1
|
Gubler DJ, Hanley KA, Monath TP, Morens DM, Nogueira ML, Vasilakis N, Weaver SC. Yellow Jack: a modern threat to Asia-Pacific countries? NPJ VIRUSES 2025; 3:34. [PMID: 40295840 PMCID: PMC12022128 DOI: 10.1038/s44298-024-00079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 04/30/2025]
Abstract
In 1923, H.R. Carter published a seminal treatise on the possibility of yellow fever virus spreading to the Asia Pacific region, where large numbers of susceptible people were at risk of infection. This paper marks the 100th anniversary of that publication, and posits that, despite many public health advances, global trends increase the likelihood of yellow fever virus geographic spread. Potential reasons for the failure of the virus to spread are discussed.
Collapse
Affiliation(s)
- Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | - Mauricio Lacerda Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Scott C Weaver
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Franz M, Armitage SAO, McMahon D, Subasi BS, Rafaluk C. Trade-offs in virulence evolution: a Hierarchy-of-Hypotheses approach. Trends Parasitol 2025; 41:188-195. [PMID: 39939271 DOI: 10.1016/j.pt.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
Understanding the evolution of virulence, that is, the harm pathogens cause their hosts, has major and wide-spread repercussions. A central concept of virulence evolution is the so-called 'trade-off hypothesis', a seemingly straightforward relationship between virulence and transmission. However, substantial ambiguity in terminology related to this hypothesis threatens progress in the field. To address this, we apply a Hierarchy-of-Hypotheses approach to provide structured, visual representations of ideas linked to this hypothesis. We illustrate that the trade-off hypothesis is a complex set of many different hypotheses and trade-offs, and we clarify ambiguities and biases in commonly used terminology in the literature. Thereby, we hope to facilitate a more precise understanding of what the trade-off hypothesis means, enabling more targeted and precise hypothesis testing.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
| | - Sophie A O Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Dino McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Bengisu S Subasi
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Charlotte Rafaluk
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| |
Collapse
|
3
|
Domínguez‐Castanedo O, Gaspar‐Navarro J, Zúñiga‐Vega JJ. Does the Infestation by Trematode Parasites Influence Trade-Offs Between Somatic Condition and Male Reproductive Traits in a Viviparous Fish? JOURNAL OF FISH DISEASES 2025; 48:e14038. [PMID: 39552180 PMCID: PMC11706311 DOI: 10.1111/jfd.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Life history theory predicts that a trade-off may occur when an increased investment in one fitness component causes a reduced investment in another. Parasites generate changes in the optimal life history traits of organisms, causing compromises for their hosts. The objective of this research was to determine whether trematodes Clinostomum sp. and Uvulifer sp. inflict measurable damage on the males of the viviparous fish Poeciliopsis infans, generating trade-offs between somatic condition and reproductive traits (gonad mass and gonopodium length). We found (i) a negative relationship of large encysted metacercariae and non-encysted metacercariae on somatic condition. Interestingly, individuals with a higher parasite load had a worse body condition, but bigger gonads and longer gonopodium; and, (ii) a bond between small encysted metacercariae and non-encysted metacercariae with smaller gonopodia, only in fish with poorer somatic condition. The strongest correlation was given by the non-encysted metacercariae, probably due to mechanical damage during migration through the body cavity. We did not find any trade-off effects of Uvulifer sp. We consider that the statistical effects found on somatic condition can be attributed to a greater reproductive investment, generating energetic costs that compromise their defences against infection, allowing a greater parasite load.
Collapse
Affiliation(s)
- Omar Domínguez‐Castanedo
- Laboratorio de Ecología Evolutiva y Demografía Animal, Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Asociación Mexicana Para el Estudio y Conservación de CyprinodontiformesMexico CityMexico
| | - Jorge Gaspar‐Navarro
- Laboratorio de Sanidad Acuícola y Parasitología Molecular, Departamento El Hombre y Su AmbienteUniversidad Autónoma Metropolitana, Unidad XochimilcoMexico CityMexico
| | - J. Jaime Zúñiga‐Vega
- Laboratorio de Ecología Evolutiva y Demografía Animal, Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
4
|
Kabengele K, Turner WC, Turner PE, Ogbunugafor CB. A meta-analysis highlights the idiosyncratic nature of tradeoffs in laboratory models of virus evolution. Virus Evol 2024; 10:veae105. [PMID: 39717708 PMCID: PMC11665823 DOI: 10.1093/ve/veae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Different theoretical frameworks have been invoked to guide the study of virus evolution. Three of the more prominent ones are (i) the evolution of virulence, (ii) life history theory, and (iii) the generalism-specialism dichotomy. All involve purported tradeoffs between traits that define the evolvability and constraint of virus-associated phenotypes. However, as popular as these frameworks are, there is a surprising paucity of direct laboratory tests of the frameworks that support their utility as broadly applicable theoretical pillars that can guide our understanding of disease evolution. In this study, we conduct a meta-analysis of direct experimental evidence for these three frameworks across several widely studied virus-host systems: plant viruses, fungal viruses, animal viruses, and bacteriophages. We extracted 60 datasets from 28 studies and found a range of relationships between traits in different analysis categories (e.g., frameworks, virus-host systems). Our work demonstrates that direct evidence for relationships between traits is highly idiosyncratic and specific to the host-virus system and theoretical framework. Consequently, scientists researching viral pathogens from different taxonomic groups might reconsider their allegiance to these canons as the basis for expectation, explanation, or prediction. Future efforts could benefit from consistent definitions, and from developing frameworks that are compatible with the evidence and apply to particular biological and ecological contexts.
Collapse
Affiliation(s)
- Ketty Kabengele
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
| | - Wendy C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Microbiology Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Public Health Modeling Unit, Yale School of Public Health 60 College Street , New Haven CT 06510, United States
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States
| |
Collapse
|
5
|
Kwak JS, Kim JY, Kim KH. Effect of mutations in GDNV motif of viral hemorrhagic septicemia virus (VHSV) L protein on polymerase activity, viral growth, and in vivo virulence. Virology 2024; 600:110257. [PMID: 39369673 DOI: 10.1016/j.virol.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Most Mononegavirales viruses have a GDNQ motif within the L protein, whereas Novirhabdovirus species feature a GDNV motif. This study examined the function of the GDNV motif within the L protein of viral hemorrhagic septicemia virus (VHSV) by modifying its amino acid composition. Substituting the aspartic acid (D) with valine (V) completely abolished polymerase activity in a minigenome assay. Replacing GDNV with GDNQ showed no significant difference in luciferase activity. Further characterization using reverse genetically engineered recombinant viruses revealed that rVHSV-LGDNQ exhibited an accelerated replication rate and higher virus titer in EPC cells than rVHSV-wild. Olive flounder infected with rVHSV-LGDNQ experienced higher early-stage mortality but lower overall mortality than those infected with rVHSV-wild. These findings suggest that while the GDNQ motif may positively influence VHSV replication speed, it may not confer an overall advantage for the ultimate viral pathogenicity.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Kongju National University, Chungcheongnam-do, 32588, South Korea
| | - Jae Young Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
6
|
Woodruff E, Hardy NB. Virulence Evolution via Pleiotropy in Vector-Borne Plant Pathogens. Ecol Evol 2024; 14:e70741. [PMID: 39687580 PMCID: PMC11646936 DOI: 10.1002/ece3.70741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The dynamics of virulence evolution in vector-borne plant pathogens can be complex. Here, we use individual-based, quantitative-genetic simulations to investigate how virulence evolution depends on genetic trade-offs and population structure. Although quite generic, the model is inspired by the ecology of the plant-pathogenic bacterium Xylella fastidiosa, and we use it to gain insights into possible modes of virulence evolution in that group. In particular, we aim to sharpen our intuition about how virulence may evolve over short time scales via antagonistically pleiotropic alleles affecting pathogen performance within hosts and vectors. We find that even when pathogens find themselves much more often in hosts than vectors, selection in the vector environment can cause correlational and potentially non-adaptive changes in virulence in the host. The extent of such correlational virulence evolution depends on many system parameters, including the pathogen transmission rate, the proportion of the pathogen population occurring in hosts, the strengths of selection in host and vector environments, and the functional relationship between pathogen load and virulence. But there is a statistical interaction between the strength of selection in vectors and the proportion of the pathogen population in hosts, such that if within-vector selection is strong enough, over the short term, it can dominate virulence evolution, even when the host environment predominates.
Collapse
Affiliation(s)
- Elise Woodruff
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Nate B. Hardy
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
7
|
Pak D, Kamiya T, Greischar MA. Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence. Evolution 2024; 78:1287-1301. [PMID: 38581661 DOI: 10.1093/evolut/qpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
Collapse
Affiliation(s)
- Damie Pak
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| | - Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
- HRB Clinical Research Facility, University of Galway, Ireland
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| |
Collapse
|
8
|
Surasinghe S, Kabengele K, Turner PE, Ogbunugafor CB. Evolutionary Invasion Analysis of Modern Epidemics Highlights the Context-Dependence of Virulence Evolution. Bull Math Biol 2024; 86:88. [PMID: 38877355 PMCID: PMC11178639 DOI: 10.1007/s11538-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Models are often employed to integrate knowledge about epidemics across scales and simulate disease dynamics. While these approaches have played a central role in studying the mechanics underlying epidemics, we lack ways to reliably predict how the relationship between virulence (the harm to hosts caused by an infection) and transmission will evolve in certain virus-host contexts. In this study, we invoke evolutionary invasion analysis-a method used to identify the evolution of uninvadable strategies in dynamical systems-to examine how the virulence-transmission dichotomy can evolve in models of virus infections defined by different natural histories. We reveal peculiar patterns of virulence evolution between epidemics with different disease natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with regards to the public health implications of predicting virus evolution, and in broader theoretical canon involving virulence evolution in host-parasite systems.
Collapse
Affiliation(s)
- Sudam Surasinghe
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Ketty Kabengele
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Microbiology Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, 06510, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
9
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
10
|
Hoyer-Leitzel A, Iams S, Haslam-Hyde A, Zeeman M, Fefferman N. An immuno-epidemiological model for transient immune protection: A case study for viral respiratory infections. Infect Dis Model 2023; 8:855-864. [PMID: 37502609 PMCID: PMC10369473 DOI: 10.1016/j.idm.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/14/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
The dynamics of infectious disease in a population critically involves both within-host pathogen replication and between host pathogen transmission. While modeling efforts have recently explored how within-host dynamics contribute to shaping population transmission, fewer have explored how ongoing circulation of an epidemic infectious disease can impact within-host immunological dynamics. We present a simple, influenza-inspired model that explores the potential for re-exposure during a single, ongoing outbreak to shape individual immune response and epidemiological potential in non-trivial ways. We show how even a simplified system can exhibit complex ongoing dynamics and sensitive thresholds in behavior. We also find epidemiological stochasticity likely plays a critical role in reinfection or in the maintenance of individual immunological protection over time.
Collapse
Affiliation(s)
- A. Hoyer-Leitzel
- Department of Mathematics and Statistics, Mount Holyoke College, 50 College St, South Hadley, MA, 01075, USA
| | - S.M. Iams
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA
| | - A.J. Haslam-Hyde
- Department of Mathematics and Statistics, Boston University, USA
| | - M.L. Zeeman
- Department of Mathematics, Bowdoin College, USA
| | - N.H. Fefferman
- Dept of Mathematics & Dept of Ecology and Evolutionary Biology & NIMBioS, University of Tennessee, Knoxville, USA
| |
Collapse
|
11
|
Hanley KA, Cecilia H, Azar SR, Moehn B, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Immunologically mediated trade-offs shaping transmission of sylvatic dengue and Zika viruses in native and novel non-human primate hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547187. [PMID: 37425901 PMCID: PMC10327119 DOI: 10.1101/2023.06.30.547187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| |
Collapse
|
12
|
Kennedy DA. Death is overrated: the potential role of detection in driving virulence evolution. Proc Biol Sci 2023; 290:20230117. [PMID: 36987649 PMCID: PMC10050922 DOI: 10.1098/rspb.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
A common assumption in the evolution of virulence theory literature is that pathogens transmit better when they exploit their host more heavily, but by doing so, they impose a greater risk of killing their host, thus truncating infectious periods and reducing their own opportunities for transmission. Here, I derive an equation for the magnitude of this cost in terms of the infection fatality rate, and in doing so, I show that there are many cases where mortality costs are too small to plausibly constrain increases in host exploitation by pathogens. I propose that pathogen evolution may often be constrained by detection costs, whereby hosts alter their behaviour when infection is detectable, and thus reduce pathogen opportunities for onward transmission. I then derive an inequality to illustrate when mortality costs or detection costs impose stronger constraints on pathogen evolution, and I use empirical data from the literature to demonstrate that detection costs are frequently large in both human and animal populations. Finally, I give examples of how evolutionary predictions can change depending on whether costs of host exploitation are borne out through mortality or detection.
Collapse
Affiliation(s)
- David A. Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Xu Z, Wei D, Zhang H, Demongeot J. A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies. Viruses 2023; 15:v15020586. [PMID: 36851801 PMCID: PMC9962246 DOI: 10.3390/v15020586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics with virus dynamics based on a comprehensive understanding of immunology principles. This model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback stimulation of the virus-antibody complex on the antibody regeneration. Besides providing quantitative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing the virus-antibody interaction. It is proposed that the environmental antigenic substances help maintain the memory cell level and the corresponding neutralizing antibodies secreted by those memory cells. A broader application is also visualized in predicting the antibody protection time caused by a natural infection. Suitable binding antibodies and the presence of massive environmental antigenic substances would prolong the protection time against breakthrough infection. The model also displays excellent fitness and provides good explanations for antibody selection, antibody interference, and self-reinfection. It helps elucidate how our immune system efficiently develops neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed induction of fast-binding antibodies. Eventually, this model will inform the future construction of an optimal mathematical model and help us fight against those infectious diseases.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
- Correspondence: (Z.X.); (J.D.)
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (Z.X.); (J.D.)
| |
Collapse
|
14
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
15
|
Role of the Pangolin in Origin of SARS-CoV-2: An Evolutionary Perspective. Int J Mol Sci 2022; 23:ijms23169115. [PMID: 36012377 PMCID: PMC9408936 DOI: 10.3390/ijms23169115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.
Collapse
|
16
|
Kudriavtsev AV, Vakhrusheva AV, Novoseletsky VN, Bozdaganyan ME, Shaitan KV, Kirpichnikov MP, Sokolova OS. Immune Escape Associated with RBD Omicron Mutations and SARS-CoV-2 Evolution Dynamics. Viruses 2022; 14:1603. [PMID: 35893668 PMCID: PMC9394476 DOI: 10.3390/v14081603] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The evolution and the emergence of new mutations of viruses affect their transmissibility and/or pathogenicity features, depending on different evolutionary scenarios of virus adaptation to the host. A typical trade-off scenario of SARS-CoV-2 evolution has been proposed, which leads to the appearance of an Omicron strain with lowered lethality, yet enhanced transmissibility. This direction of evolution might be partly explained by virus adaptation to therapeutic agents and enhanced escape from vaccine-induced and natural immunity formed by other SARS-CoV-2 strains. Omicron's high mutation rate in the Spike protein, as well as its previously described high genome mutation rate (Kandeel et al., 2021), revealed a gap between it and other SARS-CoV-2 strains, indicating the absence of a transitional evolutionary form to the Omicron strain. Therefore, Omicron has emerged as a new serotype divergent from the evolutionary lineage of other SARS-CoV-2 strains. Omicron is a rapidly evolving variant of high concern, whose new subvariants continue to manifest. Its further understanding and the further monitoring of key mutations that provide virus immune escape and/or high affinity towards the receptor could be useful for vaccine and therapeutic development in order to control the evolutionary direction of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aleksandr V. Kudriavtsev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
| | - Anna V. Vakhrusheva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
| | - Valery N. Novoseletsky
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
- N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.V.K.); (A.V.V.); (V.N.N.); (M.E.B.); (K.V.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
17
|
AbdelMassih A, Sedky A, Shalaby A, Shalaby AF, Yasser A, Mohyeldin A, Amin B, Saleheen B, Osman D, Samuel E, Abdelfatah E, Albustami E, ElGhamry F, Khaled H, Amr H, Gaber H, Makhlouf I, Abdeldayem J, El-Beialy JW, Milad K, El Sharkawi L, Abosenna L, Safi MG, AbdelKareem M, Gaber M, Elkady M, Ihab M, AbdelRaouf N, Khaled R, Shalata R, Mahgoub R, Jamal S, El Hawary SED, ElRashidy S, El Shorbagy S, Gerges T, Kassem Y, Magdy Y, Omar Y, Shokry Y, Kamel A, Hozaien R, El-Husseiny N, El Shershaby M. From HIV to COVID-19, Molecular mechanisms of pathogens' trade-off and persistence in the community, potential targets for new drug development. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:194. [PMID: 35818410 PMCID: PMC9258762 DOI: 10.1186/s42269-022-00879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND On the staggering emergence of the Omicron variant, numerous questions arose about the evolution of virulence and transmissibility in microbes. MAIN BODY OF THE ABSTRACT The trade-off hypothesis has long speculated the exchange of virulence for the sake of superior transmissibility in a wide array of pathogens. While this certainly applies to the case of the Omicron variant, along with influenza virus, various reports have been allocated for an array of pathogens such as human immunodeficiency virus (HIV), malaria, hepatitis B virus (HBV) and tuberculosis (TB). The latter abide to another form of trade-off, the invasion-persistence trade-off. In this study, we aim to explore the molecular mechanisms and mutations of different obligate intracellular pathogens that attenuated their more morbid characters, virulence in acute infections and invasion in chronic infections. SHORT CONCLUSION Recognizing the mutations that attenuate the most morbid characters of pathogens such as virulence or persistence can help in tailoring new therapies for such pathogens. Targeting macrophage tropism of HIV by carbohydrate-binding agents, or targeting the TMPRSS2 receptors to prevent pulmonary infiltrates of COVID-19 is an example of how important is to recognize such genetic mechanisms.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Department, Pediatric Cardiology Unit, Faculty of Medicine, Cairo University Children Hospital, Cairo University, Kasr Al Ainy Street, Cairo, 12411 Egypt
| | - Abrar Sedky
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Shalaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - AlAmira-Fawzia Shalaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Yasser
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Mohyeldin
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Saleheen
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Osman
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Elaria Samuel
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Emmy Abdelfatah
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eveen Albustami
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Farida ElGhamry
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Habiba Khaled
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hana Amr
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanya Gaber
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ismail Makhlouf
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Janna Abdeldayem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Karim Milad
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila El Sharkawi
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lina Abosenna
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Madonna G. Safi
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam AbdelKareem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Gaber
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mirna Elkady
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Ihab
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nora AbdelRaouf
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rawan Khaled
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reem Shalata
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rudayna Mahgoub
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sarah Jamal
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Seif El-Din El Hawary
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shady ElRashidy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherouk El Shorbagy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tony Gerges
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yara Kassem
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmeen Magdy
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmin Omar
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmine Shokry
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Kamel
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rafeef Hozaien
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Cairo, Egypt
- Pixagon Graphic Design Agency, Cairo, Egypt
| | - Meryam El Shershaby
- Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Walsman JC, Janecka MJ, Clark DR, Kramp RD, Rovenolt F, Patrick R, Mohammed RS, Konczal M, Cressler CE, Stephenson JF. Shoaling guppies evade predation but have deadlier parasites. Nat Ecol Evol 2022; 6:945-954. [PMID: 35618818 DOI: 10.1038/s41559-022-01772-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mary J Janecka
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael D Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina Patrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan S Mohammed
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.,Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Bull JJ, Antia R. Which 'imperfect vaccines' encourage the evolution of higher virulence? Evol Med Public Health 2022; 10:202-213. [PMID: 35539897 PMCID: PMC9081871 DOI: 10.1093/emph/eoac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objectives Theory suggests that some types of vaccines against infectious pathogens may lead to the evolution of variants that cause increased harm, particularly when they infect unvaccinated individuals. This theory was supported by the observation that the use of an imperfect vaccine to control Marek's disease virus in chickens resulted in the virus evolving to be more lethal to unvaccinated birds. This raises the concern that the use of some other vaccines may lead to similar pernicious outcomes. We examine that theory with a focus on considering the regimes in which such outcomes are expected. Methodology We evaluate the plausibility of assumptions in the original theory. The previous theory rested heavily on a particular form of transmission-mortality-recovery trade-off and invoked other assumptions about the pathways of evolution. We review alternatives to mortality in limiting transmission and consider evolutionary pathways that were omitted in the original theory. Results The regime where the pernicious evolutionary outcome occurs is narrowed by our analysis but remains possible in various scenarios. We propose a more nuanced consideration of alternative models for the within-host dynamics of infections and for factors that limit virulence. Our analysis suggests imperfect vaccines against many pathogens will not lead to the evolution of pathogens with increased virulence in unvaccinated individuals. Conclusions and implications Evolution of greater pathogen mortality driven by vaccination remains difficult to predict, but the scope for such outcomes appears limited. Incorporation of mechanistic details into the framework, especially regarding immunity, may be requisite for prediction accuracy. Lay Summary A virus of chickens appears to have evolved high mortality in response to a vaccine that merely prevented disease symptoms. Theory has predicted this type of evolution in response to a variety of vaccines and other interventions such as drug treatment. Under what circumstances is this pernicious result likely to occur? Analysis of the theory in light of recent changes in our understanding of viral biology raises doubts that medicine-driven, pernicious evolution is likely to be common. But we are far from a mechanistic understanding of the interaction between pathogen and host that can predict when vaccines and other medical interventions will lead to the unwanted evolution of more virulent pathogens. So, while the regime where a pernicious result obtains may be limited, caution remains warranted in designing many types of interventions.
Collapse
Affiliation(s)
- James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Wymant C, Bezemer D, Blanquart F, Ferretti L, Gall A, Hall M, Golubchik T, Bakker M, Ong SH, Zhao L, Bonsall D, de Cesare M, MacIntyre-Cockett G, Abeler-Dörner L, Albert J, Bannert N, Fellay J, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos RD, Laeyendecker O, Meyer L, Porter K, Ristola M, van Sighem A, Berkhout B, Kellam P, Cornelissen M, Reiss P, Fraser C, Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Gorgievski M, Günthard H, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G, de Tejada BM, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A, Regenass S, Rudin C, Schöni-Affolter F, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Weber R, Yerly S, van der Valk M, Geerlings SE, Goorhuis A, Hovius JW, Lempkes B, Nellen FJB, van der Poll T, Prins JM, Reiss P, van Vugt M, Wiersinga WJ, Wit FWMN, van Duinen M, van Eden J, Hazenberg A, van Hes AMH, et alWymant C, Bezemer D, Blanquart F, Ferretti L, Gall A, Hall M, Golubchik T, Bakker M, Ong SH, Zhao L, Bonsall D, de Cesare M, MacIntyre-Cockett G, Abeler-Dörner L, Albert J, Bannert N, Fellay J, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos RD, Laeyendecker O, Meyer L, Porter K, Ristola M, van Sighem A, Berkhout B, Kellam P, Cornelissen M, Reiss P, Fraser C, Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Gorgievski M, Günthard H, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G, de Tejada BM, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A, Regenass S, Rudin C, Schöni-Affolter F, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Weber R, Yerly S, van der Valk M, Geerlings SE, Goorhuis A, Hovius JW, Lempkes B, Nellen FJB, van der Poll T, Prins JM, Reiss P, van Vugt M, Wiersinga WJ, Wit FWMN, van Duinen M, van Eden J, Hazenberg A, van Hes AMH, Rajamanoharan S, Robinson T, Taylor B, Brewer C, Mayr C, Schmidt W, Speidel A, Strohbach F, Arastéh K, Cordes C, Pijnappel FJJ, Stündel M, Claus J, Baumgarten A, Carganico A, Ingiliz P, Dupke S, Freiwald M, Rausch M, Moll A, Schleehauf D, Smalhout SY, Hintsche B, Klausen G, Jessen H, Jessen A, Köppe S, Kreckel P, Schranz D, Fischer K, Schulbin H, Speer M, Weijsenfeld AM, Glaunsinger T, Wicke T, Bieniek B, Hillenbrand H, Schlote F, Lauenroth-Mai E, Schuler C, Schürmann D, Wesselmann H, Brockmeyer N, Jurriaans S, Gehring P, Schmalöer D, Hower M, Spornraft-Ragaller P, Häussinger D, Reuter S, Esser S, Markus R, Kreft B, Berzow D, Back NKT, Christl A, Meyer A, Plettenberg A, Stoehr A, Graefe K, Lorenzen T, Adam A, Schewe K, Weitner L, Fenske S, Zaaijer HL, Hansen S, Stellbrink HJ, Wiemer D, Hertling S, Schmidt R, Arbter P, Claus B, Galle P, Jäger H, Jä Gel-Guedes E, Berkhout B, Postel N, Fröschl M, Spinner C, Bogner J, Salzberger B, Schölmerich J, Audebert F, Marquardt T, Schaffert A, Schnaitmann E, Cornelissen MTE, Trein A, Frietsch B, Müller M, Ulmer A, Detering-Hübner B, Kern P, Schubert F, Dehn G, Schreiber M, Güler C, Schinkel CJ, Gunsenheimer-Bartmeyer B, Schmidt D, Meixenberger K, Bannert N, Wolthers KC, Peters EJG, van Agtmael MA, Autar RS, Bomers M, Sigaloff KCE, Heitmuller M, Laan LM, Ang CW, van Houdt R, Jonges M, Kuijpers TW, Pajkrt D, Scherpbier HJ, de Boer C, van der Plas A, van den Berge M, Stegeman A, Baas S, Hage de Looff L, Buiting A, Reuwer A, Veenemans J, Wintermans B, Pronk MJH, Ammerlaan HSM, van den Bersselaar DNJ, de Munnik ES, Deiman B, Jansz AR, Scharnhorst V, Tjhie J, Wegdam MCA, van Eeden A, Nellen J, Brokking W, Elsenburg LJM, Nobel H, van Kasteren MEE, Berrevoets MAH, Brouwer AE, Adams A, van Erve R, de Kruijf-van de Wiel BAFM, Keelan-Phaf S, van de Ven B, van der Ven B, Buiting AGM, Murck JL, de Vries-Sluijs TEMS, Bax HI, van Gorp ECM, de Jong-Peltenburg NC, de Mendonç A Melo M, van Nood E, Nouwen JL, Rijnders BJA, Rokx C, Schurink CAM, Slobbe L, Verbon A, Bassant N, van Beek JEA, Vriesde M, van Zonneveld LM, de Groot J, Boucher CAB, Koopmans MPG, van Kampen JJA, Fraaij PLA, van Rossum AMC, Vermont CL, van der Knaap LC, Visser E, Branger J, Douma RA, Cents-Bosma AS, Duijf-van de Ven CJHM, Schippers EF, van Nieuwkoop C, van Ijperen JM, Geilings J, van der Hut G, van Burgel ND, Leyten EMS, Gelinck LBS, Mollema F, Davids-Veldhuis S, Tearno C, Wildenbeest GS, Heikens E, Groeneveld PHP, Bouwhuis JW, Lammers AJJ, Kraan S, van Hulzen AGW, Kruiper MSM, van der Bliek GL, Bor PCJ, Debast SB, Wagenvoort GHJ, Kroon FP, de Boer MGJ, Jolink H, Lambregts MMC, Roukens AHE, Scheper H, Dorama W, van Holten N, Claas ECJ, Wessels E, den Hollander JG, El Moussaoui R, Pogany K, Brouwer CJ, Smit JV, Struik-Kalkman D, van Niekerk T, Pontesilli O, Lowe SH, Oude Lashof AML, Posthouwer D, van Wolfswinkel ME, Ackens RP, Burgers K, Schippers J, Weijenberg-Maes B, van Loo IHM, Havenith TRA, van Vonderen MGA, Kampschreur LM, Faber S, Steeman-Bouma R, Al Moujahid A, Kootstra GJ, Delsing CE, van der Burg-van de Plas M, Scheiberlich L, Kortmann W, van Twillert G, Renckens R, Ruiter-Pronk D, van Truijen-Oud FA, Cohen Stuart JWT, Jansen ER, Hoogewerf M, Rozemeijer W, van der Reijden WA, Sinnige JC, Brinkman K, van den Berk GEL, Blok WL, Lettinga KD, de Regt M, Schouten WEM, Stalenhoef JE, Veenstra J, Vrouenraets SME, Blaauw H, Geerders GF, Kleene MJ, Kok M, Knapen M, van der Meché IB, Mulder-Seeleman E, Toonen AJM, Wijnands S, Wttewaal E, Kwa D, van Crevel R, van Aerde K, Dofferhoff ASM, Henriet SSV, Ter Hofstede HJM, Hoogerwerf J, Keuter M, Richel O, Albers M, Grintjes-Huisman KJT, de Haan M, Marneef M, Strik-Albers R, Rahamat-Langendoen J, Stelma FF, Burger D, Gisolf EH, Hassing RJ, Claassen M, Ter Beest G, van Bentum PHM, Langebeek N, Tiemessen R, Swanink CMA, van Lelyveld SFL, Soetekouw R, van der Prijt LMM, van der Swaluw J, Bermon N, van der Reijden WA, Jansen R, Herpers BL, Veenendaal D, Verhagen DWM, Lauw FN, van Broekhuizen MC, van Wijk M, Bierman WFW, Bakker M, Kleinnijenhuis J, Kloeze E, Middel A, Postma DF, Schölvinck EH, Stienstra Y, Verhage AR, Wouthuyzen-Bakker M, Boonstra A, de Groot-de Jonge H, van der Meulen PA, de Weerd DA, Niesters HGM, van Leer-Buter CC, Knoester M, Hoepelman AIM, Arends JE, Barth RE, Bruns AHW, Ellerbroek PM, Mudrikova T, Oosterheert JJ, Schadd EM, van Welzen BJ, Aarsman K, Griffioen-van Santen BMG, de Kroon I, van Berkel M, van Rooijen CSAM, Schuurman R, Verduyn-Lunel F, Wensing AMJ, Bont LJ, Geelen SPM, Loeffen YGT, Wolfs TFW, Nauta N, Rooijakkers EOW, Holtsema H, Voigt R, van de Wetering D, Alberto A, van der Meer I, Rosingh A, Halaby T, Zaheri S, Boyd AC, Bezemer DO, van Sighem AI, Smit C, Hillebregt M, de Jong A, Woudstra T, Bergsma D, Meijering R, van de Sande L, Rutkens T, van der Vliet S, de Groot L, van den Akker M, Bakker Y, El Berkaoui A, Bezemer M, Brétin N, Djoechro E, Groters M, Kruijne E, Lelivelt KJ, Lodewijk C, Lucas E, Munjishvili L, Paling F, Peeck B, Ree C, Regtop R, Ruijs Y, Schoorl M, Schnörr P, Scheigrond A, Tuijn E, Veenenberg L, Visser KM, Witte EC, Ruijs Y, Van Frankenhuijsen M, Allegre T, Makhloufi D, Livrozet JM, Chiarello P, Godinot M, Brunel-Dalmas F, Gibert S, Trepo C, Peyramond D, Miailhes P, Koffi J, Thoirain V, Brochier C, Baudry T, Pailhes S, Lafeuillade A, Philip G, Hittinger G, Assi A, Lambry V, Rosenthal E, Naqvi A, Dunais B, Cua E, Pradier C, Durant J, Joulie A, Quinsat D, Tempesta S, Ravaux I, Martin IP, Faucher O, Cloarec N, Champagne H, Pichancourt G, Morlat P, Pistone T, Bonnet F, Mercie P, Faure I, Hessamfar M, Malvy D, Lacoste D, Pertusa MC, Vandenhende MA, Bernard N, Paccalin F, Martell C, Roger-Schmelz J, Receveur MC, Duffau P, Dondia D, Ribeiro E, Caltado S, Neau D, Dupont M, Dutronc H, Dauchy F, Cazanave C, Vareil MO, Wirth G, Le Puil S, Pellegrin JL, Raymond I, Viallard JF, Chaigne de Lalande S, Garipuy D, Delobel P, Obadia M, Cuzin L, Alvarez M, Biezunski N, Porte L, Massip P, Debard A, Balsarin F, Lagarrigue M, Prevoteau du Clary F, Aquilina C, Reynes J, Baillat V, Merle C, Lemoing V, Atoui N, Makinson A, Jacquet JM, Psomas C, Tramoni C, Aumaitre H, Saada M, Medus M, Malet M, Eden A, Neuville S, Ferreyra M, Sotto A, Barbuat C, Rouanet I, Leureillard D, Mauboussin JM, Lechiche C, Donsesco R, Cabie A, Abel S, Pierre-Francois S, Batala AS, Cerland C, Rangom C, Theresine N, Hoen B, Lamaury I, Fabre I, Schepers K, Curlier E, Ouissa R, Gaud C, Ricaud C, Rodet R, Wartel G, Sautron C, Beck-Wirth G, Michel C, Beck C, Halna JM, Kowalczyk J, Benomar M, Drobacheff-Thiebaut C, Chirouze C, Faucher JF, Parcelier F, Foltzer A, Haffner-Mauvais C, Hustache Mathieu M, Proust A, Piroth L, Chavanet P, Duong M, Buisson M, Waldner A, Mahy S, Gohier S, Croisier D, May T, Delestan M, Andre M, Zadeh MM, Martinot M, Rosolen B, Pachart A, Martha B, Jeunet N, Rey D, Cheneau C, Partisani M, Priester M, Bernard-Henry C, Batard ML, Fischer P, Berger JL, Kmiec I, Robineau O, Huleux T, Ajana F, Alcaraz I, Allienne C, Baclet V, Meybeck A, Valette M, Viget N, Aissi E, Biekre R, Cornavin P, Merrien D, Seghezzi JC, Machado M, Diab G, Raffi F, Bonnet B, Allavena C, Grossi O, Reliquet V, Billaud E, Brunet C, Bouchez S, Morineau-Le Houssine P, Sauser F, Boutoille D, Besnier M, Hue H, Hall N, Brosseau D, Souala F, Michelet C, Tattevin P, Arvieux C, Revest M, Leroy H, Chapplain JM, Dupont M, Fily F, Patra-Delo S, Lefeuvre C, Bernard L, Bastides F, Nau P, Verdon R, de la Blanchardiere A, Martin A, Feret P, Geffray L, Daniel C, Rohan J, Fialaire P, Chennebault JM, Rabier V, Abgueguen P, Rehaiem S, Luycx O, Niault M, Moreau P, Poinsignon Y, Goussef M, Mouton-Rioux V, Houlbert D, Alvarez-Huve S, Barbe F, Haret S, Perre P, Leantez-Nainville S, Esnault JL, Guimard T, Suaud I, Girard JJ, Simonet V, Debab Y, Schmit JL, Jacomet C, Weinberck P, Genet C, Pinet P, Ducroix S, Durox H, Denes É, Abraham B, Gourdon F, Antoniotti O, Molina JM, Ferret S, Lascoux-Combe C, Lafaurie M, Colin de Verdiere N, Ponscarme D, De Castro N, Aslan A, Rozenbaum W, Pintado C, Clavel F, Taulera O, Gatey C, Munier AL, Gazaigne S, Penot P, Conort G, Lerolle N, Leplatois A, Balausine S, Delgado J, Timsit J, Tabet M, Gerard L, Girard PM, Picard O, Tredup J, Bollens D, Valin N, Campa P, Bottero J, Lefebvre B, Tourneur M, Fonquernie L, Wemmert C, Lagneau JL, Yazdanpanah Y, Phung B, Pinto A, Vallois D, Cabras O, Louni F, Pialoux G, Lyavanc T, Berrebi V, Chas J, Lenagat S, Rami A, Diemer M, Parrinello M, Depond A, Salmon D, Guillevin L, Tahi T, Belarbi L, Loulergue P, Zak Dit Zbar O, Launay O, Silbermann B, Leport C, Alagna L, Pietri MP, Simon A, Bonmarchand M, Amirat N, Pichon F, Kirstetter M, Katlama C, Valantin MA, Tubiana R, Caby F, Schneider L, Ktorza N, Calin R, Merlet A, Ben Abdallah S, Weiss L, Buisson M, Batisse D, Karmochine M, Pavie J, Minozzi C, Jayle D, Castel P, Derouineau J, Kousignan P, Eliazevitch M, Pierre I, Collias L, Viard JP, Gilquin J, Sobel A, Slama L, Ghosn J, Hadacek B, Thu-Huyn N, Nait-Ighil L, Cros A, Maignan A, Duvivier C, Consigny PH, Lanternier F, Shoai-Tehrani M, Touam F, Jerbi S, Bodard L, Jung C, Goujard C, Quertainmont Y, Duracinsky M, Segeral O, Blanc A, Peretti D, Cheret A, Chantalat C, Dulucq MJ, Levy Y, Lelievre JD, Lascaux AS, Dumont C, Boue F, Chambrin V, Abgrall S, Kansau I, Raho-Moussa M, De Truchis P, Dinh A, Davido B, Marigot D, Berthe H, Devidas A, Chevojon P, Chabrol A, Agher N, Lemercier Y, Chaix F, Turpault I, Bouchaud O, Honore P, Rouveix E, Reimann E, Belan AG, Godin Collet C, Souak S, Mortier E, Bloch M, Simonpoli AM, Manceron V, Cahitte I, Hiraux E, Lafon E, Cordonnier F, Zeng AF, Zucman D, Majerholc C, Bornarel D, Uludag A, Gellen-Dautremer J, Lefort A, Bazin C, Daneluzzi V, Gerbe J, Jeantils V, Coupard M, Patey O, Bantsimba J, Delllion S, Paz PC, Cazenave B, Richier L, Garrait V, Delacroix I, Elharrar B, Vittecoq D, Bolliot C, Lepretre A, Genet P, Masse V, Perrone V, Boussard JL, Chardon P, Froguel E, Simon P, Tassi S, Avettand Fenoel V, Barin F, Bourgeois C, Cardon F, Chaix ML, Delfraissy JF, Essat A, Fischer H, Lecuroux C, Meyer L, Petrov-Sanchez V, Rouzioux C, Saez-Cirion A, Seng R, Kuldanek K, Mullaney S, Young C, Zucchetti A, Bevan MA, McKernan S, Wandolo E, Richardson C, Youssef E, Green P, Faulkner S, Faville R, Herman S, Care C, Blackman H, Bellenger K, Fairbrother K, Phillips A, Babiker A, Delpech V, Fidler S, Clarke M, Fox J, Gilson R, Goldberg D, Hawkins D, Johnson A, Johnson M, McLean K, Nastouli E, Post F, Kennedy N, Pritchard J, Andrady U, Rajda N, Donnelly C, McKernan S, Drake S, Gilleran G, White D, Ross J, Harding J, Faville R, Sweeney J, Flegg P, Toomer S, Wilding H, Woodward R, Dean G, Richardson C, Perry N, Gompels M, Jennings L, Bansaal D, Browing M, Connolly L, Stanley B, Estreich S, Magdy A, O'Mahony C, Fraser P, Jebakumar SPR, David L, Mette R, Summerfield H, Evans M, White C, Robertson R, Lean C, Morris S, Winter A, Faulkner S, Goorney B, Howard L, Fairley I, Stemp C, Short L, Gomez M, Young F, Roberts M, Green S, Sivakumar K, Minton J, Siminoni A, Calderwood J, Greenhough D, DeSouza C, Muthern L, Orkin C, Murphy S, Truvedi M, McLean K, Hawkins D, Higgs C, Moyes A, Antonucci S, McCormack S, Lynn W, Bevan M, Fox J, Teague A, Anderson J, Mguni S, Post F, Campbell L, Mazhude C, Russell H, Gilson R, Carrick G, Ainsworth J, Waters A, Byrne P, Johnson M, Fidler S, Kuldanek K, Mullaney S, Lawlor V, Melville R, Sukthankar A, Thorpe S, Murphy C, Wilkins E, Ahmad S, Green P, Tayal S, Ong E, Meaden J, Riddell L, Loay D, Peacock K, Blackman H, Harindra V, Saeed AM, Allen S, Natarajan U, Williams O, Lacey H, Care C, Bowman C, Herman S, Devendra SV, Wither J, Bridgwood A, Singh G, Bushby S, Kellock D, Young S, Rooney G, Snart B, Currie J, Fitzgerald M, Arumainayyagam J, Chandramani S. A highly virulent variant of HIV-1 circulating in the Netherlands. Science 2022; 375:540-545. [PMID: 35113714 DOI: 10.1126/science.abk1688] [Show More Authors] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence.
Collapse
Affiliation(s)
- Chris Wymant
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,IAME, UMR 1137, INSERM, Université de Paris, Paris, France
| | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Astrid Gall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lele Zhao
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Bonsall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucie Abeler-Dörner
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Norbert Bannert
- Division for HIV and Other Retroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Kate Grabowski
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | | | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pia Kivelä
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Laurence Meyer
- INSERM CESP U1018, Université Paris Saclay, APHP, Service de Santé Publique, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kholoud Porter
- Institute for Global Health, University College London, London, UK
| | - Matti Ristola
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Paul Kellam
- Kymab Ltd., Cambridge, UK.,Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Molecular Diagnostic Unit, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, Netherlands.,Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Qian Z, Li P, Tang X, Lu J. Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:3-22. [PMID: 35658106 PMCID: PMC9047652 DOI: 10.1515/mr-2021-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.
Collapse
Affiliation(s)
- Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| |
Collapse
|
22
|
Miller IF, Metcalf CJE. Assessing the risk of vaccine-driven virulence evolution in SARS-CoV-2. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211021. [PMID: 35070341 PMCID: PMC8728167 DOI: 10.1098/rsos.211021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The evolution of SARS-CoV-2 virulence, or lethality, threatens to exacerbate the burden of COVID-19 on society. How might COVID-19 vaccines alter selection for increased SARS-CoV-2 virulence? Framing current evidence surrounding SARS-CoV-2 biology and COVID-19 vaccines in the context of evolutionary theory indicates that prospects for virulence evolution remain uncertain. However, differential effects of vaccinal immunity on transmission and disease severity between respiratory compartments could select for increased virulence. To bound expectations for this outcome, we analyse an evo-epidemiological model. Synthesizing model predictions with vaccine efficacy data, we conclude that while vaccine-driven virulence remains a theoretical possibility, the risk is low if vaccines provide sustained robust protection against infection. Furthermore, we found that any increases in transmission concomitant with increases in virulence would be unlikely to threaten prospects for herd immunity in a highly immunized population. Given that virulence evolution would nevertheless impact unvaccinated individuals and populations with low vaccination rates, it is important to achieve high vaccination rates worldwide and ensure that vaccinal immunity provides robust protection against both infection and disease, potentially through the use of booster doses.
Collapse
Affiliation(s)
- Ian F. Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
23
|
Zeng Y, Wiens JJ. Do mutualistic interactions last longer than antagonistic interactions? Proc Biol Sci 2021; 288:20211457. [PMID: 34493078 PMCID: PMC8424312 DOI: 10.1098/rspb.2021.1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
Species interactions are crucial and ubiquitous across organisms. However, it remains unclear how long these interactions last over macroevolutionary timescales, and whether the nature of these interactions (mutualistic versus antagonistic) helps predict how long they persist. Here, we estimated the ages of diverse species interactions, based on phylogenies from 60 studies spanning the Tree of Life. We then tested if mutualistic interactions persist longer than antagonistic interactions. We found that the oldest mutualisms were significantly older than the oldest antagonisms across all organisms, and within plants, fungi, bacteria and protists. Surprisingly, this pattern was reversed in animals, with the oldest mutualisms significantly younger than the oldest antagonisms. We also found that many mutualisms were maintained for hundreds of millions of years (some greater than 1 billion years), providing strong evidence for the long-term stability of mutualisms and for niche conservatism in species interactions.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Mejdani M, Haddadi K, Pham C, Mahadevan R. SARS-CoV-2 receptor-binding mutations and antibody contact sites. Antib Ther 2021; 4:149-158. [PMID: 34386694 PMCID: PMC8353666 DOI: 10.1093/abt/tbab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations can impact infectivity, viral load, and overall morbidity/mortality during infection. In this analysis, we look at the mutational landscape of the SARS-CoV-2 receptor-binding domain, a structure that is antigenic and allows for viral binding to the host. We develop a bioinformatics platform and analyze 104 193 Global Initiative on Sharing All Influenza Data sequences acquired on 15 October 2020, with a majority of sequences (96%) containing point mutations. We report high frequency mutations with improved binding affinity to ACE2 including S477N, N439K, V367F, and N501Y and address the potential impact of RBD mutations on antibody binding. The high frequency S477N mutation is present in 6.7% of all SARS-CoV-2 sequences, co-occurs with D614G, and is currently present in 14 countries. To address RBD-antibody interactions, we take a subset of human-derived antibodies and define their interacting residues using PDBsum. Our analysis shows that RBD mutations were found in approximately 9% of our dataset, with some mutations improving RBD-ACE2 interactions. We also show that antibody-mediated immunity against SARS-CoV-2 enlists broad coverage of the RBD, with multiple antibodies targeting a variety of RBD regions. These data suggest that it is unlikely for neutralization/RBD antibody binding to be significantly impacted, as a whole, in the presence of RBD point mutations that conserve the RBD structure.
Collapse
Affiliation(s)
- Marios Mejdani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Kiandokht Haddadi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
25
|
Abstract
Background: Pathogens are often assumed to evolve towards reduced virulence, but counterexamples abound. Faced with a new pathogen, such as SARS-CoV-2, it is crucial to be able to forecast the case fatality rate (CFR) and the overall disease burden. Considerable effort has been invested towards developing a mathematical framework for predicting virulence evolution. Although many approaches accurately recapitulate complex outcomes, most rely on an assumed trade-off between CFR and infection rate. It is often impractical to empirically validate this constraint for human pathogens. Methods: A compartment model with parameters tuning the degree to which symptomatic individuals are isolated and the duration of immunity is constructed and evaluated at both short timescales and at equilibrium. Results: We reveal kinetic constraints whereby variation of multiple parameters in concert leads to decreased CFR and increased pathogen fitness, whereas independent variation of the parameters decreases pathogen fitness. Smallpox, SARS-CoV-2, and influenza are analyzed as diverse representatives of human respiratory viruses. We show that highly virulent viruses, such as smallpox, are often constrained by the host behavior, whereas moderately virulent viruses, such as SARS-CoV-2, appear to be typically constrained by the relationship between the duration of immunity and CFR. Conclusions: Evolution of human respiratory epidemics appears to be often kinetically constrained and a reduction in CFR should not be assumed. These results agree with previous work demonstrating an increase in virulence for smallpox and further predict that SARS-CoV-2 is likely to continue presenting a substantial disease burden. Herd immunity against SARS-CoV-2 and viruses with similar life history traits might be unachievable without vaccination. However, partial isolation of symptomatic individuals can have a major effect on the epidemic dynamics not only by reducing the number of fatalities in the short term but also by changing the evolutionary trajectory of moderate CFR viruses towards reduced CFR.
Collapse
Affiliation(s)
- Nash Rochman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
26
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
27
|
Jiao J, Fefferman N. The dynamics of evolutionary rescue from a novel pathogen threat in a host metapopulation. Sci Rep 2021; 11:10932. [PMID: 34035424 PMCID: PMC8149858 DOI: 10.1038/s41598-021-90407-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
When a novel disease strikes a naïve host population, there is evidence that the most immediate response can involve host evolution while the pathogen remains relatively unchanged. When hosts also live in metapopulations, there may be critical differences in the dynamics that emerge from the synergy among evolutionary, ecological, and epidemiological factors. Here we used a Susceptible-Infected-Recovery model to explore how spatial and temporal ecological factors may drive the epidemiological and rapid-evolutionary dynamics of host metapopulations. For simplicity, we assumed two host genotypes: wild type, which has a positive intrinsic growth rate in the absence of disease, and robust type, which is less likely to catch the infection given exposure but has a lower intrinsic growth rate in the absence of infection. We found that the robust-type host would be strongly selected for in the presence of disease when transmission differences between the two types is large. The growth rate of the wild type had dual but opposite effects on host composition: a smaller increase in wild-type growth increased wild-type competition and lead to periodical disease outbreaks over the first generations after pathogen introduction, while larger growth increased disease by providing more susceptibles, which increased robust host density but decreased periodical outbreaks. Increased migration had a similar impact as the increased differential susceptibility, both of which led to an increase in robust hosts and a decrease in periodical outbreaks. Our study provided a comprehensive understanding of the combined effects among migration, disease epidemiology, and host demography on host evolution with an unchanging pathogen. The findings have important implications for wildlife conservation and zoonotic disease control.
Collapse
Affiliation(s)
- Jing Jiao
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996, USA.
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA.
| | - Nina Fefferman
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996, USA
- Ecology & Evolutionary Biology, The University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
28
|
McKay B, Ebell M, Dale AP, Shen Y, Handel A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc Biol Sci 2020; 287:20200496. [PMID: 32396798 DOI: 10.1098/rspb.2020.0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Communicable diseases are often virulent, i.e. they cause morbidity symptoms in those infected. While some symptoms may be transmission-enhancing, other symptoms are likely to reduce transmission potential. For human diseases, the reduction in transmission opportunities is commonly caused by reduced activity. There is limited data regarding the potential impact of virulence on transmission potential. We performed an exploratory data analysis of 324 influenza patients at a university health centre during the 2016/2017 influenza season. We classified symptoms as infectiousness-related or morbidity-related and calculated two scores. The scores were used to explore the relationship between infectiousness, morbidity (virulence), and activity level. We found a decrease in the activity level with increasing morbidity scores. There was no consistent pattern between an activity level and an infectiousness score. We also found a positive correlation between morbidity and infectiousness scores. Overall, we find that increasing virulence leads to increased infectiousness and reduced activity, suggesting a trade-off that can impact overall transmission potential. Our findings indicate that a reduction of systemic symptoms may increase host activity without reducing infectiousness. Therefore, interventions should target both systemic- and infectiousness-related symptoms to reduce overall transmission potential. Our findings can also inform simulation models that investigate the impact of different interventions on transmission.
Collapse
Affiliation(s)
- Brian McKay
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Mark Ebell
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | | | - Ye Shen
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics and Health Informatics Institute and Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA
| |
Collapse
|
29
|
Oyanedel D, Labreuche Y, Bruto M, Amraoui H, Robino E, Haffner P, Rubio T, Charrière GM, Le Roux F, Destoumieux-Garzón D. Vibrio splendidus O-antigen structure: a trade-off between virulence to oysters and resistance to grazers. Environ Microbiol 2020; 22:4264-4278. [PMID: 32219965 DOI: 10.1111/1462-2920.14996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023]
Abstract
A major debate in evolutionary biology is whether virulence is maintained as an adaptive trait and/or evolves to non-virulence. In the environment, virulence traits of non-obligatory parasites are subjected to diverse selective pressures and trade-offs. Here, we focus on a population of Vibrio splendidus that displays moderate virulence for oysters. A MARTX (Multifunctional-autoprocessing repeats-in-toxin) and a type-six secretion system (T6SS) were found to be necessary for virulence toward oysters, while a region (wbe) involved in O-antigen synthesis is necessary for resistance to predation against amoebae. Gene inactivation within the wbe region had major consequences on the O-antigen structure, conferring lower immunogenicity, competitive advantage and increased virulence in oyster experimental infections. Therefore, O-antigen structures that favour resistance to environmental predators result in an increased activation of the oyster immune system and a reduced virulence in that host. These trade-offs likely contribute to maintaining O-antigen diversity in the marine environment by favouring genomic plasticity of the wbe region. The results of this study indicate an evolution of V. splendidus towards moderate virulence as a compromise between fitness in the oyster as a host, and resistance to its predators in the environment.
Collapse
Affiliation(s)
- Daniel Oyanedel
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Hajar Amraoui
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Etienne Robino
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Philippe Haffner
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Tristan Rubio
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France.,Molecular Microbiology and Structural Biochemistry (UMR 5086). CNRS, University of Lyon, 69367, Lyon, France
| | - Guillaume M Charrière
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | | |
Collapse
|
30
|
Monjane AL, Dellicour S, Hartnady P, Oyeniran KA, Owor BE, Bezuidenhout M, Linderme D, Syed RA, Donaldson L, Murray S, Rybicki EP, Kvarnheden A, Yazdkhasti E, Lefeuvre P, Froissart R, Roumagnac P, Shepherd DN, Harkins GW, Suchard MA, Lemey P, Varsani A, Martin DP. Symptom evolution following the emergence of maize streak virus. eLife 2020; 9:51984. [PMID: 31939738 PMCID: PMC7034976 DOI: 10.7554/elife.51984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 11/24/2022] Open
Abstract
For pathogens infecting single host species evolutionary trade-offs have previously been demonstrated between pathogen-induced mortality rates and transmission rates. It remains unclear, however, how such trade-offs impact sub-lethal pathogen-inflicted damage, and whether these trade-offs even occur in broad host-range pathogens. Here, we examine changes over the past 110 years in symptoms induced in maize by the broad host-range pathogen, maize streak virus (MSV). Specifically, we use the quantified symptom intensities of cloned MSV isolates in differentially resistant maize genotypes to phylogenetically infer ancestral symptom intensities and check for phylogenetic signal associated with these symptom intensities. We show that whereas symptoms reflecting harm to the host have remained constant or decreased, there has been an increase in how extensively MSV colonizes the cells upon which transmission vectors feed. This demonstrates an evolutionary trade-off between amounts of pathogen-inflicted harm and how effectively viruses position themselves within plants to enable onward transmission.
Collapse
Affiliation(s)
- Adérito L Monjane
- Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Norway.,Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Spatial Epidemiology Laboratory (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Penelope Hartnady
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Kehinde A Oyeniran
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Betty E Owor
- Department of Agricultural Production, School of Agricultural Sciences, Makerere University, Kampala, Uganda
| | - Marion Bezuidenhout
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Daphné Linderme
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Rizwan A Syed
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Lara Donaldson
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Shane Murray
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elham Yazdkhasti
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Rémy Froissart
- University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de recherche pour le développement (IRD), UMR 5290, Maladie Infectieuses & Vecteurs: Écologie, Génétique Évolution & Contrôle" (MIVEGEC), Montpellier, France
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - Dionne N Shepherd
- Molecular and Cell Biology Department, University of Cape Town, Cape Town, South Africa.,Research Office, University of Cape Town, Cape Town, South Africa
| | - Gordon W Harkins
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, United States.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
31
|
Okamoto KW, Amarasekare P, Post DM, Vasseur DA, Turner PE. The interplay between host community structure and pathogen life‐history constraints in driving the evolution of host‐range shifts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kenichi W. Okamoto
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Department of Biology University of St. Thomas St. Paul MN USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - David M. Post
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - David A. Vasseur
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
32
|
Support for the Transmission-Clearance Trade-Off Hypothesis from a Study of Zika Virus Delivered by Mosquito Bite to Mice. Viruses 2019; 11:v11111072. [PMID: 31752097 PMCID: PMC6893444 DOI: 10.3390/v11111072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Evolutionary theory indicates that virus virulence is shaped by a trade-off between instantaneous rate of transmission and duration of infection. For most viruses, infection is curtailed by immune clearance, but there are few empirical tests of the transmission–clearance trade-off hypothesis. We exposed A129 mice to bites from groups of 1, 2–4, or 6–9 Aedes albopictus mosquitoes infected with Zika virus (ZIKV). We predicted that a higher number of infectious mosquito bites would deliver a higher total dose of the virus, and that increasing dose would result in earlier onset, higher magnitude, and shorter duration of viremia, as well as a more robust neutralizing antibody response. We found that increases in the number of mosquito bites delivered resulted in significantly different virus replication dynamics with higher, earlier peak titers. All mice experienced a transient weight loss following infection, but the nadir in weight loss was delayed in the mice that received the highest number of bites. Viremia persisted past the period of measurement in this study, so we did not capture its duration. However, the association at the level of the individual mouse between the estimated virus dose delivered and neutralizing antibody titer was remarkably strong, supporting the transmission–clearance trade-off hypothesis.
Collapse
|
33
|
Greischar MA, Beck-Johnson LM, Mideo N. Partitioning the influence of ecology across scales on parasite evolution. Evolution 2019; 73:2175-2188. [PMID: 31495911 DOI: 10.1111/evo.13840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Vector-borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human-induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data-driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life-history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade-off emerges between early and late infectiousness, and the optimal resolution of that trade-off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.
Collapse
Affiliation(s)
- Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | | | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
34
|
Pulkkinen K, Pekkala N, Ashrafi R, Hämäläinen DM, Nkembeng AN, Lipponen A, Hiltunen T, Valkonen JK, Taskinen J. Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiol Ecol 2019; 94:4962392. [PMID: 29659817 DOI: 10.1093/femsec/fiy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding ecological and epidemiological factors driving pathogen evolution in contemporary time scales is a major challenge in modern health management. Pathogens that replicate outside the hosts are subject to selection imposed by ambient environmental conditions. Increased nutrient levels could increase pathogen virulence by pre-adapting for efficient use of resources upon contact to a nutrient rich host or by favouring transmission of fast-growing virulent strains. We measured changes in virulence and competition in Flavobacterium columnare, a bacterial pathogen of freshwater fish, under high and low nutrient levels. To test competition between strains in genotype mixtures, we developed a quantitative real-time PCR assay. We found that a virulent strain maintained its virulence and outcompeted less virulent strains independent of the nutrient level and resource renewal rate while a less virulent strain further lost virulence in chemostats under low nutrient level and over long-term serial culture under high nutrient level. Our results suggest that increased outside-host nutrient levels might maintain virulence in less virulent strains and increase their contribution to epidemics in aquaculture. The results highlight a need to further explore the role of resource in the outside-host environment in maintaining strain diversity and driving evolution of virulence among environmentally growing pathogens.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Nina Pekkala
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Dorrit M Hämäläinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Aloysius N Nkembeng
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, P. O. Box 1627, (Neulaniementie 2), University of Eastern Finland, Kuopio, Finland
| | - Teppo Hiltunen
- Department of Microbiology, P. O. Box 56, (Viikinkaari 9), University of Helsinki, Helsinki, Finland
| | - Janne K Valkonen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
35
|
Iritani R, Visher E, Boots M. The evolution of stage-specific virulence: Differential selection of parasites in juveniles. Evol Lett 2019; 3:162-172. [PMID: 31289690 PMCID: PMC6591554 DOI: 10.1002/evl3.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2019] [Indexed: 11/05/2022] Open
Abstract
The impact of infectious disease is often very different in juveniles and adults, but theory has focused on the drivers of stage-dependent defense in hosts rather than the potential for stage-dependent virulence evolution in parasites. Stage structure has the potential to be important to the evolution of pathogens because it exposes parasites to heterogeneous environments in terms of both host characteristics and transmission pathways. We develop a stage-structured (juvenile-adult) epidemiological model and examine the evolutionary outcomes of stage-specific virulence under the classic assumption of a transmission-virulence trade-off. We show that selection on virulence against adults remains consistent with the classic theory. However, the evolution of juvenile virulence is sensitive to both demography and transmission pathway with higher virulence against juveniles being favored either when the transmission pathway is assortative (juveniles preferentially interact together) and the juvenile stage is long, or in contrast when the transmission pathway is disassortative and the juvenile stage is short. These results highlight the potentially profound effects of host stage structure on determining parasite virulence in nature. This new perspective may have broad implications for both understanding and managing disease severity.
Collapse
Affiliation(s)
- Ryosuke Iritani
- Biosciences, College of Life and Environmental ScienceUniversity of ExeterExeterUnited Kingdom
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| | - Elisa Visher
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| | - Mike Boots
- Biosciences, College of Life and Environmental ScienceUniversity of ExeterExeterUnited Kingdom
- Department of Integrative BiologyUniversity of California3040 Valley Life Sciences Building #3140BerkeleyCA94720
| |
Collapse
|
36
|
Abstract
How virulence evolves after a virus jumps to a new host species is central to disease emergence. Our current understanding of virulence evolution is based on insights drawn from two perspectives that have developed largely independently: long-standing evolutionary theory based on limited real data examples that often lack a genomic basis, and experimental studies of virulence-determining mutations using cell culture or animal models. A more comprehensive understanding of virulence mutations and their evolution can be achieved by bridging the gap between these two research pathways through the phylogenomic analysis of virus genome sequence data as a guide to experimental study.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
Parsons TL, Lambert A, Day T, Gandon S. Pathogen evolution in finite populations: slow and steady spreads the best. J R Soc Interface 2018; 15:20180135. [PMID: 30282758 PMCID: PMC6228476 DOI: 10.1098/rsif.2018.0135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
The theory of life-history evolution provides a powerful framework to understand the evolutionary dynamics of pathogens. It assumes, however, that host populations are large and that one can neglect the effects of demographic stochasticity. Here, we expand the theory to account for the effects of finite population size on the evolution of pathogen virulence. We show that demographic stochasticity introduces additional evolutionary forces that can qualitatively affect the dynamics and the evolutionary outcome. We discuss the importance of the shape of the pathogen fitness landscape on the balance between mutation, selection and genetic drift. This analysis reconciles Adaptive Dynamics with population genetics in finite populations and provides a new theoretical toolbox to study life-history evolution in realistic ecological scenarios.
Collapse
Affiliation(s)
- Todd L Parsons
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, CNRS UMR 8001, Paris, France
| | - Amaury Lambert
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, CNRS UMR 8001, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Troy Day
- Department of Mathematics and Statistics, Queen's University, Kingston, Canada
- Department of Biology, Queen's University, Kingston, Canada
| | - Sylvain Gandon
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, CNRS UMR 5175, Montpellier, France
| |
Collapse
|
38
|
Goodreau SM, Stansfield SE, Murphy JT, Peebles KC, Gottlieb GS, Abernethy NF, Herbeck JT, Mittler JE. Relational concurrency, stages of infection, and the evolution of HIV set point viral load. Virus Evol 2018; 4:vey032. [PMID: 30483403 PMCID: PMC6249390 DOI: 10.1093/ve/vey032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV viral load (VL) predicts both transmission potential and rate of disease progression. For reasons that are still not fully understood, the set point viral load (SPVL) established after acute infection varies across individuals and populations. Previous studies have suggested that population mean SPVL (MSPVL) has evolved near an optimum that reflects a trade-off between transmissibility and host survival. Sexual network structures affect rates of potential exposure during different within-host phases of infection marked by different transmission probabilities, and thus affect the number and timing of transmission events. These structures include relational concurrency, which has been argued to explain key differences in HIV burden across populations. We hypothesize that concurrency will alter the fitness landscape for SPVL in ways that differ from other network features whose impacts accrue at other times during infection. To quantitatively test this hypothesis, we developed a dynamic, stochastic, data-driven network model of HIV transmission, and evolution to assess the impact of key sexual network phenomena on MSPVL evolution. Experiments were repeated in sensitivity runs that made different assumptions about transmissibility during acute infection, SPVL heritability, and the functional form of the relationship between VL and transmissibility. For our main transmission model, scenarios yielded MSPVLs ranging from 4.4 to 4.75 log10 copies/ml, covering much of the observed empirical range. MSPVL evolved to be higher in populations with high concurrency and shorter relational durations, with values varying over a clinically significant range. In linear regression analyses on these and other predictors, main effects were significant (P < 0.05), as were interaction terms, indicating that effects are interdependent. We also noted a strong correlation between two key emergent properties measured at the end of the simulations-MSPVL and HIV prevalence-most clearly for phenomena that affect transmission networks early in infection. Controlling for prevalence, high concurrency yielded higher MSPVL than other network phenomena. Interestingly, we observed lower prevalence in runs in which SPVL heritability was zero, indicating the potential for viral evolution to exacerbate disease burden over time. Future efforts to understand empirical variation in MSPVL should consider local HIV burden and basic sexual behavioral and network structure.
Collapse
Affiliation(s)
- Steven M Goodreau
- Department of Anthropology, Campus Box 353100, Seattle, WA 98195, USA
| | | | - James T Murphy
- Department of Microbiology, Campus Box 357735, Seattle, WA 98195, USA
| | - Kathryn C Peebles
- Department of Epidemiology, Campus Box 357236, Seattle, WA 98195, USA
| | - Geoffrey S Gottlieb
- Departments of Medicine and Global Health, Campus Box 356420, Seattle, WA 98195, USA
| | - Neil F Abernethy
- Department of Biomedical Informatics and Medical Education, Campus Box 358047, Seattle, WA 98195, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Campus Box 353100, Seattle, WA 98195, USA
| | - John E Mittler
- Department of Microbiology, Campus Box 357735, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun 2018; 9:2355. [PMID: 29907741 PMCID: PMC6003961 DOI: 10.1038/s41467-018-04595-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus’s production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus’s transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue’s epidemiological context. These results indicate that long-term changes in dengue’s global distribution impact the invasion and spread of virulent dengue virus genotypes. Theory predicts that pathogens will evolve towards intermediate virulence, yet the necessary trade-offs invoked by this theory have rarely been demonstrated empirically. Here, the authors show that dengue virus dynamics exhibit a trade-off between transmission and clearance rates.
Collapse
|
40
|
Shukla A, Pagán I, García‐Arenal F. Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:1454-1465. [PMID: 29027740 PMCID: PMC6638070 DOI: 10.1111/mpp.12629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/27/2023]
Abstract
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low-virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high-virulent parasites would be attained through shortening of the pre-reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low-virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host-virus combinations and, at odds with theoretical predictions, is linked to longer pre-reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| |
Collapse
|
41
|
Bonneaud C, Sepil I, Wilfert L, Calsbeek R. Plasmodium Infections in Natural Populations of Anolis sagrei Reflect Tolerance Rather Than Susceptibility. Integr Comp Biol 2018; 57:352-361. [PMID: 28859403 PMCID: PMC5886326 DOI: 10.1093/icb/icx044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parasites can represent formidable selection pressures for hosts, but the cost of infection is sometimes difficult to demonstrate in natural populations. While parasite exploitation strategies may, in some instances, actually inflict low costs on their hosts, the response of hosts to infection is also likely to determine whether or not these costs can be detected. Indeed, costs of infection may be obscured if infected individuals in the wild are those that are the most tolerant, rather than the most susceptible, to infection. Here we test this hypothesis in two natural populations of Anolis sagrei, one of the most common anole lizard of the Bahamas. Plasmodium parasites were detected in > 7% of individuals and belonged to two distinct clades: P. mexicanum and P. floriensis. Infected individuals displayed greater body condition than non-infected ones and we found no association between infection status, stamina, and survival to the end of the breeding season. Furthermore, we found no significant difference in the immuno-competence (measured as a response to phytohemagglutinin challenge) of infected versus non-infected individuals. Taken together, our results suggest that the infected individuals that are caught in the wild are those most able to withstand the cost of the infection and that susceptible, infected individuals have been removed from the population (i.e., through disease-induced mortality). This study highlights the need for caution when interpreting estimates of infection costs in natural populations, as costs may appear low either when parasites exploitation strategies truly inflict low costs on their hosts or when those costs are so high that susceptible hosts are removed from the population.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford, OX1?3PS, UK
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, New Hampshire, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Mariën J, Sluydts V, Borremans B, Gryseels S, Vanden Broecke B, Sabuni CA, Katakweba AAS, Mulungu LS, Günther S, de Bellocq JG, Massawe AW, Leirs H. Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasit Vectors 2018; 11:90. [PMID: 29422075 PMCID: PMC5806307 DOI: 10.1186/s13071-018-2674-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Parasite evolution is hypothesized to select for levels of parasite virulence that maximise transmission success. When host population densities fluctuate, low levels of virulence with limited impact on the host are expected, as this should increase the likelihood of surviving periods of low host density. We examined the effects of Morogoro arenavirus on the survival and recapture probability of multimammate mice (Mastomys natalensis) using a seven-year capture-mark-recapture time series. Mastomys natalensis is the natural host of Morogoro virus and is known for its strong seasonal density fluctuations. RESULTS Antibody presence was negatively correlated with survival probability (effect size: 5-8% per month depending on season) but positively with recapture probability (effect size: 8%). CONCLUSIONS The small negative correlation between host survival probability and antibody presence suggests that either the virus has a negative effect on host condition, or that hosts with lower survival probability are more likely to obtain Morogoro virus infection, for example due to particular behavioural or immunological traits. The latter hypothesis is supported by the positive correlation between antibody status and recapture probability which suggests that risky behaviour might increase the probability of becoming infected.
Collapse
Affiliation(s)
- Joachim Mariën
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Vincent Sluydts
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BIOSTAT), Hasselt University, Hasselt, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | | | | | | | - Loth S. Mulungu
- Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephan Günther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology, Research Facility Studenec, The Czech Academy of Sciences, Brno, Czech Republic
| | - Apia W. Massawe
- Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Abstract
The trillions of microbes living in the gut-the gut microbiota-play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity's near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human-microbiome interactions.
Collapse
Affiliation(s)
- Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Se Jin Song
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Flores-Ferrer A, Marcou O, Waleckx E, Dumonteil E, Gourbière S. Evolutionary ecology of Chagas disease; what do we know and what do we need? Evol Appl 2017; 11:470-487. [PMID: 29636800 PMCID: PMC5891055 DOI: 10.1111/eva.12582] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen afflicting most populations of Latin America. This vectorborne parasite is transmitted by haematophageous triatomines, whose control by large‐scale insecticide spraying has been the main strategy to limit the impact of the disease for over 25 years. While those international initiatives have been successful in highly endemic areas, this systematic approach is now challenged by the emergence of insecticide resistance and by its low efficacy in controlling species that are only partially adapted to human habitat. In this contribution, we review evidences that Chagas disease control shall now be entering a second stage that will rely on a better understanding of triatomines adaptive potential, which requires promoting microevolutionary studies and –omic approaches. Concomitantly, we show that our knowledge of the determinants of the evolution of T. cruzi high diversity and low virulence remains too limiting to design evolution‐proof strategies, while such attributes may be part of the future of Chagas disease control after the 2020 WHO's target of regional elimination of intradomiciliary transmission has been reached. We should then aim at developing a theory of T. cruzi virulence evolution that we anticipate to provide an interesting enrichment of the general theory according to the specificities of transmission of this very generalist stercorarian trypanosome. We stress that many ecological data required to better understand selective pressures acting on vector and parasite populations are already available as they have been meticulously accumulated in the last century of field research. Although more specific information will surely be needed, an effective research strategy would be to integrate data into the conceptual and theoretical framework of evolutionary ecology and life‐history evolution that provide the quantitative backgrounds necessary to understand and possibly anticipate adaptive responses to public health interventions.
Collapse
Affiliation(s)
- Alheli Flores-Ferrer
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| | - Olivier Marcou
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán Mérida Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine School of Public Health and Tropical Medicine Tulane University New Orleans LA USA
| | - Sébastien Gourbière
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| |
Collapse
|
45
|
Antonovics J, Wilson AJ, Forbes MR, Hauffe HC, Kallio ER, Leggett HC, Longdon B, Okamura B, Sait SM, Webster JP. The evolution of transmission mode. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0083. [PMID: 28289251 PMCID: PMC5352810 DOI: 10.1098/rstb.2016.0083] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Anthony J Wilson
- Integrative Entomology group, Vector-borne Viral Diseases programme, The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B7
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.,Department of Ecology, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Helen C Leggett
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW5 7BD, UK
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, London AL9 7TA, UK
| |
Collapse
|
46
|
Wang L, Liu Z, Dai S, Yan J, Wise MJ. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence. Front Microbiol 2017; 8:2167. [PMID: 29209284 PMCID: PMC5701638 DOI: 10.3389/fmicb.2017.02167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.
Collapse
Affiliation(s)
- Liang Wang
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Zhanzhong Liu
- Department of Clinical Pharmacology, Xuzhou Infectious Diseases Hospital, Xuzhou, China
| | - Shiyun Dai
- School of Anaesthesia, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Yan
- Clinical Laboratory of Tuberculosis, Xuzhou Infectious Diseases Hospital, Xuzhou, China
| | - Michael J. Wise
- School of Computer Science and Software Engineering, University of Western Australia, Perth, WA, Australia
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
47
|
Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field. J Virol 2017; 91:JVI.01289-17. [PMID: 28768866 DOI: 10.1128/jvi.01289-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023] Open
Abstract
The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined.IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution.
Collapse
|
48
|
Hedrick SM. Understanding Immunity through the Lens of Disease Ecology. Trends Immunol 2017; 38:888-903. [PMID: 28882454 DOI: 10.1016/j.it.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 10/25/2022]
Abstract
As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Departments of Molecular Biology and Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Trimpert J, Groenke N, Jenckel M, He S, Kunec D, Szpara ML, Spatz SJ, Osterrieder N, McMahon DP. A phylogenomic analysis of Marek's disease virus reveals independent paths to virulence in Eurasia and North America. Evol Appl 2017; 10:1091-1101. [PMID: 29151863 PMCID: PMC5680632 DOI: 10.1111/eva.12515] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 12/28/2022] Open
Abstract
Virulence determines the impact a pathogen has on the fitness of its host, yet current understanding of the evolutionary origins and causes of virulence of many pathogens is surprisingly incomplete. Here, we explore the evolution of Marek's disease virus (MDV), a herpesvirus commonly afflicting chickens and rarely other avian species. The history of MDV in the 20th century represents an important case study in the evolution of virulence. The severity of MDV infection in chickens has been rising steadily since the adoption of intensive farming techniques and vaccination programs in the 1950s and 1970s, respectively. It has remained uncertain, however, which of these factors is causally more responsible for the observed increase in virulence of circulating viruses. We conducted a phylogenomic study to understand the evolution of MDV in the context of dramatic changes to poultry farming and disease control. Our analysis reveals evidence of geographical structuring of MDV strains, with reconstructions supporting the emergence of virulent viruses independently in North America and Eurasia. Of note, the emergence of virulent viruses appears to coincide approximately with the introduction of comprehensive vaccination on both continents. The time‐dated phylogeny also indicated that MDV has a mean evolutionary rate of ~1.6 × 10−5 substitutions per site per year. An examination of gene‐linked mutations did not identify a strong association between mutational variation and virulence phenotypes, indicating that MDV may evolve readily and rapidly under strong selective pressures and that multiple genotypic pathways may underlie virulence adaptation in MDV.
Collapse
Affiliation(s)
- Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Nicole Groenke
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Maria Jenckel
- Institute of Diagnostic Virology Friedrich-Loeffler-Institut Greifswald-Insel Riems Germany
| | - Shulin He
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| | - Dusan Kunec
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences Pennsylvania State University University Park PA USA
| | - Stephen J Spatz
- United States Department of Agriculture US National Poultry Research Center Athens GA USA
| | | | - Dino P McMahon
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| |
Collapse
|
50
|
Graves CJ, Weinreich DM. Variability in fitness effects can preclude selection of the fittest. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017; 48:399-417. [PMID: 31572069 DOI: 10.1146/annurev-ecolsys-110316-022722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele based solely on its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases evolutionary outcomes can only be predicted by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.
Collapse
Affiliation(s)
- Christopher J Graves
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| | - Daniel M Weinreich
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| |
Collapse
|