1
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
2
|
LaBelle CA, Zhang RJ, Hunsucker SA, Armistead PM, Allbritton NL. Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation. Cytometry A 2023; 103:208-220. [PMID: 35899783 PMCID: PMC9883594 DOI: 10.1002/cyto.a.24678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.
Collapse
Affiliation(s)
- Cody A. LaBelle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Raymond J. Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
3
|
Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models. Vaccines (Basel) 2022; 10:vaccines10030461. [PMID: 35335093 PMCID: PMC8949948 DOI: 10.3390/vaccines10030461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
HIV-1 remains a major public health issue worldwide in spite of efficacious antiviral therapies, but with no cure or preventive vaccine. The latter has been very challenging, as virus infection is associated with numerous escape mechanisms from host specific immunity and the correlates of protection remain incompletely understood. We have developed an innovative vaccine strategy, inspired by the efficacy of live-attenuated virus, but with the safety of a DNA vaccine, to confer both cellular and humoral responses. The CAL-SHIV-IN− lentiDNA vaccine comprises the backbone of the pathogenic SHIVKU2 genome, able to mimic the early phase of viral infection, but with a deleted integrase gene to ensure safety precluding integration within the host genome. This vaccine prototype, constitutively expressing viral antigen under the CAEV LTR promoter, elicited a variety of vaccine-specific, persistent CD4 and CD8 T cells against SIV-Gag and Nef up to 80 weeks post-immunization in cynomolgus macaques. Furthermore, these specific responses led to antiviral control of the pathogenic SIVmac251. To further improve the efficacy of this vaccine, we incorporated the IL-7 or IL-15 genes into the CAL-SHIV-IN− plasmid DNA in efforts to increase the pool of vaccine-specific memory T cells. In this study, we examined the immunogenicity of the two co-injected lentiDNA vaccines CAL-SHIV-IN− IRES IL-7 and CAL-SHIV-IN− IRES IL-15 in BALB/cJ mice and rhesus macaques and compared the immune responses with those generated by the parental vaccine CAL-SHIV-IN−. This co-immunization elicited potent vaccine-specific CD4 and CD8 T cells both in mice and rhesus macaques. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies were detected up to 40 weeks post-immunization in both plasma and mucosal compartments of rhesus macaques and were enhanced by the cytokines.
Collapse
|
4
|
Braun M, Aguilera AR, Sundarrajan A, Corvino D, Stannard K, Krumeich S, Das I, Lima LG, Meza Guzman LG, Li K, Li R, Salim N, Jorge MV, Ham S, Kelly G, Vari F, Lepletier A, Raghavendra A, Pearson S, Madore J, Jacquelin S, Effern M, Quine B, Koufariotis LT, Casey M, Nakamura K, Seo EY, Hölzel M, Geyer M, Kristiansen G, Taheri T, Ahern E, Hughes BGM, Wilmott JS, Long GV, Scolyer RA, Batstone MD, Landsberg J, Dietrich D, Pop OT, Flatz L, Dougall WC, Veillette A, Nicholson SE, Möller A, Johnston RJ, Martinet L, Smyth MJ, Bald T. CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8 + T Cells. Immunity 2021; 53:805-823.e15. [PMID: 33053330 DOI: 10.1016/j.immuni.2020.09.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.
Collapse
Affiliation(s)
- Matthias Braun
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashmitha Sundarrajan
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Dillon Corvino
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sophie Krumeich
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Indrajit Das
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC, Canada
| | - Nazhifah Salim
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Maria Villancanas Jorge
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabrielle Kelly
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Frank Vari
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ailin Lepletier
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashwini Raghavendra
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sally Pearson
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jason Madore
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sebastien Jacquelin
- Gordon and Jessie Gilmour Leukemia Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Maike Effern
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, Australia
| | - Brodie Quine
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lambros T Koufariotis
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Eun Y Seo
- Immuno-Oncology Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Touraj Taheri
- Pathology Queensland, Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Elizabeth Ahern
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; The University of Sydney, Central Clinical School, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; The University of Sydney, Central Clinical School, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Mater Hospital, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Martin D Batstone
- Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Oltin T Pop
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - William C Dougall
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Robert J Johnston
- Immuno-Oncology Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Ludovic Martinet
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse F-31000, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
5
|
Gupta SS, Sharp R, Hofferek C, Kuai L, Dorn GW, Wang J, Chen M. NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8 + T Cells. Cell Rep 2020; 29:1862-1877.e7. [PMID: 31722203 PMCID: PMC6886713 DOI: 10.1016/j.celrep.2019.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells. Gupta et al. demonstrate that mitophagy mediated by NIX, a mitochondrial outer membrane protein, plays a critical role in CD8+ T cell effector memory formation by regulating mitochondrial superoxide-dependent HIF1α protein accumulation and fatty acid metabolism. These findings elucidate the molecular mechanisms regulating T cell effector memory formation against viruses.
Collapse
Affiliation(s)
- Shubhranshu S Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colby Hofferek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Yeo L, Pujol‐Autonell I, Baptista R, Eichmann M, Kronenberg‐Versteeg D, Heck S, Dolton G, Sewell AK, Härkönen T, Mikk M, Toppari J, Veijola R, Knip M, Ilonen J, Peakman M. Circulating β cell-specific CD8 + T cells restricted by high-risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes. Clin Exp Immunol 2020; 199:263-277. [PMID: 31660582 PMCID: PMC7008222 DOI: 10.1111/cei.13391] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8+ T cells in HLA-B*3906+ children newly diagnosed with T1D and in high-risk HLA-A*2402+ children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906+ children with T1D, we observed an increase in PPI5-12 -specific transitional memory CD8+ T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI5-12 -specific CD8+ T cells in HLA-B*3906+ children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15-24 -specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8+ T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.
Collapse
Affiliation(s)
- L. Yeo
- Department of ImmunobiologyFaculty of Life Sciences and MedicineKing’s College LondonLondonUK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College LondonLondonUK
| | - I. Pujol‐Autonell
- Department of ImmunobiologyFaculty of Life Sciences and MedicineKing’s College LondonLondonUK
| | - R. Baptista
- National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College LondonLondonUK
| | - M. Eichmann
- Department of ImmunobiologyFaculty of Life Sciences and MedicineKing’s College LondonLondonUK
| | - D. Kronenberg‐Versteeg
- Department of ImmunobiologyFaculty of Life Sciences and MedicineKing’s College LondonLondonUK
| | - S. Heck
- National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College LondonLondonUK
| | - G. Dolton
- Division of Infection and ImmunitySchool of Medicine and Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - A. K. Sewell
- Division of Infection and ImmunitySchool of Medicine and Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - T. Härkönen
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - M.‐L. Mikk
- Immunogenetics LaboratoryInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - J. Toppari
- Department of PaediatricsUniversity of Turku and Turku University HospitalTurkuFinland
- Institute of BiomedicineResearch Centre for Integrative Physiology and PharmacologyUniversity of TurkuTurkuFinland
| | - R. Veijola
- Department of PaediatricsPEDEGO Research UnitMedical Research CentreOulu University Hospital and University of OuluOuluFinland
| | - M. Knip
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Children’s HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of PediatricsTampere University HospitalTampereFinland
- Folkhälsan Research CentreHelsinkiFinland
| | - J. Ilonen
- Immunogenetics LaboratoryInstitute of BiomedicineUniversity of TurkuTurkuFinland
- Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - M. Peakman
- Department of ImmunobiologyFaculty of Life Sciences and MedicineKing’s College LondonLondonUK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College LondonLondonUK
- King’s Health Partners Institute of Diabetes, Endocrinology and ObesityLondonUK
| |
Collapse
|
7
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
8
|
Distinct transcriptome profiles of Gag-specific CD8+ T cells temporally correlated with the protection elicited by SIVΔnef live attenuated vaccine. PLoS One 2017; 12:e0173929. [PMID: 28333940 PMCID: PMC5363825 DOI: 10.1371/journal.pone.0173929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
The live attenuated vaccine (LAV) SIVmac239Δnef (SIVΔnef) confers the best protection among all the vaccine modalities tested in rhesus macaque model of HIV-1 infection. This vaccine has a unique feature of time-dependent protection: macaques are not protected at 3–5 weeks post vaccination (WPV), whereas immune protection emerges between 15 and 20 WPV. Although the exact mechanisms of the time-dependent protection remain incompletely understood, studies suggested that both cellular and humoral immunities contribute to this time-dependent protection. To further elucidate the mechanisms of protection induced by SIVΔnef, we longitudinally compared the global gene expression profiles of SIV Gag-CM9+ CD8+ (Gag-specific CD8+) T cells from peripheral blood of Mamu-A*01+ rhesus macaques at 3 and 20 WPV using rhesus microarray. We found that gene expression profiles of Gag-specific CD8+ T cells at 20 WPV are qualitatively different from those at 3 WPV. At 20 WPV, the most significant transcriptional changes of Gag-specific CD8+ T cells were genes involved in TCR signaling, differentiation and maturation toward central memory cells, with increased expression of CCR7, TCRα, TCRβ, CD28 and decreased expression of CTLA-4, IFN-γ, RANTES, granzyme A and B. Our study suggests that a higher quality of SIV-specific CD8+ T cells elicited by SIVΔnef over time contributes to the maturation of time-dependent protection.
Collapse
|
9
|
Adnan S, Reeves RK, Gillis J, Wong FE, Yu Y, Camp JV, Li Q, Connole M, Li Y, Piatak M, Lifson JD, Li W, Keele BF, Kozlowski PA, Desrosiers RC, Haase AT, Johnson RP. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection. PLoS Pathog 2016; 12:e1006104. [PMID: 27959961 PMCID: PMC5189958 DOI: 10.1371/journal.ppat.1006104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/27/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.
Collapse
Affiliation(s)
- Sama Adnan
- Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
| | - R. Keith Reeves
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Jacqueline Gillis
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
| | - Fay E. Wong
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
| | - Yi Yu
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
| | - Jeremy V. Camp
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michelle Connole
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ashley T. Haase
- Department of Microbiology, Medical School, University of Minnesota, MMC 196, 420 Delaware Street S.E., Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States of America
| |
Collapse
|
10
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
11
|
Nicoli F, Gallerani E, Skarlis C, Sicurella M, Cafaro A, Ensoli B, Caputo A, Marconi PC, Gavioli R. Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection. Vaccine 2016; 34:2216-24. [PMID: 27002499 DOI: 10.1016/j.vaccine.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts. IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization. IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tem) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Charalampos Skarlis
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Peggy C Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
12
|
Hodara VL, Parodi LM, Keckler MS, Giavedoni LD. Increases in NKG2C Expression on T Cells and Higher Levels of Circulating CD8 + B Cells Are Associated with Sterilizing Immunity Provided by a Live Attenuated SIV Vaccine. AIDS Res Hum Retroviruses 2016; 32:1125-1134. [PMID: 26986800 DOI: 10.1089/aid.2015.0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vaccines based on live attenuated viruses are highly effective immunogens in the simian immunodeficiency virus (SIV)/rhesus macaque animal model and offer the possibility of studying correlates of protection against infection with virulent virus. We utilized a tether system for studying, in naive macaques and animals vaccinated with a live-attenuated vaccine, the acute events after challenge with pathogenic SIV. This approach allowed for the frequent sampling of small blood volumes without sedation or restraining of the animals, thus reducing the confounding effect of sampling stress. Before challenge, vaccinated animals presented significantly higher levels of proliferating and activated B cells than naive macaques, which were manifested by high expression of CD8 on B cells. After SIV challenge, the only changes observed in protected vaccinated macaques were significant increases in expression of the NK marker NKG2C on CD4 and CD8 T cells. We also identified that infection of naive macaques with SIV resulted in a transient peak of expression of CD20 on CD8 T cells and a constant rise in the number of B cells expressing CD8. Finally, analysis of a larger cohort of vaccinated animals identified that, even when circulating levels of vaccine virus are below the limit of detection, live attenuated vaccines induce systemic increases of IP-10 and perforin. These studies indicate that components of both the innate and adaptive immune systems of animals inoculated with a live-attenuated SIV vaccine respond to and control infection with virulent virus. Persistence of the vaccine virus in tissues may explain the elevated cytokine and B-cell activation levels. In addition, our report underpins the utility of the tether system for the intensive study of acute immune responses to viral infections.
Collapse
Affiliation(s)
- Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura M. Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - M. Shannon Keckler
- Division of Healthcare Quality Promotion, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
13
|
Correction: Characterization of CD8+ T Cell Differentiation following SIVΔnef Vaccination by Transcription Factor Expression Profiling. PLoS Pathog 2015; 11:e1004968. [PMID: 26068217 PMCID: PMC4466250 DOI: 10.1371/journal.ppat.1004968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|