similar to vertebrate STING, associates with cyclic dinucleotides to initiate an innate immune response. Following infection with Listeria monocytogenes, dmSTING activates an innate immune response via activation of the NF-κB transcription factor Relish, part of the immune deficiency (IMD) pathway. DmSTING-mediated activation of the immune response reduces the levels of Listeria-induced lethality and bacterial load in the host. Of significance, dmSTING triggers an innate immune response in the absence of a known functional cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) ortholog in the fly. Together, our results demonstrate that STING is an evolutionarily conserved antimicrobial effector between flies and mammals, and it comprises a key component of host defense against pathogenic infection in Drosophila.
Collapse
Affiliation(s)
- Marina Martin
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
41
|
Sæbø Pettersen K, Sundaram AYM, Skjerdal T, Wasteson Y, Kijewski A, Lindbäck T, Aspholm M. Exposure to Broad-Spectrum Visible Light Causes Major Transcriptomic Changes in Listeria monocytogenes EGDe. Appl Environ Microbiol 2019; 85:e01462-19. [PMID: 31492665 PMCID: PMC6821972 DOI: 10.1128/aem.01462-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes, the causative agent of the serious foodborne disease listeriosis, can rapidly adapt to a wide range of environmental stresses, including visible light. This study shows that exposure of the L. monocytogenes EGDe strain to low-intensity, broad-spectrum visible light inhibited bacterial growth and caused altered multicellular behavior during growth on semisolid agar compared to when the bacteria were grown in complete darkness. These light-dependent changes were observed regardless of the presence of the blue light receptor (Lmo0799) and the stressosome regulator sigma B (SigB), which have been suggested to be important for the ability of L. monocytogenes to respond to blue light. A genome-wide transcriptional analysis revealed that exposure of L. monocytogenes EGDe to broad-spectrum visible light caused altered expression of 2,409 genes belonging to 18 metabolic pathways compared to bacteria grown in darkness. The light-dependent differentially expressed genes are involved in functions such as glycan metabolism, cell wall synthesis, chemotaxis, flagellar synthesis, and resistance to oxidative stress. Exposure to light conferred reduced bacterial motility in semisolid agar, which correlates well with the light-dependent reduction in transcript levels of flagellar and chemotaxis genes. Similar light-induced reduction in growth and motility was also observed in two different L. monocytogenes food isolates, suggesting that these responses are typical for L. monocytogenes Together, the results show that even relatively small doses of broad-spectrum visible light cause genome-wide transcriptional changes, reduced growth, and motility in L. monocytogenesIMPORTANCE Despite major efforts to control L. monocytogenes, this pathogen remains a major problem for the food industry, where it poses a continuous risk of food contamination. The ability of L. monocytogenes to sense and adapt to different stressors in the environment enables it to persist in many different niches, including food production facilities and in food products. The present study shows that exposure of L. monocytogenes to low-intensity broad-spectrum visible light reduces its growth and motility and alters its multicellular behavior. Light exposure also caused genome-wide changes in transcript levels, affecting multiple metabolic pathways, which are likely to influence the bacterial physiology and lifestyle. In practical terms, the data presented in this study suggest that broad-spectrum visible light is an important environmental variable to consider as a strategy to improve food safety by reducing L. monocytogenes contamination in food production environments.
Collapse
Affiliation(s)
- Kristin Sæbø Pettersen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y M Sundaram
- Norwegian Sequencing Centre, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
42
|
Cyclic di-GMP Increases Catalase Production and Hydrogen Peroxide Tolerance in Vibrio cholerae. Appl Environ Microbiol 2019; 85:AEM.01043-19. [PMID: 31300398 DOI: 10.1128/aem.01043-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that causes the disease cholera, which affects nearly 1 million people each year. In between outbreaks, V. cholerae resides in fresh and salt water environments, where it is able to persist through changes in temperature, oxygen, and salinity. One key characteristic that promotes environmental persistence of V. cholerae is the ability to form multicellular communities, called biofilms, that often adhere to biotic and abiotic sources. Biofilm formation in V. cholerae is positively regulated by the dinucleotide second messenger cyclic dimeric GMP (c-di-GMP). While most research on the c-di-GMP regulon has focused on biofilm formation or motility, we hypothesized that the c-di-GMP signaling network encompassed a larger set of effector functions than reported. We found that high intracellular c-di-GMP increased catalase activity ∼4-fold relative to strains with unaltered c-di-GMP. Genetic studies demonstrated that c-di-GMP mediated catalase activity was due to increased expression of the catalase-encoding gene katB Moreover, c-di-GMP mediated regulation of catalase activity and katB expression required the c-di-GMP dependent transcription factors VpsT and VpsR. Lastly, we found that high c-di-GMP increased survival after H2O2 challenge in a katB-, vpsR-, and vpsT-dependent manner. Our results indicate that antioxidant production is regulated by c-di-GMP uncovering a new node in the growing VpsT and VpsR c-di-GMP signaling network of V. cholerae IMPORTANCE As a result of infection with V. cholerae, patients become dehydrated, leading to death if not properly treated. The aquatic environment is the natural reservoir for V. cholerae, where it can survive alterations in temperature, salinity, and oxygen. The second messenger molecule c-di-GMP is an important signal regulating host and aquatic environmental persistence because it controls whether V. cholerae will form a biofilm or disperse through flagellar motility. In this work, we demonstrate another function of c-di-GMP in V. cholerae biology: promoting tolerance to the reactive oxygen species H2O2 through the differential regulation of catalase expression. Our results suggest a mechanism where c-di-GMP simultaneously controls biofilm formation and antioxidant production, which could promote persistence in human and marine environments.
Collapse
|
43
|
Khan F, Jeong MC, Park SK, Kim SK, Kim YM. Contribution of chitooligosaccharides to biofilm formation, antibiotics resistance and disinfectants tolerance of Listeria monocytogenes. Microb Pathog 2019; 136:103673. [PMID: 31437576 DOI: 10.1016/j.micpath.2019.103673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/31/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen present in various environmental reservoirs. It exhibits resistance and tolerance to antibiotics and sanitizing agents used in several food processing industries. It has been reported that L. monocytogenes chitinase can catalyze hydrolysis of chitin polymeric carbohydrate present in the environment and act as a virulence factor that support its survival in mammalian host cells. By taking advantage of chitinase, L. monocytogenes has both saprophytic and pathogenic lifestyles in the soil and the living host, respectively. The objective of the present study was to determine the involvement of chitin degradation products such as chitooligosaccharides (COS) in biofilm formation of L. monocytogenes. Results showed that different concentrations of COS with various molecular weight enhanced biofilm formation of L. monocytogenes. Such enhancement in biofilm formation contributed to the development of antibiotics resistance and disinfectants tolerance of cells present in the biofilm. The present article also described diverse roles of chitin, chitinase, and degradation of chitin and chitin-like substrates in saprophytic and pathogenic lifestyles of L. monocytogenes. This study offers a new direction for further exploration of the mechanisms of pathogenesis caused by L. monocytogenes.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea
| | - Min-Chul Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Seul-Ki Park
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
44
|
Hallberg ZF, Chan CH, Wright TA, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 2019; 8:43959. [PMID: 30964001 PMCID: PMC6456294 DOI: 10.7554/elife.43959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3′,3′-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported that some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Chi Ho Chan
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Todd A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, United States
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - James J Park
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
45
|
Zetzmann M, Bucur FI, Crauwels P, Borda D, Nicolau AI, Grigore-Gurgu L, Seibold GM, Riedel CU. Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. Microbiologyopen 2019; 8:e00826. [PMID: 30843349 PMCID: PMC6741131 DOI: 10.1002/mbo3.826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a food‐borne human pathogen and a serious concern in food production and preservation. Previous studies have shown that biofilm formation of L. monocytogenes and presence of extracellular DNA (eDNA) in the biofilm matrix varies with environmental conditions and may involve agr peptide sensing. Experiments in normal and diluted (hypoosmotic) complex media at different temperatures revealed reduced biofilm formation of L. monocytogenes EGD‐e ΔagrD, a mutant deficient in agr peptide sensing, specifically in diluted Brain Heart Infusion at 25°C. This defect was not related to reduced sensitivity to DNase treatment suggesting sufficient levels of eDNA. Re‐analysis of a previously published transcriptional profiling indicated that a total of 132 stress‐related genes, that is 78.6% of the SigB‐dependent stress regulon, are differentially expressed in the ΔagrD mutant. Additionally, a number of genes involved in flagellar motility and a large number of other surface proteins including internalins, peptidoglycan binding and cell wall modifying proteins showed agr‐dependent gene expression. However, survival of the ΔagrD mutant in hypoosmotic conditions or following exposure to high hydrostatic pressure was comparable to the wild type. Also, flagellar motility and surface hydrophobicity were not affected. However, the ΔagrD mutant displayed a significantly reduced viability upon challenge with lysozyme. These results suggest that the biofilm phenotype of the ΔagrD mutant is not a consequence of reduced resistance to hypoosmotic or high pressure stress, motility or surface hydrophobicity. Instead, agr peptide sensing seems to be required for proper regulation of biosynthesis, structure and function of the cell envelope, adhesion to the substratum, and/or interaction of bacteria within a biofilm.
Collapse
Affiliation(s)
- Marion Zetzmann
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
46
|
Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in Clostridium difficile. mSphere 2018; 3:3/5/e00423-18. [PMID: 30355665 PMCID: PMC6200980 DOI: 10.1128/msphere.00423-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In Clostridium difficile, the signaling molecule c-di-GMP regulates multiple processes affecting its ability to cause disease, including swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we used RNA-seq to define the transcriptional regulon of c-di-GMP in C. difficile. Many new targets of c-di-GMP regulation were identified, including multiple putative colonization factors. Transcriptional analyses revealed a prominent role for riboswitches in c-di-GMP signaling. Only a subset of the 16 previously predicted c-di-GMP riboswitches were functional in vivo and displayed potential variability in their response kinetics to c-di-GMP. This work underscores the importance of studying c-di-GMP riboswitches in a relevant biological context and highlights the role of the riboswitches in controlling gene expression in C. difficile. The intracellular signaling molecule cyclic diguanylate (c-di-GMP) regulates many processes in bacteria, with a central role in controlling the switch between motile and nonmotile lifestyles. Recent work has shown that in Clostridium difficile (also called Clostridioides difficile), c-di-GMP regulates swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we determined the transcriptional regulon of c-di-GMP in C. difficile, employing overexpression of a diguanylate cyclase gene to artificially manipulate intracellular c-di-GMP. Consistent with prior work, c-di-GMP regulated the expression of genes involved in swimming and surface motility. c-di-GMP also affected the expression of multiple genes encoding cell envelope proteins, several of which affected biofilm formation in vitro. A substantial proportion of the c-di-GMP regulon appears to be controlled either directly or indirectly via riboswitches. We confirmed the functionality of 11 c-di-GMP riboswitches, demonstrating their effects on downstream gene expression independent of the upstream promoters. The class I riboswitches uniformly functioned as “off” switches in response to c-di-GMP, while class II riboswitches acted as “on” switches. Transcriptional analyses of genes 3′ of c-di-GMP riboswitches over a broad range of c-di-GMP levels showed that relatively modest changes in c-di-GMP levels are capable of altering gene transcription, with concomitant effects on microbial behavior. This work expands the known c-di-GMP signaling network in C. difficile and emphasizes the role of the riboswitches in controlling known and putative virulence factors in C. difficile. IMPORTANCE In Clostridium difficile, the signaling molecule c-di-GMP regulates multiple processes affecting its ability to cause disease, including swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we used RNA-seq to define the transcriptional regulon of c-di-GMP in C. difficile. Many new targets of c-di-GMP regulation were identified, including multiple putative colonization factors. Transcriptional analyses revealed a prominent role for riboswitches in c-di-GMP signaling. Only a subset of the 16 previously predicted c-di-GMP riboswitches were functional in vivo and displayed potential variability in their response kinetics to c-di-GMP. This work underscores the importance of studying c-di-GMP riboswitches in a relevant biological context and highlights the role of the riboswitches in controlling gene expression in C. difficile.
Collapse
|
47
|
Nahar S, Mizan MFR, Ha AJW, Ha SD. Advances and Future Prospects of Enzyme-Based Biofilm Prevention Approaches in the Food Industry. Compr Rev Food Sci Food Saf 2018; 17:1484-1502. [DOI: 10.1111/1541-4337.12382] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shamsun Nahar
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | | | - Angela Jie-won Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | - Sang-Do Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|
48
|
He J, Ruan W, Sun J, Wang F, Yan W. Functional Characterization of c-di-GMP Signaling-Related Genes in the Probiotic Lactobacillus acidophilus. Front Microbiol 2018; 9:1935. [PMID: 30210464 PMCID: PMC6123363 DOI: 10.3389/fmicb.2018.01935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023] Open
Abstract
The bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a series of cellular functions, including biofilm formation, motility, virulence, and other processes. In this study, we confirmed the presence of several c-di-GMP related genes and evaluated their activities and functions in Lactobacillus species. Bioinformatic and biochemical analyses revealed that Lactobacillus acidophilus La-14 have an active c-di-GMP phosphodiesterase (PdeA) that may act in the metabolic cycle of c-di-GMP. A GGDEF protein (DgcA) induced two c-di-GMP-dependent phenotypes (low motility and high production of curli fimbriae) in Escherichia coli by heterologously expressed in vivo but showed no diguanylate cyclases activity in vitro while in the expression without the N-terminal transmembrane domain. The degenerated EAL-domain protein (PdeB), encoded by the last gene in the gts operon, serve as a c-di-GMP receptor which may be associated with exopolysaccharide (EPS) synthesis in L. acidophilus. Heterologously expressed GtsA and GtsB, encoded by the gts operon, stimulated EPS and biofilm formation in E. coli BL21. Constitutive expression in L. acidophilus revealed that a high concentration of intracellular DgcA levels increased EPS production in L. acidophilus and enhanced the co-aggregation ability with E. coli MG1655, which may be beneficial to the probiotic properties of Lactobacillus species. Our study imply that the c-di-GMP metabolism-related genes, in L. acidophilus, work jointly to regulate its functions in EPS formation and co-aggregation.
Collapse
Affiliation(s)
- Jiahui He
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Department of Stomatology, The Affiliated Shenzhen Maternity and Child Healthcare Hospital of the South Medical University, Shenzhen, China
| | - Wenhao Ruan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieli Sun
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Bierne H, Milohanic E, Kortebi M. To Be Cytosolic or Vacuolar: The Double Life of Listeria monocytogenes. Front Cell Infect Microbiol 2018; 8:136. [PMID: 29868493 PMCID: PMC5962784 DOI: 10.3389/fcimb.2018.00136] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens are generally classified into two types: those that exploit host membrane trafficking to construct specific niches in vacuoles (i.e., "vacuolar pathogens"), and those that escape from vacuoles into the cytosol, where they proliferate and often spread to neighboring cells (i.e., "cytosolic pathogens"). However, the boundary between these distinct intracellular phenotypes is tenuous and may depend on the timing of infection and on the host cell type. Here, we discuss recent progress highlighting this phenotypic duality in Listeria monocytogenes, which has long been a model for cytosolic pathogens, but now emerges as a bacterium also capable of residing in vacuoles, in a slow/non-growing state. The ability of L. monocytogenes to enter a persistence stage in vacuoles might play a role during the asymptomatic incubation period of listeriosis and/or the carriage of this pathogen in asymptomatic hosts. Moreover, persistent vacuolar Listeria could be less susceptible to antibiotics and more difficult to detect by routine techniques of clinical biology. These hypotheses deserve to be explored in order to better manage the risks related to this food-borne pathogen.
Collapse
Affiliation(s)
- Hélène Bierne
- Epigenetics and Cellular Microbiology Team, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | |
Collapse
|