1
|
Elmeazawy R, Sorour EAAF, Badreldeen AS. Effects of community-acquired pneumonia on biventricular cardiac functions in children. Ital J Pediatr 2025; 51:126. [PMID: 40247416 PMCID: PMC12007363 DOI: 10.1186/s13052-025-01965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of community-acquired pneumonia (CAP) on cardiac function in children and compare the effectiveness of tissue Doppler imaging (TDI) and two-dimensional speckle tracking echocardiography (2D-STE) with conventional echocardiography in the early detection of biventricular cardiac dysfunction in children with CAP. METHODS The study included 50 hospitalized children diagnosed with CAP and 50 matched healthy controls. All patients underwent cardiac evaluation including conventional echocardiography, TDI, and 2D-STE. RESULTS Fifty children with CAP with a mean age of 5.02 ± 2.46 years participated in the study. Thirty-two were male (64.0%). LV systolic function (S) and RV diastolic function (E'/A') were significantly lower in the diseased group compared to the control group (p < 0.001). The myocardial performance index (MPI) of both ventricles was significantly higher in the diseased group compared to the control group (p < 0.001). In patients with CAP, the mean value of two-dimensional longitudinal strain (2D LS) was significantly lower than that of the control group (p < 0.001). No statistically significant differences in echocardiographic parameters were observed when comparing complicated and non-complicated CAP subgroups. CONCLUSION TDI and 2D-STE demonstrated the ability to detect early biventricular dysfunction in pediatric patients diagnosed with CAP.
Collapse
Affiliation(s)
- Rehab Elmeazawy
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | | |
Collapse
|
2
|
Salwen B, Mascarenhas E, Horne DJ, Crothers K, Zifodya JS. Sequelae of Immunocompromised Host Pneumonia. Clin Chest Med 2025; 46:49-60. [PMID: 39890292 PMCID: PMC11790256 DOI: 10.1016/j.ccm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Immunocompromised individuals are at increased risk for opportunistic infections including pneumonia. Pneumonia has long been known to be a leading cause of mortality during induction chemotherapy for acute leukemia and was the first recognized presentation of human immunodeficiency virus (HIV). Even with adequate treatment, there is a wide breadth of postpneumonia sequelae, which is of particular interest in immunocompromised hosts given their increased risk for pneumonia. In this review, we describe the varying complications, presentations, and systems involved in the sequelae of immunocompromised host pneumonia. We focus on people living with HIV, a well-studied heterogenous population, to model immunocompromised hosts.
Collapse
Affiliation(s)
- Benjamin Salwen
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Erica Mascarenhas
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - David J Horne
- Division of Pulmonary, Critical Care, & Sleep Medicine, University of Washington, 325 9th Avenue, 359762, Seattle, WA 98104, USA
| | - Kristina Crothers
- Division of Pulmonary, Critical Care, & Sleep Medicine, University of Washington & Veterans Affairs Puget Sound Healthcare System, 1660 South Columbian Way, Seattle, WA 98108, USA
| | - Jerry S Zifodya
- Department of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, #8509, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Chong SY, Lew SQ, Alam T, Gaulke CA, Lau GW. Comparative analysis of the Streptococcus pneumoniae competence development in vitro versus in vivo during pneumonia-derived sepsis. Front Microbiol 2025; 16:1540511. [PMID: 39935640 PMCID: PMC11811101 DOI: 10.3389/fmicb.2025.1540511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The Streptococcus pneumoniae (pneumococcus) competence regulon is well-known for regulating genetic transformation but is also important for virulence. Some pneumococcal strains can enter a transient competent state for genetic transformation in an optimized competence-inducing medium when the threshold level of the peptide pheromone competence stimulating peptide is attained; upregulating the expression of three distinct phases of "early", "late" and "delayed" competence genes. Recently, we discovered that pneumococcus can naturally enter a prolonged competent state during acute pneumonia in mice. However, mechanisms driving competence development during host infection are rarely examined, and a direct comparison between in vitro and in vivo competence induction has not been performed. Methods We conducted a comparative gene expression analysis of pneumococcal competence development in vitro versus in vivo during pneumonia-derived sepsis in mice. We examined existing RNA-Seq data and performed validation using RNA obtained from an independent replicate experiment. Results and discussion Our analysis revealed both similarities and differences in the expression of "early", "late", and "delayed" competence between in vitro versus during pneumonia-derived sepsis. Our results may reveal new aspects of pneumococcal competence biology.
Collapse
Affiliation(s)
- Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tauqeer Alam
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Dulfer EA, Serbée MJV, Dirkx KKT, Schaars CF, Wertheim HFL, de Jonge MI, Cremers AJH. Cardiovascular events after invasive pneumococcal disease: a retrospective cohort study. Int J Infect Dis 2024; 147:107185. [PMID: 39033798 DOI: 10.1016/j.ijid.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES This study aims to understand the magnitude of and mechanisms underlying the development of cardiovascular events (CVEs) in patients with invasive pneumococcal disease (IPD). We aimed to identify factors that contribute to the occurrence of CVEs within 1 year after admission and discuss implications for patient care. METHODS A multicentered cohort study included adult patients from four Dutch hospitals who had a positive blood culture for Streptococcus pneumoniae and any type of clinical manifestation between 2012 and 2020. Disease characteristics and microbiological data were systematically collected from electronic patient files. The main outcome measures were the occurrence of stroke and acute coronary syndromes (ACS). RESULTS Of 914 eligible patients, 4.2% experienced a CVE within 1 year after admission for IPD. ACS mainly occurred in the first 2 weeks, whereas stroke developed throughout follow-up. Although ACS was positively associated with disease severity, the sole independent predictor was alcohol abuse (odds ratio [OR] 3.840, 95% confidence interval [CI] 1.108-13.303). Although stroke occurred in 6.3% of meningitis cases, the best clinical predictor of stroke was a body temperature >39.5 °C at admission (OR 3.117 [1.154-8.423]). In the adult IPD population aged <70 years, pneumococcal serotypes were the primary predictors of ACS (7F; OR 15.733 [1.812-136.632]) and stroke (22F; OR 7.320 [1.193-44.903]). CONCLUSIONS Adverse CVEs were not uncommon after IPD diagnosis and deserve attention, especially in the high-risk groups we identified in our study population. Whether specific serotypes play a role in the development of CVE requires substantiation in further research.
Collapse
Affiliation(s)
- Elisabeth A Dulfer
- Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Department of Internal Medicine, Maasziekenhuis Pantein, 5835 DV Beugen, the Netherlands.
| | - Milou J V Serbée
- Department of Clinical Microbiology and Immunology, Rijnstate, 6815 AD Arnhem, the Netherlands
| | - Kirsten K T Dirkx
- Department of Clinical Microbiology, Canisius-Wilhelmina Ziekenhuis, 6532 SZ Nijmegen, the Netherlands
| | - Carel F Schaars
- Department of Internal Medicine, Maasziekenhuis Pantein, 5835 DV Beugen, the Netherlands
| | - Heiman F L Wertheim
- Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Amelieke J H Cremers
- Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Department of Clinical Microbiology and Immunology, Rijnstate, 6815 AD Arnhem, the Netherlands
| |
Collapse
|
5
|
Parveen S, Bhat CV, Sagilkumar AC, Aziz S, Arya J, Dutta A, Dutta S, Show S, Sharma K, Rakshit S, Johnson JB, Nongthomba U, Banerjee A, Subramanian K. Bacterial pore-forming toxin pneumolysin drives pathogenicity through host extracellular vesicles released during infection. iScience 2024; 27:110589. [PMID: 39211544 PMCID: PMC11357855 DOI: 10.1016/j.isci.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Streptococcus pneumoniae is a global priority respiratory pathogen that kills over a million people annually. The pore-forming cytotoxin, pneumolysin (PLY) is a major virulence factor. Here, we found that recombinant PLY as well as wild-type pneumococcal strains, but not the isogenic PLY mutant, upregulated the shedding of extracellular vesicles (EVs) harboring membrane-bound toxin from human THP-1 monocytes. PLY-EVs induced cytotoxicity and hemolysis dose-dependently upon internalization by recipient monocyte-derived dendritic cells. Proteomics analysis revealed that PLY-EVs are selectively enriched in key inflammatory host proteins such as IFI16, NLRC4, PTX3, and MMP9. EVs shed from PLY-challenged or infected cells induced dendritic cell maturation and primed them to infection. In vivo, zebrafish administered with PLY-EVs showed pericardial edema and mortality. Adoptive transfer of bronchoalveolar-lavage-derived EVs from infected mice to healthy recipients induced lung damage and inflammation in a PLY-dependent manner. Our findings identify that host EVs released during infection mediate pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Saba Parveen
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Chinmayi V Bhat
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Aswathy C Sagilkumar
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Shaheena Aziz
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - J Arya
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Asmita Dutta
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Somit Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sautan Show
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Kuldeep Sharma
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sumit Rakshit
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - John Bernet Johnson
- Virology Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Banerjee
- Bacterial Pathogenesis Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Karthik Subramanian
- Host-Pathogen Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
6
|
Dai H, Ye J, Wang S, Li X, Li W. Myeloperoxidase and its derivative hypochlorous acid combined clinical indicators predict new-onset atrial fibrillation in sepsis: a case-control study. BMC Cardiovasc Disord 2024; 24:377. [PMID: 39030470 PMCID: PMC11264794 DOI: 10.1186/s12872-024-04034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUD New-onset atrial fibrillation (NOAF) is a common complication of sepsis and linked to higher death rates in affected patients. The lack of effective predictive tools hampers early risk assessment for the development of NOAF. This study aims to develop practical and effective predictive tools for identifying the risk of NOAF. METHODS This case-control study retrospectively analyzed patients with sepsis admitted to the emergency department of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine from September 2017 to January 2023. Based on electrocardiographic reports and electrocardiogram monitoring records, patients were categorized into NOAF and non-NOAF groups. Laboratory tests, including myeloperoxidase (MPO) and hypochlorous acid (HOCl), were collected, along with demographic data and comorbidities. Least absolute shrinkage and selection operator regression and multivariate logistic regression analyses were employed to identify predictors. The area under the curve (AUC) was used to evaluate the predictive model's performance in identifying NOAF. RESULTS A total of 389 patients with sepsis were included in the study, of which 63 developed NOAF. MPO and HOCl levels were significantly higher in the NOAF group compared to the non-NOAF group. Multivariate logistic regression analysis identified MPO, HOCl, tumor necrosis factor-α (TNF-α), white blood cells (WBC), and the Acute Physiology and Chronic Health Evaluation II (APACHE II) score as independent risk factors for NOAF in sepsis. Additionally, a nomogram model developed using these independent risk factors achieved an AUC of 0.897. CONCLUSION The combination of MPO and its derivative HOCl with clinical indicators improves the prediction of NOAF in sepsis. The nomogram model can serve as a practical predictive tool for the early identification of NOAF in patients with sepsis.
Collapse
Affiliation(s)
- Hui Dai
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiawei Ye
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xingyao Li
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjie Li
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Kruckow KL, Murray E, Shayhidin E, Rosenberg AF, Bowdish DME, Orihuela CJ. Chronic TNF exposure induces glucocorticoid-like immunosuppression in the alveolar macrophages of aged mice that enhances their susceptibility to pneumonia. Aging Cell 2024; 23:e14133. [PMID: 38459711 PMCID: PMC11296116 DOI: 10.1111/acel.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.
Collapse
Affiliation(s)
- Katherine L. Kruckow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth Murray
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elnur Shayhidin
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Alexander F. Rosenberg
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dawn M. E. Bowdish
- Firestone Institute for Respiratory HealthSt. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- The M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| | - Carlos J. Orihuela
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
9
|
Yao Z, Liang M, Zhu S. Infectious factors in myocarditis: a comprehensive review of common and rare pathogens. Egypt Heart J 2024; 76:64. [PMID: 38789885 PMCID: PMC11126555 DOI: 10.1186/s43044-024-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment. MAIN BODY Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery. CONCLUSIONS This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.
Collapse
Affiliation(s)
- Zongjie Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qindao, China.
| | - Mingjun Liang
- Department of Intensive Care Medicine, Shanghai Six People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zhu
- Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Bhalla M, Herring S, Lenhard A, Wheeler JR, Aswad F, Klumpp K, Rebo J, Wang Y, Wilhelmsen K, Fortney K, Bou Ghanem EN. The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae. Infect Immun 2024; 92:e0052223. [PMID: 38629842 PMCID: PMC11075459 DOI: 10.1128/iai.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Sydney Herring
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alexsandra Lenhard
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Joshua R. Wheeler
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fred Aswad
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Yan Wang
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
11
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SN, Agaltsov MV, Alekseeva LI, Almazova II, Andreenko EY, Antipushina DN, Balanova YA, Berns SA, Budnevsky AV, Gainitdinova VV, Garanin AA, Gorbunov VM, Gorshkov AY, Grigorenko EA, Jonova BY, Drozdova LY, Druk IV, Eliashevich SO, Eliseev MS, Zharylkasynova GZ, Zabrovskaya SA, Imaeva AE, Kamilova UK, Kaprin AD, Kobalava ZD, Korsunsky DV, Kulikova OV, Kurekhyan AS, Kutishenko NP, Lavrenova EA, Lopatina MV, Lukina YV, Lukyanov MM, Lyusina EO, Mamedov MN, Mardanov BU, Mareev YV, Martsevich SY, Mitkovskaya NP, Myasnikov RP, Nebieridze DV, Orlov SA, Pereverzeva KG, Popovkina OE, Potievskaya VI, Skripnikova IA, Smirnova MI, Sooronbaev TM, Toroptsova NV, Khailova ZV, Khoronenko VE, Chashchin MG, Chernik TA, Shalnova SA, Shapovalova MM, Shepel RN, Sheptulina AF, Shishkova VN, Yuldashova RU, Yavelov IS, Yakushin SS. Comorbidity of patients with noncommunicable diseases in general practice. Eurasian guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:3696. [DOI: 10.15829/1728-8800-2024-3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Создание руководства поддержано Советом по терапевтическим наукам отделения клинической медицины Российской академии наук.
Collapse
|
12
|
Oh MW, Lin J, Chong SY, Lew SQ, Alam T, Lau GW. Time-resolved RNA-seq analysis to unravel the in vivo competence induction by Streptococcus pneumoniae during pneumonia-derived sepsis. Microbiol Spectr 2024; 12:e0305023. [PMID: 38305162 PMCID: PMC10913500 DOI: 10.1128/spectrum.03050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Competence development in Streptococcus pneumoniae (pneumococcus) is tightly intertwined with virulence. In addition to genes encoding genetic transformation machinery, the competence regulon also regulates the expression of allolytic factors, bacteriocins, and cytotoxins. Pneumococcal competence system has been extensively interrogated in vitro where the short transient competent state upregulates the expression of three distinct phases of "early," "late," and "delayed" genes. Recently, we have demonstrated that the pneumococcal competent state develops naturally in mouse models of pneumonia-derived sepsis. To unravel the underlying adaptive mechanisms driving the development of the competent state, we conducted a time-resolved transcriptomic analysis guided by the spatiotemporal live in vivo imaging system of competence induction during pneumonia-derived sepsis. Mouse lungs infected by the serotype 2 strain D39 expressing a competent state-specific reporter gene (D39-ssbB-luc) were subjected to RNA sequencing guided by monitoring the competence development at 0, 12, 24, and, at the moribund state, >40 hours post-infection (hpi). Transcriptomic analysis revealed that the competence-specific gene expression patterns in vivo were distinct from those under in vitro conditions. There was significant upregulation of early, late, and some delayed phase competence-specific genes as early as 12 hpi, suggesting that the pneumococcal competence regulon is important for adaptation to the lung environment. Additionally, members of the histidine triad (pht) gene family were sharply upregulated at 12 hpi followed by a steep decline throughout the rest of the infection cycle, suggesting that Pht proteins participate in the early adaptation to the lung environment. Further analysis revealed that Pht proteins execute a metal ion-dependent regulatory role in competence induction.IMPORTANCEThe induction of pneumococcal competence for genetic transformation has been extensively studied in vitro but poorly understood during lung infection. We utilized a combination of live imaging and RNA sequencing to monitor the development of a competent state during acute pneumonia. Upregulation of competence-specific genes was observed as early as 12 hour post-infection, suggesting that the pneumococcal competence regulon plays an important role in adapting pneumococcus to the stressful lung environment. Among others, we report novel finding that the pneumococcal histidine triad (pht) family of genes participates in the adaptation to the lung environment and regulates pneumococcal competence induction.
Collapse
Affiliation(s)
- Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tauqeer Alam
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
14
|
Xie M, Zhu S, Liu G, Wu Y, Zhou W, Yu D, Wan J, Xing S, Wang S, Gan L, Li G, Chang D, Lai H, Liu N, Zhu P. A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart. J Cardiovasc Transl Res 2023; 16:1232-1248. [PMID: 37155136 DOI: 10.1007/s12265-023-10395-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Tamoxifen, a selective estrogen receptor modulator, was initially used to treat cancer in women and more recently to induce conditional gene editing in rodent hearts. However, little is known about the baseline biological effects of tamoxifen on the myocardium. In order to clarify the short-term effects of tamoxifen on cardiac electrophysiology of myocardium, we applied a single-chest-lead quantitative method and analyzed the short-term electrocardiographic phenotypes induced by tamoxifen in the heart of adult female mice. We found that tamoxifen prolonged the PP interval and caused a decreased heartbeat, and further induced atrioventricular block by gradually prolonging the PR interval. Further correlation analysis suggested that tamoxifen had a synergistic and dose-independent inhibition on the time course of the PP interval and PR interval. This prolongation of the critical time course may represent a tamoxifen-specific ECG excitatory-inhibitory mechanism, leading to a reduction in the number of supraventricular action potentials and thus bradycardia. Segmental reconstructions showed that tamoxifen induced a decrease in the conduction velocity of action potentials throughout the atria and parts of the ventricles, resulting in a flattening of the P wave and R wave. In addition, we detected the previously reported prolongation of the QT interval, which may be due to a prolonged duration of the ventricular repolarizing T wave rather than the depolarizing QRS complex. Our study highlights that tamoxifen can produce patterning alternations in the cardiac conduction system, including the formation of inhibitory electrical signals with reduced conduction velocity, implying its involvement in the regulation of myocardial ion transport and the mediation of arrhythmias. A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart(Figure 9). A working model of tamoxifen producing acute electrical disturbances in the myocardium. SN, sinus node; AVN, atrioventricular node; RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle.
Collapse
Affiliation(s)
- Ming Xie
- Department of Cardiac Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Shuoji Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
- University of Tokyo, Tokyo, 113-8666, Japan
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yijin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Wenkai Zhou
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Dingdang Yu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Jinkai Wan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shenghui Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Siqing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin Gan
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Ge Li
- Department of Cardiac Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China
| | - Dehua Chang
- University of Tokyo Hospital Department of Cell Therapy in Regenerative Medicine, Tokyo, 113-8666, Japan.
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Nanbo Liu
- Department of Cardiac Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China.
| | - Ping Zhu
- Department of Cardiac Surgery, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, Guangdong, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, and Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
15
|
Kumar N, Pestrak MJ, Wu Q, Ahumada OS, Dellos-Nolan S, Saljoughian N, Shukla RK, Mitchem CF, Nagareddy PR, Ganesan LP, William LP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa pulmonary infection results in S100A8/A9-dependent cardiac dysfunction. PLoS Pathog 2023; 19:e1011573. [PMID: 37624851 PMCID: PMC10484443 DOI: 10.1371/journal.ppat.1011573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Matthew J. Pestrak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Omar Santiagonunez Ahumada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Cortney F. Mitchem
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Prabhakara R. Nagareddy
- Department of Surgery, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Lafuse P. William
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
16
|
Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci 2023; 24:11038. [PMID: 37446214 DOI: 10.3390/ijms241311038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
17
|
Wiese AD, Mitchel E, Ndi D, Markus TM, Talbot HK, Schaffner W, Grijalva CG. Risk of Acute Myocardial Infarction Among Patients With Laboratory-Confirmed Invasive Pneumococcal Disease: A Self-Controlled Case Series Study. Clin Infect Dis 2023; 76:2171-2177. [PMID: 36751004 PMCID: PMC10273377 DOI: 10.1093/cid/ciad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) events have been reported among patients with certain viral and bacterial infections. Whether invasive pneumococcal disease (IPD) increases the risk of AMI remains unclear. We examined whether laboratory-confirmed IPD was associated with the risk of AMI. METHODS We conducted a self-controlled case series analysis among adult Tennessee residents with evidence of an AMI hospitalization (2003-2019). Patient follow-up started 1 year before the earliest AMI and continued through the date of death, 1 year after AMI, or study end (December 2019). Periods for AMI assessment included the 7 to 1 days before IPD specimen collection (pre-IPD detection), day 0 through day 7 after IPD specimen collection (current IPD), day 8 to 28 after IPD specimen collection (post-IPD), and a control period (all other follow-up). We used conditional Poisson regression to calculate incidence rate ratios (IRRs) and 95% confidence intervals (CIs) for each risk period compared with control periods using within-person comparisons. RESULTS We studied 324 patients hospitalized for AMI with laboratory-confirmed IPD within 1 year before or after the AMI hospitalization. The incidence of AMI was significantly higher during the pre-IPD detection (IRR, 10.29; 95% CI: 6.33-16.73) and the current IPD (IRR, 92.95; 95% CI: 72.17-119.71) periods but nonsignificantly elevated in the post-IPD risk period (IRR, 1.83; 95% CI: .86-3.91) compared with control periods. The AMI incidence was higher in the post-IPD control period (29 to 365 days after IPD; IRR, 2.95; 95% CI: 2.01-4.32). CONCLUSIONS Hospitalizations with AMI were strongly associated with laboratory-confirmed IPD.
Collapse
Affiliation(s)
- Andrew D Wiese
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ed Mitchel
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danielle Ndi
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tiffanie M Markus
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William Schaffner
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veteran Affairs TN Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
18
|
Stubbendieck RM, Dissanayake E, Burnham PM, Zelasko SE, Temkin MI, Wisdorf SS, Vrtis RF, Gern JE, Currie CR. Rothia from the Human Nose Inhibit Moraxella catarrhalis Colonization with a Secreted Peptidoglycan Endopeptidase. mBio 2023; 14:e0046423. [PMID: 37010413 PMCID: PMC10128031 DOI: 10.1128/mbio.00464-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Moraxella catarrhalis is found almost exclusively within the human respiratory tract. This pathobiont is associated with ear infections and the development of respiratory illnesses, including allergies and asthma. Given the limited ecological distribution of M. catarrhalis, we hypothesized that we could leverage the nasal microbiomes of healthy children without M. catarrhalis to identify bacteria that may represent potential sources of therapeutics. Rothia was more abundant in the noses of healthy children compared to children with cold symptoms and M. catarrhalis. We cultured Rothia from nasal samples and determined that most isolates of Rothia dentocariosa and "Rothia similmucilaginosa" were able to fully inhibit the growth of M. catarrhalis in vitro, whereas isolates of Rothia aeria varied in their ability to inhibit M. catarrhalis. Using comparative genomics and proteomics, we identified a putative peptidoglycan hydrolase called secreted antigen A (SagA). This protein was present at higher relative abundance in the secreted proteomes of R. dentocariosa and R. similmucilaginosa than in those from non-inhibitory R. aeria, suggesting that it may be involved in M. catarrhalis inhibition. We produced SagA from R. similmucilaginosa in Escherichia coli and confirmed its ability to degrade M. catarrhalis peptidoglycan and inhibit its growth. We then demonstrated that R. aeria and R. similmucilaginosa reduced M. catarrhalis levels in an air-liquid interface culture model of the respiratory epithelium. Together, our results suggest that Rothia restricts M. catarrhalis colonization of the human respiratory tract in vivo. IMPORTANCE Moraxella catarrhalis is a pathobiont of the respiratory tract, responsible for ear infections in children and wheezing illnesses in children and adults with chronic respiratory diseases. Detection of M. catarrhalis during wheezing episodes in early life is associated with the development of persistent asthma. There are currently no effective vaccines for M. catarrhalis, and most clinical isolates are resistant to the commonly prescribed antibiotics amoxicillin and penicillin. Given the limited niche of M. catarrhalis, we hypothesized that other nasal bacteria have evolved mechanisms to compete against M. catarrhalis. We found that Rothia are associated with the nasal microbiomes of healthy children without Moraxella. Next, we demonstrated that Rothia inhibit M. catarrhalis in vitro and on airway cells. We identified an enzyme produced by Rothia called SagA that degrades M. catarrhalis peptidoglycan and inhibits its growth. We suggest that Rothia or SagA could be developed as highly specific therapeutics against M. catarrhalis.
Collapse
Affiliation(s)
- Reed M. Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Eishika Dissanayake
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter M. Burnham
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan E. Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mia I. Temkin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sydney S. Wisdorf
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rose F. Vrtis
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Bazaz R, Marriott HM, Wright C, Chamberlain J, West LE, Gelsthorpe C, Heath PR, Maleki-Dizaji A, Francis SE, Dockrell DH. Transient increase in atherosclerotic plaque macrophage content following Streptococcus pneumoniae pneumonia in ApoE-deficient mice. Front Cell Infect Microbiol 2023; 13:1090550. [PMID: 37033482 PMCID: PMC10076735 DOI: 10.3389/fcimb.2023.1090550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Despite epidemiological associations between community acquired pneumonia (CAP) and myocardial infarction, mechanisms that modify cardiovascular disease during CAP are not well defined. In particular, largely due to a lack of relevant experimental models, the effect of pneumonia on atherosclerotic plaques is unclear. We describe the development of a murine model of the commonest cause of CAP, Streptococcus pneumoniae pneumonia, on a background of established atherosclerosis. We go on to use our model to investigate the effects of pneumococcal pneumonia on atherosclerosis. Methods C57BL/6J and ApoE-/- mice were fed a high fat diet to promote atherosclerotic plaque formation. Mice were then infected with a range of S. pneumoniae serotypes (1, 4 or 14) with the aim of establishing a model to study atherosclerotic plaque evolution after pneumonia and bacteremia. Laser capture microdissection of plaque macrophages enabled transcriptomic analysis. Results Intratracheal instillation of S. pneumoniae in mice fed a cholate containing diet resulted in low survival rates following infection, suggestive of increased susceptibility to severe infection. Optimization steps resulted in a final model of male ApoE-/- mice fed a Western diet then infected by intranasal instillation of serotype 4 (TIGR4) S. pneumoniae followed by antibiotic administration. This protocol resulted in high rates of bacteremia (88.9%) and survival (88.5%). Pneumonia resulted in increased aortic sinus plaque macrophage content 2 weeks post pneumonia but not at 8 weeks, and no difference in plaque burden or other plaque vulnerability markers were found at either time point. Microarray and qPCR analysis of plaque macrophages identified downregulation of two E3 ubiquitin ligases, Huwe1 and Itch, following pneumonia. Treatment with atorvastatin failed to alter plaque macrophage content or other plaque features. Discussion Without antibiotics, ApoE-/- mice fed a high fat diet were highly susceptible to mortality following S. pneumoniae infection. The major infection associated change in plaque morphology was an early increase in plaque macrophages. Our results also hint at a role for the ubiquitin proteasome system in the response to pneumococcal infection in the plaque microenvironment.
Collapse
Affiliation(s)
- Rohit Bazaz
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Carl Wright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Janet Chamberlain
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Laura E. West
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Catherine Gelsthorpe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | | | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
21
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Bartlett B, Lee S, Ludewick HP, Siew T, Verma S, Waterer G, Corrales-Medina VF, Dwivedi G. A multiple comorbidities mouse lung infection model in ApoE‑deficient mice. Biomed Rep 2023; 18:21. [PMID: 36846615 PMCID: PMC9944256 DOI: 10.3892/br.2023.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre-existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE -/- mice were fed a high-fat diet prior to administering intranasally 105 colony forming units of TIGR4 or phosphate-buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real-time PCR. TIGR4-inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4-inoculated mice up to 28 days PI. The majority (90%) TIGR4-inoculated mice developed pneumococcal-specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4-inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)-1β and IL-6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Heart and Lung Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
| | - Teck Siew
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Grant Waterer
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Vicente F. Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| |
Collapse
|
23
|
Wang Y, He Y, Liang Y, Liu H, Chen X, Kulyar MFEA, Shahzad A, Wei K, Li K. Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the intestinal microbiome. Microb Cell Fact 2023; 22:30. [PMID: 36803386 PMCID: PMC9936653 DOI: 10.1186/s12934-023-02027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Given the crucial role of gut microbiota in animal and human health, studies on modulating the intestinal microbiome for therapeutic purposes have grasped a significant attention, of which the role of fecal microbiota transplantation (FMT) has been emphasized. METHODS In the current study, we evaluated the effect of FMT on gut functions in Escherichia coli (E. coli) infection by using mice model. Moreover, we also investigated the subsequently dependent variables of infection, i.e., body weight, mortality, intestinal histopathology, and the expression changes in tight junction proteins (TJPs). RESULTS The FMT effectively decreased weight loss and mortality to a certain extent with the restoration of intestinal villi that resulted in high histological scores for jejunum tissue damage (p < 0.05). The effect of FMT on alleviating the reduction of intestinal TJPs was also proved by immunohistochemistry analysis and mRNA expression levels. Moreover, the abundance of health-threatening bacteria, belonging to phylum Proteobacteria, family Enterobacteriaceae and Tannerellaceae, genus Escherichia-Shigella, Sphingomonas, Collinsella, etc., were significantly increased, whereas beneficial bacteria, belonging to phylum Firmicutes, family Lactobacillaceae, genus Lactobacillus were decreased in the gut of infected mice. Furthermore, we sought to investigate the association of clinical symptoms with FMT treatment with modulation in gut microbiota. According to beta diversity, the microbial community of gut microbiota results reflected the similarities between non-infected and FMT groups. The improvement of the intestinal microbiota in FMT group was characterized by the significant high level of beneficial microorganisms with the synergistic decrease of Escherichia-Shigella, Acinetobacter, and other taxa. CONCLUSION The findings suggest a beneficial host-microbiome correlation following fecal microbiota transplanatation for controlling gut infections and pathogens-associated diseases.
Collapse
Affiliation(s)
- Yaping Wang
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yuanyuan He
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Han Liu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Xiushuang Chen
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fakhar-e-Alam Kulyar
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Asim Shahzad
- grid.412496.c0000 0004 0636 6599Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
24
|
Fu Q, Jiang J, Li X, Zhai Z, Wang X, Li C, Chen Q, Man C, Du L, Wang F, Chen S. Activation of MyD88-Dependent TLR Signaling Modulates Immune Response of the Mouse Heart during Pasteurella multocida Infection. Microorganisms 2023; 11:microorganisms11020400. [PMID: 36838365 PMCID: PMC9967429 DOI: 10.3390/microorganisms11020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Pasteurella multocida (P. multocida) is an important zoonotic pathogen. In addition to lung lesions, necropsies have revealed macroscopic lesions in the heart in clinical cases. However, most previous studies focused on lung lesions while ignoring heart lesions. Therefore, to investigate the immune response of the P. multocida-infected heart, two murine infection models were established by using P. multocida serotype A (Pm HN02) and D (Pm HN01) strains. Histopathological examination revealed heterogeneous inflammatory responses, including immune cell infiltration in the epicardial and myocardial areas of the heart. Transcriptome sequencing was performed on infected cardiac tissues. To explore the traits of immune responses, we performed the functional enrichment analysis of differentially expressed genes, gene set enrichment analysis and gene set variation analysis. The results showed that the innate immune pathways were significantly regulated in both groups, including the NOD-like receptor signaling pathway, the complement and coagulation cascade and cytokine-cytokine receptor interaction. The Toll-like receptor signaling pathway was only significantly activated in the Pm HN02 group. For the Pm HN02 group, immunohistochemistry analysis further verified the significant upregulation of the hub component MyD88 at the protein level. In conclusion, this study reveals critical pathways for host heart recognition and defense against P. multocida serotypes A and D. Moreover, MyD88 was upregulated by P. multocida serotype A in the heart, providing a theoretical basis for future prevention, diagnosis and treatment research.
Collapse
|
25
|
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, Croucher NJ, Nebenzahl YM, Mondragón A, Yesilkaya H, Ulijasz AT. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog 2023; 19:e1011035. [PMID: 36719895 PMCID: PMC9888711 DOI: 10.1371/journal.ppat.1011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Michela Marra
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Valerie L. Tokars
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Sir Michael Uren Hub, Imperial College London, London, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
26
|
Comparative meta-analysis of host transcriptional response during Streptococcus pneumoniae carriage or infection. Microb Pathog 2022; 173:105816. [DOI: 10.1016/j.micpath.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
27
|
Desai A, Aliberti S, Amati F, Stainer A, Voza A. Cardiovascular Complications in Community-Acquired Pneumonia. Microorganisms 2022; 10:2177. [PMID: 36363769 PMCID: PMC9695472 DOI: 10.3390/microorganisms10112177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2023] Open
Abstract
Community-acquired pneumonia (CAP) is accountable for high mortality in both pediatric and adult populations worldwide, about one-third of hospitalized patients pass away within a year of being discharged from the facility. The high mortality and morbidity rates are closely related to cardiovascular complications that are consequent or concomitant to the acute episode of pneumonia. An updated perspective on the major pathophysiological mechanisms, prevalence, risk factors, outcomes, and relevant treatments of cardiovascular events in CAP patients is provided in the current study. It is possible to evaluate the pathophysiology of cardiac disease in this population based on plaque-related events, such as acute myocardial infarction, or events unrelated to plaque, such as arrhythmias and heart failure. With an absolute rate of cardiovascular problems ranging broadly from 10% to 30%, CAP raises the risk of both plaque-related and plaque-unrelated events. Both in- and out-patients may experience these issues at admission, throughout hospitalization, or even up to a year following discharge. At long-term follow-up, cardiac events account for more than 30% of deaths in CAP patients, making them a significant cause of mortality. If patients at risk for cardiac events are stratified, diagnostic tools, monitoring, and preventive measures may be applied to these patients. A prospective evaluation of cardioprotective treatments is urgently required from a research point of view.
Collapse
Affiliation(s)
- Antonio Desai
- IRCCS Humanitas Research Hospital, Emergency Department, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Antonio Voza
- IRCCS Humanitas Research Hospital, Emergency Department, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
28
|
Bedford JP, Garside T, Darbyshire JL, Betts TR, Young JD, Watkinson PJ. Risk factors for new-onset atrial fibrillation during critical illness: A Delphi study. J Intensive Care Soc 2022; 23:414-424. [PMID: 36751347 PMCID: PMC9679893 DOI: 10.1177/17511437211022132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background New-onset atrial fibrillation (NOAF) is common during critical illness and is associated with poor outcomes. Many risk factors for NOAF during critical illness have been identified, overlapping with risk factors for atrial fibrillation in patients in community settings. To develop interventions to prevent NOAF during critical illness, modifiable risk factors must be identified. These have not been studied in detail and it is not clear which variables warrant further study. Methods We undertook an international three-round Delphi process using an expert panel to identify important predictors of NOAF risk during critical illness. Results Of 22 experts invited, 12 agreed to participate. Participants were located in Europe, North America and South America and shared 110 publications on the subject of atrial fibrillation. All 12 completed the three Delphi rounds. Potentially modifiable risk factors identified include 15 intervention-related variables. Conclusions We present the results of the first Delphi process to identify important predictors of NOAF risk during critical illness. These results support further research into modifiable risk factors including optimal plasma electrolyte concentrations, rates of change of these electrolytes, fluid balance, choice of vasoactive medications and the use of preventative medications in high-risk patients. We also hope our findings will aid the development of predictive models for NOAF.
Collapse
Affiliation(s)
- Jonathan P Bedford
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Tessa Garside
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Julie L Darbyshire
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Timothy R Betts
- Radcliffe Department of Medicine, University of Oxford, Oxford,
UK
| | - J Duncan Young
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Peter J Watkinson
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
29
|
Li Z, Pang M, Li Y, Yu Y, Peng T, Hu Z, Niu R, Li J, Wang X. Development and validation of a predictive model for new-onset atrial fibrillation in sepsis based on clinical risk factors. Front Cardiovasc Med 2022; 9:968615. [PMID: 36082114 PMCID: PMC9447992 DOI: 10.3389/fcvm.2022.968615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveNew-onset atrial fibrillation (NOAF) is a common complication and one of the primary causes of increased mortality in critically ill adults. Since early assessment of the risk of developing NOAF is difficult, it is critical to establish predictive tools to identify the risk of NOAF.MethodsWe retrospectively enrolled 1,568 septic patients treated at Wuhan Union Hospital (Wuhan, China) as a training cohort. For external validation of the model, 924 patients with sepsis were recruited as a validation cohort at the First Affiliated Hospital of Xinjiang Medical University (Urumqi, China). Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analyses were used to screen predictors. The area under the ROC curve (AUC), calibration curve, and decision curve were used to assess the value of the predictive model in NOAF.ResultsA total of 2,492 patients with sepsis (1,592 (63.88%) male; mean [SD] age, 59.47 [16.42] years) were enrolled in this study. Age (OR: 1.022, 1.009–1.035), international normalized ratio (OR: 1.837, 1.270–2.656), fibrinogen (OR: 1.535, 1.232–1.914), C-reaction protein (OR: 1.011, 1.008–1.014), sequential organ failure assessment score (OR: 1.306, 1.247–1.368), congestive heart failure (OR: 1.714, 1.126–2.608), and dopamine use (OR: 1.876, 1.227–2.874) were used as risk variables to develop the nomogram model. The AUCs of the nomogram model were 0.861 (95% CI, 0.830–0.892) and 0.845 (95% CI, 0.804–0.886) in the internal and external validation, respectively. The clinical prediction model showed excellent calibration and higher net clinical benefit. Moreover, the predictive performance of the model correlated with the severity of sepsis, with higher predictive performance for patients in septic shock than for other patients.ConclusionThe nomogram model can be used as a reliable and simple predictive tool for the early identification of NOAF in patients with sepsis, which will provide practical information for individualized treatment decisions.
Collapse
Affiliation(s)
- Zhuanyun Li
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Pang
- Department of Neurophysiology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Yongkai Li
- Department of Emergency Medicine, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Yaling Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianfeng Peng
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghao Hu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Niu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiming Li
- Department of Emergency Medicine, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
- Jiming Li,
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaorong Wang,
| |
Collapse
|
30
|
Bartlett B, Ludewick HP, Verma S, Corrales-Medina VF, Waterer G, Lee S, Dwivedi G. Cardiovascular changes after pneumonia in a dual disease mouse model. Sci Rep 2022; 12:11124. [PMID: 35778475 PMCID: PMC9249762 DOI: 10.1038/s41598-022-15507-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Residual inflammation in cardiovascular organs is thought to be one of the catalysts for the increased risk of cardiovascular complications seen following pneumonia. To test this hypothesis, we investigated changes in plaque characteristics and inflammatory features in ApoE-/- mouse aorta and heart following pneumonia. Male ApoE-/- mice were fed a high fat diet for 8 weeks before intranasal inoculation with either Streptococcus pneumoniae serotype 4 (test group) or phosphate buffered saline (control group). Mice were sacrificed at 2-, 7- and 28-days post-challenge. Changes in plaque burden and characteristics in aortic root and thoracic aorta were characterized by Oil red O and Trichrome stains. Inflammatory changes were investigated by FDG-PET imaging and immunofluorescence staining. We found TIGR4-infected mice present with increased plaque presence in the aortic root and thoracic aorta at 2- and 28-days post-inoculation, respectively. Aortic wall remodelling was also more pronounced in mice challenged with pneumococci at 28 days post-inoculation. Aortic root plaques of infected mice had reduced collagen and smooth muscle cells, consistent with an unstable plaque phenotype. Pneumonia alters plaque burden, plaque characteristics, and aortic wall remodelling in ApoE-/- mice. These effects caused by Streptococcus pneumoniae TIGR4, may contribute to the increased risk of cardiovascular complications seen in survivors of this infection.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Herbert P Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, PET CT and Radionuclide Therapy, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Vicente F Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Grant Waterer
- School of Medicine, University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital, Perth, WA, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia.
- School of Medicine, University of Western Australia, Perth, WA, Australia.
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, Australia.
- Harry Perkins Institute of Medical Research and Fiona Stanley Hospital, The University of Western Australia, Perth, Australia.
| |
Collapse
|
31
|
Jaiswal V, Ang SP, Lnu K, Ishak A, Pokhrel NB, Chia JE, Hajra A, Biswas M, Matetic A, Dhatt R, Mamas MA. Effect of Pneumococcal Vaccine on Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:3799. [PMID: 35807082 PMCID: PMC9267914 DOI: 10.3390/jcm11133799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Various studies have suggested the possible cardiovascular (CV) protective effects of the pneumococcal vaccine (PV). Therefore, we conducted a meta-analysis to assess the association between recipients of PV with mortality and CV outcomes among patients with and without established cardiovascular disease. We performed a systematic literature search in PubMed, Embase, and Scopus for studies evaluating the effect of PV on mortality and CV outcomes. A total of 15 studies with 347,444 patients were included in the meta-analysis: 111,784 patients received PV (32%) and 235,660 patients were in the unvaccinated group (68%). Recipients of PV were associated with decreased all-cause mortality (HR, 0.76 (95% CI: 0.66 to 0.87), p < 0.001). PV was associated with a decrease in the incidence of myocardial infarction (MI) (HR, 0.73 (95% CI: 0.56−0.96), p = 0.02), without significant reduction in CV mortality (HR, 0.87 (95% CI: 0.72−1.07), p = 0.18) and stroke (HR, 1.01 (95% CI: 0.93−1.10), p = 0.82). Our study found PV was associated with decreased risk of all-cause mortality and MI. Future RCTs will be necessary to confirm benefits associated with receipt of PV.
Collapse
Affiliation(s)
- Vikash Jaiswal
- Department of Medicine, Larkin Community Hospital, South Miami, FL 33143, USA;
| | - Song Peng Ang
- Department of Internal Medicine, Rutgers Health/Community Medical Center, Toms River, NJ 08755, USA;
| | - Kriti Lnu
- Department of Internal Medicine, UPMC Harrisburg, Harrisburg, PA 17105, USA;
| | - Angela Ishak
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus;
| | | | - Jia Ee Chia
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Adrija Hajra
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, The Bronx, NY 10461, USA;
| | - Monodeep Biswas
- Division of Cardiology, Wellspan Cardiology, Lancaster, PA 17602, USA;
| | - Andrija Matetic
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia;
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Keele University, Keele ST5 5BG, UK
| | - Ravinder Dhatt
- Department of Internal Medicine, UPMC Harrisburg, Harrisburg, PA 17105, USA;
| | - Mamas A. Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
32
|
Oh MW, Lella M, Kuo SH, Tal-Gan Y, Lau GW. Pharmacological Evaluation of Synthetic Dominant-Negative Peptides Derived from the Competence-Stimulating Peptide of Streptococcus pneumoniae. ACS Pharmacol Transl Sci 2022; 5:299-305. [PMID: 35592433 PMCID: PMC9112410 DOI: 10.1021/acsptsci.2c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/28/2022]
Abstract
The competence regulon of Streptococcus pneumoniae (pneumococcus) is a quorum-sensing circuitry that regulates the ability of this pathogen to acquire antibiotic resistance or perform serotype switching, leading to vaccine-escape serotypes, via horizontal gene transfer, as well as initiate virulence. Induction of the competence regulon is centered on binding of the competence-stimulating peptide (CSP) to its cognate receptor, ComD. We have recently synthesized multiple dominant-negative peptide analogs capable of inhibiting competence induction and virulence in S. pneumoniae. However, the pharmacodynamics and safety profiles of these peptide drug leads have not been characterized. Therefore, in this study, we compared the biostability of cyanine-7.5-labeled wild-type CSPs versus dominant-negative peptide analogs (dnCSPs) spatiotemporally by using an IVIS Spectrum in vivo imaging system. Moreover, in vitro cytotoxicity and in vivo toxicity were evaluated. We conclude that our best peptide analog, CSP1-E1A-cyc(Dap6E10), is an attractive therapeutic agent against pneumococcal infection with superior safety and pharmacokinetics profiles.
Collapse
Affiliation(s)
- Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
33
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Pandemic Influenza Infection Promotes Streptococcus pneumoniae Infiltration, Necrotic Damage, and Proteomic Remodeling in the Heart. mBio 2022; 13:e0325721. [PMID: 35089061 PMCID: PMC8725598 DOI: 10.1128/mbio.03257-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For over a century, it has been reported that primary influenza infection promotes the development of a lethal form of bacterial pulmonary disease. More recently, pneumonia events caused by both viruses and bacteria have been directly associated with cardiac damage. Importantly, it is not known whether viral-bacterial synergy extends to extrapulmonary organs such as the heart. Using label-free quantitative proteomics and molecular approaches, we report that primary infection with pandemic influenza A virus leads to increased Streptococcus pneumoniae translocation to the myocardium, leading to general biological alterations. We also observed that each infection alone led to proteomic changes in the heart, and these were exacerbated in the secondary bacterial infection (SBI) model. Gene ontology analysis of significantly upregulated proteins showed increased innate immune activity, oxidative processes, and changes to ion homeostasis during SBI. Immunoblots confirmed increased complement and antioxidant activity in addition to increased expression of angiotensin-converting enzyme 2. Using an in vitro model of sequential infection in human cardiomyocytes, we observed that influenza enhances S. pneumoniae cytotoxicity by promoting oxidative stress enhancing bacterial toxin-induced necrotic cell death. Influenza infection was found to increase receptors that promote bacterial adhesion, such as polymeric immunoglobulin receptor and fibronectin leucine-rich transmembrane protein 1 in cardiomyocytes. Finally, mice deficient in programmed necrosis (i.e., necroptosis) showed enhanced innate immune responses, decreased virus-associated pathways, and promotion of mitochondrial function upon SBI. The presented results provide the first in vivo evidence that influenza infection promotes S. pneumoniae infiltration, necrotic damage, and proteomic remodeling of the heart. IMPORTANCE Adverse cardiac events are a common complication of viral and bacterial pneumonia. For over a century, it has been recognized that influenza infection promotes severe forms of pulmonary disease mainly caused by the bacterium Streptococcus pneumoniae. The extrapulmonary effects of secondary bacterial infections to influenza virus are not known. In the present study, we used a combination of quantitative proteomics and molecular approaches to assess the underlying mechanisms of how influenza infection promotes bacteria-driven cardiac damage and proteome remodeling. We further observed that programmed necrosis (i.e., necroptosis) inhibition leads to reduced damage and proteome changes associated with health.
Collapse
|
35
|
Klugman KP, Feldman C. Serotype-specific Cardiac Involvement in Pneumococcal Pneumonia. Clin Infect Dis 2022; 74:507-508. [PMID: 32964220 PMCID: PMC8834653 DOI: 10.1093/cid/ciaa1434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Keith P Klugman
- Department of Global Health, School of Public Health, Emory University, Atlanta, Georgia, USA.,Department of Medical Microbiology, School of Pathology, University of the Witwatersrand Medical School, Johannesburg, South Africa.,Pneumonia Program, Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
37
|
Guo H, Zuo Z, Wang F, Gao C, Chen K, Fang J, Cui H, Ouyang P, Geng Y, Chen Z, Huang C, Zhu Y, Deng H. Attenuated Cardiac oxidative stress, inflammation and apoptosis in Obese Mice with nonfatal infection of Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112760. [PMID: 34509165 DOI: 10.1016/j.ecoenv.2021.112760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Obesity is a risk factor of many diseases, but could be beneficial to the individuals with bacterial infection. The present study was conducted to investigate the relationship between obesity and heart during nonfatal bacterial infection. Male normal (lean) and diet-induced obesity mice (DIO, fed with high-fat diet) were chosen to perform nasal instillation with E. coli to establish a nonfatal acute mouse model. The cardiac histopathology, inflammation and oxidative damage, as well as apoptosis were detected post-infection. The results revealed that the Escherichia coli (E.coli)-infected mice exhibited increased cardiac index, contents of IL-1β, IL-6, IL-8, TNF-α, leptin and resistin, levels of apoptotic proteins (caspase-3 and caspase-9, and bax/bcl-2 ratio), cardiac pathological changes and oxidative stress. Furthermore, these parameters were more serious in the lean mice than those in the DIO mice. In summary, our findings gave a new sight that E.coli infection impaired heart via histopathological lesions, inflammation and oxidative stress and excessive apoptosis of cardiomyocytes. Interestingly, obesity exerted attenuated effects on the heart of mice with non-fatal infection of E.coli through decreased inflammation, oxidative stress and apoptosis of cardiac tissue.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Caixia Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
38
|
Meningitis and high-grade, second-degree atrioventricular block in an adolescent: causal effect or coincidence? Cardiol Young 2021; 31:1873-1875. [PMID: 33966681 DOI: 10.1017/s1047951121001785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe an adolescent with Streptococcus pneumoniae meningitis and symptomatic high-grade, second-degree atrioventricular block requiring permanent pacemaker placement. It is difficult to ascertain if these two diagnoses were independent or had a causal relationship though ongoing symptoms were not present prior to the infection. Because of this uncertainty, awareness that rhythm disturbances can be cardiac in origin but also secondary to other aetiologies, such as infection, is warranted.
Collapse
|
39
|
Capsule Promotes Intracellular Survival and Vascular Endothelial Cell Translocation during Invasive Pneumococcal Disease. mBio 2021; 12:e0251621. [PMID: 34634940 PMCID: PMC8510516 DOI: 10.1128/mbio.02516-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polysaccharide capsule that surrounds Streptococcus pneumoniae (Spn) is one of its most important virulence determinants, serving to protect against phagocytosis. To date, 100 biochemical and antigenically distinct capsule types, i.e., serotypes, of Spn have been identified. Yet how capsule influences pneumococcal translocation across vascular endothelial cells (VEC), a key step in the progression of invasive disease, was unknown. Here, we show that despite capsule being inhibitory of Spn uptake by VEC, capsule enhances the escape rate of internalized pneumococci and thereby promotes translocation. Upon investigation, we determined that capsule protected Spn against intracellular killing by VEC and H2O2-mediated killing in vitro. Using a nitroblue tetrazolium reduction assay and nuclear magnetic resonance (NMR) analyses, purified capsule was confirmed as having antioxidant properties which varied according to serotype. Using an 11-member panel of isogenic capsule-switch mutants, we determined that serotype affected levels of Spn resistance to H2O2-mediated killing in vitro, with killing resistance correlated positively with survival duration within VEC, rate of transcytosis to the basolateral surface, and human attack rates. Experiments with mice supported our in vitro findings, with Spn producing oxidative-stress-resistant type 4 capsule being more organ-invasive than that producing oxidative-stress-sensitive type 2 capsule during bacteremia. Capsule-mediated protection against intracellular killing was also observed for Streptococcus pyogenes and Staphylococcus aureus. We conclude that capsular polysaccharide plays an important role within VEC, serving as an intracellular antioxidant, and that serotype-dependent differences in antioxidant capabilities impact the efficiency of VEC translocation and a serotype’s potential for invasive disease.
Collapse
|
40
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
41
|
Park SS, Gonzalez-Juarbe N, Riegler AN, Im H, Hale Y, Platt MP, Croney C, Briles DE, Orihuela CJ. Streptococcus pneumoniae binds to host GAPDH on dying lung epithelial cells worsening secondary infection following influenza. Cell Rep 2021; 35:109267. [PMID: 34133917 PMCID: PMC8265312 DOI: 10.1016/j.celrep.2021.109267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (Spn) alone and during co-infection with influenza A virus (IAV) can result in severe pneumonia with mortality. Pneumococcal surface protein A (PspA) is an established virulence factor required for Spn evasion of lactoferricin and C-reactive protein-activated complement-mediated killing. Herein, we show that PspA functions as an adhesin to dying host cells. We demonstrate that PspA binds to host-derived glyceraldehyde-3-phosphate dehydrogenase (GAPDH) bound to outward-flipped phosphatidylserine residues on dying host cells. PspA-mediated adhesion was to apoptotic, pyroptotic, and necroptotic cells, but not healthy lung cells. Using isogenic mutants of Spn, we show that PspA-GAPDH-mediated binding to lung cells increases pneumococcal localization in the lower airway, and this is enhanced as a result of pneumolysin exposure or co-infection with IAV. PspA-mediated binding to GAPDH requires amino acids 230-281 in its α-helical domain with intratracheal inoculation of this PspA fragment alongside the bacteria reducing disease severity in an IAV/Spn pneumonia model.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashleigh N Riegler
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansol Im
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Christina Croney
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Influenza-Induced Oxidative Stress Sensitizes Lung Cells to Bacterial-Toxin-Mediated Necroptosis. Cell Rep 2021; 32:108062. [PMID: 32846120 PMCID: PMC7570217 DOI: 10.1016/j.celrep.2020.108062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Pneumonias caused by influenza A virus (IAV) co- and secondary bacterial infections are characterized by their severity and high mortality rate. Previously, we have shown that bacterial pore-forming toxin (PFT)-mediated necroptosis is a key driver of acute lung injury during bacterial pneumonia. Here, we evaluate the impact of IAV on PFT-induced acute lung injury during co- and secondary Streptococcus pneumoniae (Spn) infection. We observe that IAV synergistically sensitizes lung epithelial cells for PFT-mediated necroptosis in vitro and in murine models of Spn co-infection and secondary infection. Pharmacoelogical induction of oxidative stress without virus sensitizes cells for PFT-mediated necroptosis. Antioxidant treatment or inhibition of necroptosis reduces disease severity during secondary bacterial infection. Our results advance our understanding on the molecular basis of co- and secondary bacterial infection to influenza and identify necroptosis inhibition and antioxidant therapy as potential intervention strategies.
Collapse
|
43
|
Froneman C, Kelleher P, José RJ. Pneumococcal Vaccination in Immunocompromised Hosts: An Update. Vaccines (Basel) 2021; 9:536. [PMID: 34063785 PMCID: PMC8223771 DOI: 10.3390/vaccines9060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Infections with the pathogen, Streptococcus pneumoniae, are a common cause of morbidity and mortality worldwide. It particularly affects those at the extremes of age and immunocompromised individuals. Preventing pneumococcal disease is paramount in at risk individuals, and pneumococcal vaccination should be offered. Here, we discuss the role of pneumococcal vaccination in specific groups of immunocompromised hosts.
Collapse
Affiliation(s)
- Claire Froneman
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
| | - Peter Kelleher
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Department of Infectious Disease, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ricardo J. José
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Centre for Inflammation and Tissue Repair, UCL, London WC1E 6BT, UK
| |
Collapse
|
44
|
de Leau MM, Kuipers RS. Cardiovascular complications of Streptococcus pneumoniae bacteraemia. BMJ Case Rep 2021; 14:e240341. [PMID: 33827874 PMCID: PMC8030674 DOI: 10.1136/bcr-2020-240341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 11/03/2022] Open
Abstract
The incidence of Streptococcus pneumoniae bacteraemia has risen due to a worldwide increase in immunocompromised patients and antibiotic resistance. We describe three patients who experienced severe, including cardiovascular, complications of pneumococcal bacteraemia. Cardiovascular complications related to pneumococci may run a fulminant course. However, some of these life-threatening complications (eg, endocarditis and aortitis) may long remain unnoticed or be misdiagnosed and therefore delay correct treatment. We review the literature with regards to the incidence, diagnosis and treatment of these rare but possibly lethal and hence important cardiovascular complications.
Collapse
Affiliation(s)
- Michelle M de Leau
- Heart Center, department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Remko S Kuipers
- Heart Center, department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Beno SM, Riegler AN, Gilley RP, Brissac T, Wang Y, Kruckow KL, Jadapalli JK, Wright GM, Shenoy AT, Stoner SN, Restrepo MI, Deshane JS, Halade GV, González-Juarbe N, Orihuela CJ. Inhibition of Necroptosis to Prevent Long-term Cardiac Damage During Pneumococcal Pneumonia and Invasive Disease. J Infect Dis 2021; 222:1882-1893. [PMID: 32492702 DOI: 10.1093/infdis/jiaa295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infection can result in bacteremia with devastating consequences including heart damage. Necroptosis is a proinflammatory form of cell death instigated by pore-forming toxins such as S. pneumoniae pneumolysin. Necroptosis-inhibiting drugs may lessen organ damage during invasive pneumococcal disease (IPD). METHODS In vitro experiments were carried out with human and mouse cardiomyocytes. Long-term cardiac damage was assessed using high-resolution echocardiography in ampicillin-rescued mice 3 months after challenge with S. pneumoniae. Ponatinib, a necroptosis-inhibiting and Food and Drug Administration-approved drug for lymphocytic leukemia treatment, was administered intraperitoneally alongside ampicillin to test its therapeutic efficacy. Histology of heart sections included hematoxylin-eosin staining for overt damage, immunofluorescence for necroptosis, and Sirius red/fast green staining for collagen deposition. RESULTS Cardiomyocyte death and heart damage was due to pneumolysin-mediated necroptosis. IPD leads to long-term cardiac damage, as evidenced by de novo collagen deposition in mouse hearts and a decrease in fractional shortening. Adjunct necroptosis inhibition reduced the number of S. pneumoniae foci observed in hearts of acutely infected mice and serum levels of troponin I. Ponatinib reduced collagen deposition and protected heart function in convalescence. CONCLUSIONS Acute and long-term cardiac damage incurred during IPD is due in part to cardiomyocyte necroptosis. Necroptosis inhibitors may be a viable adjunct therapy.
Collapse
Affiliation(s)
- Sarah M Beno
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashleigh N Riegler
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryan P Gilley
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Terry Brissac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine L Kruckow
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeevan K Jadapalli
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Griffin M Wright
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anukul T Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N Stoner
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
46
|
Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021; 89:IAI.00779-20. [PMID: 33397818 DOI: 10.1128/iai.00779-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.
Collapse
|
47
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
48
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
49
|
Algowhary M. Association between age and infection in patients with acute ST-elevation myocardial infarction. Egypt Heart J 2021; 73:12. [PMID: 33515355 PMCID: PMC7847417 DOI: 10.1186/s43044-021-00137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background ST-elevation myocardial infarction (STEMI) in young patients has a unique risk profile. We aimed to detect bacteria in aspirate of infarct artery in young versus old patients. Results Aspirates of consecutive 140 patients who underwent a primary coronary intervention were taken for bacteriological, microscopical, and immunohistochemical (for bacterial pneumolysin) examinations. Their results were calculated in young (≤ 50 years) versus old (> 50 years) patients. Median age (interquartile range) was 45 (38–48) years in young (60 patients) and 59 (55–65) years in old (80 patients) patients, p < 0.0001. Both groups had similar baseline data except age, males, diabetes, hyperlipidemia, family history, lesion length, and ectatic vessel. Different bacteria were cultured in 11.3% of all patients involving 22.6% of young and 2.8% of old patients [hazard ratio 8.03 (95% CI 1.83–51.49), p = 0.002]. By multivariate analyses, age groups and leukocytic count were independent predictors of infection (bacteria and pneumolysin), p = 0.027 and p < 0.0001, respectively. Optimal cutoff value of leukocytic count was 12,250 cells/μl [ROC curve sensitivity 85.7%, specificity 86.4%, and AUC 0.97 (95% CI 0.95–1.0), p < 0.001]. Infection was an independent predictor of STEMI in young versus old patients, p < 0.001. Nevertheless, in-hospital events occurred insignificantly different and neither age groups nor infection was predictor of in-hospital events. Conclusions Young patients had significantly higher percentage of bacteria in their infarcted artery than old patients. High leukocytic count in patients below 50 predicts infection that causes acute myocardial infarction. Antibacterial trials directed toward this group are required for secondary prevention.
Collapse
Affiliation(s)
- Magdy Algowhary
- Department of Cardiovascular Medicine, Assiut University Heart Hospital, Assiut University, Asyut, 71515, Egypt.
| |
Collapse
|
50
|
Lin YH, Platt MP, Gilley RP, Brown D, Dube PH, Yu Y, Gonzalez-Juarbe N. Influenza Causes MLKL-Driven Cardiac Proteome Remodeling During Convalescence. Circ Res 2021; 128:570-584. [PMID: 33501852 DOI: 10.1161/circresaha.120.318511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Patients with and without cardiovascular diseases have been shown to be at risk of influenza-mediated cardiac complications. Recent clinical reports support the notion of a direct link between laboratory-confirmed influenza virus infections and adverse cardiac events. OBJECTIVE Define the molecular mechanisms underlying influenza virus-induced cardiac pathogenesis after resolution of pulmonary infection and the role of necroptosis in this process. METHODS AND RESULTS Hearts from wild-type and necroptosis-deficient (MLKL [mixed lineage kinase domain-like protein]-KO) mice were dissected 12 days after initial influenza A virus (IAV) infection when viral titers were undetectable in the lungs. Immunofluorescence microscopy and plaque assays showed presence of viable IAV particles in the myocardium without generation of interferon responses. Global proteome and phosphoproteome analyses using high-resolution accurate mass-based LC-MS/MS and label-free quantitation showed that the global proteome as well as the phosphoproteome profiles were significantly altered in IAV-infected mouse hearts in a strain-independent manner. Necroptosis-deficient mice had increased survival and reduced weight loss post-IAV infection, as well as increased antioxidant and mitochondrial function, indicating partial protection to IAV infection. These findings were confirmed in vitro by pretreatment of human and rat myocytes with antioxidants or necroptosis inhibitors, which blunted oxidative stress and mitochondrial damage after IAV infection. CONCLUSIONS This study provides the first evidence that the cardiac proteome and phosphoproteome are significantly altered post-pulmonary influenza infection. Moreover, viral particles can persist in the heart after lung clearance, altering mitochondrial function and promoting cell death without active replication and interferon responses. Finally, our findings show inhibition of necroptosis or prevention of mitochondrial damage as possible therapeutic interventions to reduce cardiac damage during influenza infections. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Ryan P Gilley
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - David Brown
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| |
Collapse
|