1
|
Balakrishnan A, Hunziker M, Tiwary P, Pandey V, Drew D, Billker O. A CRISPR homing screen finds a chloroquine resistance transporter-like protein of the Plasmodium oocyst essential for mosquito transmission of malaria. Nat Commun 2025; 16:3895. [PMID: 40274854 PMCID: PMC12022033 DOI: 10.1038/s41467-025-59099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Genetic screens with barcoded PlasmoGEM vectors have identified thousands of Plasmodium berghei gene functions in haploid blood stages, gametocytes and liver stages. However, the formation of diploid cells by fertilisation has hindered similar research on the parasites' mosquito stages. In this study, we develop a scalable genetic system that uses barcoded gene targeting vectors equipped with a CRISPR-mediated homing mechanism to generate homozygous loss-of-function mutants after one parent introduces a modified allele into the zygote. To achieve this, we use vectors additionally expressing a target gene specific gRNA. When integrated into one of the parental alleles it directs Cas9 to the intact allele after fertilisation, leading to its disruption. This homing strategy is 90% effective at generating homozygous gene editing of a fluorescence-tagged reporter locus in the oocyst. A pilot screen identifies PBANKA_0916000 as a chloroquine resistance transporter-like protein (CRTL) essential for oocyst growth and sporogony, pointing to an unexpected importance for malaria transmission of the poorly understood digestive vacuole of the oocyst that contains hemozoin granules. Homing screens provide a method for the systematic discovery of malaria transmission genes whose first essential functions are after fertilisation in the bloodmeal, enabling their potential as targets for transmission-blocking interventions to be assessed.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Puja Tiwary
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umea Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Atchou K, Caldelari R, Roques M, Schmuckli-Maurer J, Beyeler R, Heussler V. Expanding the fluorescent toolkit: Blue fluorescent protein-expressing Plasmodium berghei for enhanced multiplex microscopy. PLoS One 2025; 20:e0308055. [PMID: 40029851 PMCID: PMC11875362 DOI: 10.1371/journal.pone.0308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025] Open
Abstract
Fluorescent proteins are widely used as markers to differentiate genetically modified cells from their wild-type counterparts. In malaria research, the prevalent fluorescent markers include red fluorescent proteins (RFPs) and their derivatives, such as mCherry, along with green fluorescent proteins (GFPs) and their derivatives. Recognizing the need for additional fluorescent markers to facilitate multiplexed imaging, this study introduced parasite lines expressing blue fluorescent protein (BFP). These lines enable simultaneous microscopy studies of proteins tagged with GFP, RFP, or detected by fluorophore-labeled antibodies, enhancing the analysis of complex biological interactions. Expression of BFP throughout the parasite's life cycle was driven by the robust Hsp70 promoter, ensuring stable, detectable protein levels suitable for fluorescent light analysis methods, including flow cytometry and fluorescent microscopy. We generated two Plasmodium berghei (P. berghei) lines expressing cytosolic BFP through double crossover homologous recombination targeting the silent 230p locus: eBFP2 (PbeBFP2) and mTagBFP2 (PbmTagBFP2). We compared these transgenic lines to established mCherry-expressing parasites PbmCherryHsp70 (PbmCherry) across their life cycles. The PbmTagBFP2 parasites exhibited fluorescence approximately 4.5 times brighter than the PbeBFP2 parasites in most life cycle stages. Both BFP-expressing lines developed normally through the entire parasite life cycle, offering a valuable expansion to the toolkit for studying Plasmodium biology at the host-pathogen interface.
Collapse
Affiliation(s)
- Kodzo Atchou
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Raphael Beyeler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Otesteanu CF, Caldelari R, Heussler V, Sznitman R. Machine learning for predicting Plasmodium liver stage development in vitro using microscopy imaging. Comput Struct Biotechnol J 2024; 24:334-342. [PMID: 38690550 PMCID: PMC11059334 DOI: 10.1016/j.csbj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Malaria, a significant global health challenge, is caused by Plasmodium parasites. The Plasmodium liver stage plays a pivotal role in the establishment of the infection. This study focuses on the liver stage development of the model organism Plasmodium berghei, employing fluorescent microscopy imaging and convolutional neural networks (CNNs) for analysis. Convolutional neural networks have been recently proposed as a viable option for tasks such as malaria detection, prediction of host-pathogen interactions, or drug discovery. Our research aimed to predict the transition of Plasmodium-infected liver cells to the merozoite stage, a key development phase, 15 hours in advance. We collected and analyzed hourly imaging data over a span of at least 38 hours from 400 sequences, encompassing 502 parasites. Our method was compared to human annotations to validate its efficacy. Performance metrics, including the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, were evaluated on an independent test dataset. The outcomes revealed an AUC of 0.873, a sensitivity of 84.6%, and a specificity of 83.3%, underscoring the potential of our CNN-based framework to predict liver stage development of P. berghei. These findings not only demonstrate the feasibility of our methodology but also could potentially contribute to the broader understanding of parasite biology.
Collapse
Affiliation(s)
- Corin F. Otesteanu
- Artificial Intelligence in Medicine group, University of Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Switzerland
| | | | - Raphael Sznitman
- Artificial Intelligence in Medicine group, University of Bern, Switzerland
| |
Collapse
|
4
|
Schmuckli-Maurer J, Bindschedler AF, Wacker R, Würgler OM, Rehmann R, Lehmberg T, Murphy LO, Nguyen TN, Lazarou M, Monfregola J, Ballabio A, Heussler VT. Plasmodium berghei liver stage parasites exploit host GABARAP proteins for TFEB activation. Commun Biol 2024; 7:1554. [PMID: 39572689 PMCID: PMC11582615 DOI: 10.1038/s42003-024-07242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Plasmodium, the causative agent of malaria, infects hepatocytes prior to establishing a symptomatic blood stage infection. During this liver stage development, parasites reside in a parasitophorous vacuole (PV), whose membrane acts as the critical interface between the parasite and the host cell. It is well-established that host cell autophagy-related processes significantly impact the development of Plasmodium liver stages. Expression of genes related to autophagy and lysosomal biogenesis is orchestrated by transcription factor EB (TFEB). In this study, we explored the activation of host cell TFEB in Plasmodium berghei-infected cells during the liver stage of the parasite. Our results unveiled a critical role of proteins belonging to the Gamma-aminobutyric acid receptor-associated protein subfamily (GABARAP) of ATG8 proteins (GABARAP/L1/L2 and LC3A/B/C) in recruiting the TFEB-blocking FLCN-FNIP (Folliculin-Folliculin-interacting protein) complex to the PVM. Remarkably, the sequestration of FLCN-FNIP resulted in a robust activation of TFEB, reliant on conjugation of ATG8 proteins to single membranes (CASM) and GABARAP proteins. Our findings provide novel mechanistic insights into host cell signaling occurring at the PVM, shedding light on the complex interplay between Plasmodium parasites and the host cell during the liver stage of infection.
Collapse
Affiliation(s)
| | - Annina F Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver M Würgler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Timothy Lehmberg
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
| | - Leon O Murphy
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
| | - Thanh N Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | | |
Collapse
|
5
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Bindschedler A, Schmuckli-Maurer J, Buchser S, Fischer TD, Wacker R, Davalan T, Brunner J, Heussler VT. LC3B labeling of the parasitophorous vacuole membrane of Plasmodium berghei liver stage parasites depends on the V-ATPase and ATG16L1. Mol Microbiol 2024; 121:1095-1111. [PMID: 38574236 DOI: 10.1111/mmi.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.
Collapse
Affiliation(s)
- Annina Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Sophie Buchser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tara D Fischer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tim Davalan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jessica Brunner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
8
|
Pietsch E, Niedermüller K, Andrews M, Meyer BS, Lenz TL, Wilson DW, Gilberger TW, Burda PC. Disruption of a Plasmodium falciparum patatin-like phospholipase delays male gametocyte exflagellation. Mol Microbiol 2024; 121:529-542. [PMID: 38131156 DOI: 10.1111/mmi.15211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
10
|
Scheiner M, Burda PC, Ingmundson A. Moving on: How malaria parasites exit the liver. Mol Microbiol 2024; 121:328-340. [PMID: 37602900 DOI: 10.1111/mmi.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.
Collapse
Affiliation(s)
- Mattea Scheiner
- Molecular Parasitology, Humboldt University Berlin, Berlin, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
11
|
Atchou K, Berger BM, Heussler V, Ochsenreiter T. Pre-gelation staining expansion microscopy for visualisation of the Plasmodium liver stage. J Cell Sci 2023; 136:jcs261377. [PMID: 37942994 PMCID: PMC10729816 DOI: 10.1242/jcs.261377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Fluorescence and light microscopy are important tools in the history of natural science. However, the resolution of microscopes is limited by the diffraction of light. One possible method to circumvent this physical restriction is the recently developed expansion microscopy (ExM). However, the original ultrastructure ExM (U-ExM) protocol is very time-consuming, and some epitopes are lost during the process. In this study, we developed a shortened pre-gelation staining ExM (PS-ExM) protocol and tested it to investigate the Plasmodium liver stage. The protocol presented in this study allows expanding of pre-stained samples, which results in shorter incubation times, better preservation of some epitopes and the advantage that non-expanded controls can be performed alongside using the same staining protocol. The protocol applicability was accessed throughout the Plasmodium liver stage, showing isotropic five-fold expansion. Furthermore, we used PS-ExM to visualise parasite mitochondria as well as the association of lysosomes to the parasitophorous vacuole membrane (PVM) as an example of visualising host-pathogen interaction. We are convinced that this new tool will be helpful for a deeper understanding of the biology of the Plasmodium liver stage.
Collapse
Affiliation(s)
- Kodzo Atchou
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Bianca Manuela Berger
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
12
|
Hervé P, Monic S, Bringaud F, Rivière L. Phospholipases A and Lysophospholipases in protozoan parasites. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:204-216. [PMID: 37786811 PMCID: PMC10513453 DOI: 10.15698/mic2023.10.805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Phospholipases (PLs) and Lysophospholipases (LysoPLs) are a diverse group of esterases responsible for phospholipid or lysophospholipid hydrolysis. They are involved in several biological processes, including lipid catabolism, modulation of the immune response and membrane maintenance. PLs are classified depending on their site of hydrolysis as PLA1, PLA2, PLC and PLD. In many pathogenic microorganisms, from bacteria to fungi, PLAs and LysoPLs have been described as critical virulence and/or pathogenicity factors. In protozoan parasites, a group containing major human and animal pathogens, growing literature show that PLAs and LysoPLs are also involved in the host infection. Their ubiquitous presence and role in host-pathogen interactions make them particularly interesting to study. In this review, we summarize the literature on PLAs and LysoPLs in several protozoan parasites of medical relevance, and discuss the growing interest for them as potential drug and vaccine targets.
Collapse
Affiliation(s)
- Perrine Hervé
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Sarah Monic
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Frédéric Bringaud
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Loïc Rivière
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| |
Collapse
|
13
|
Ukegbu CV, Gomes AR, Giorgalli M, Campos M, Bailey AJ, Besson TRB, Billker O, Vlachou D, Christophides GK. Identification of genes required for Plasmodium gametocyte-to-sporozoite development in the mosquito vector. Cell Host Microbe 2023; 31:1539-1551.e6. [PMID: 37708854 DOI: 10.1016/j.chom.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Malaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, the complex regulation of gene expression and genotype-phenotype associations in the mosquito vector, along with sexual reproduction, have hindered the development of screens in this critical part of the parasite life cycle. To address this, we developed a genetic approach in the rodent parasite Plasmodium berghei that, in combination with barcode sequencing, circumvents the fertilization roadblock and enables screening for gametocyte-expressed genes required for parasite infection of the mosquito Anopheles coluzzii. Our results confirm previous findings, validating our approach for scaling up, and identify genes necessary for mosquito midgut infection, oocyst development, and salivary gland infection. These findings can aid efforts to study malaria transmission biology and to develop interventions for controlling disease transmission.
Collapse
Affiliation(s)
| | - Ana Rita Gomes
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Melina Campos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexander J Bailey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
14
|
Burda PC, Ramaprasad A, Bielfeld S, Pietsch E, Woitalla A, Söhnchen C, Singh MN, Strauss J, Sait A, Collinson LM, Schwudke D, Blackman MJ, Gilberger TW. Global analysis of putative phospholipases in Plasmodium falciparum reveals an essential role of the phosphoinositide-specific phospholipase C in parasite maturation. mBio 2023; 14:e0141323. [PMID: 37489900 PMCID: PMC10470789 DOI: 10.1128/mbio.01413-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
For its replication within red blood cells, the malaria parasite depends on a highly active and regulated lipid metabolism. Enzymes involved in lipid metabolic processes such as phospholipases are, therefore, potential drug targets. Here, using reverse genetics approaches, we show that only 1 out of the 19 putative phospholipases expressed in asexual blood stages of Plasmodium falciparum is essential for proliferation in vitro, pointing toward a high level of redundancy among members of this enzyme family. Using conditional mislocalization and gene disruption techniques, we show that this essential phosphoinositide-specific phospholipase C (PI-PLC, PF3D7_1013500) has a previously unrecognized essential role during intracellular parasite maturation, long before its previously perceived role in parasite egress and invasion. Subsequent lipidomic analysis suggests that PI-PLC mediates cleavage of phosphatidylinositol bisphosphate (PIP2) in schizont-stage parasites, underlining its critical role in regulating phosphoinositide levels in the parasite. IMPORTANCE The clinical symptoms of malaria arise due to repeated rounds of replication of Plasmodium parasites within red blood cells (RBCs). Central to this is an intense period of membrane biogenesis. Generation of membranes not only requires de novo synthesis and acquisition but also the degradation of phospholipids, a function that is performed by phospholipases. In this study, we investigate the essentiality of the 19 putative phospholipase enzymes that the human malaria parasite Plasmodium falciparum expresses during its replication within RBCs. We not only show that a high level of functional redundancy exists among these enzymes but, at the same time, also identify an essential role for the phosphoinositide-specific phospholipase C in parasite development and cleavage of the phospholipid phosphatidylinositol bisphosphate.
Collapse
Affiliation(s)
- Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Anna Woitalla
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christoph Söhnchen
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Mehar Nihal Singh
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Aaron Sait
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Aguirre-Botero MC, Wang LT, Formaglio P, Aliprandini E, Thiberge JM, Schön A, Flores-Garcia Y, Mathis-Torres S, Flynn BJ, da Silva Pereira L, Le Duff Y, Hurley M, Nacer A, Bowyer PW, Zavala F, Idris AH, Francica JR, Seder RA, Amino R. Cytotoxicity of human antibodies targeting the circumsporozoite protein is amplified by 3D substrate and correlates with protection. Cell Rep 2023; 42:112681. [PMID: 37389992 PMCID: PMC10468621 DOI: 10.1016/j.celrep.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.
Collapse
Affiliation(s)
- Manuela C Aguirre-Botero
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Eduardo Aliprandini
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Jean-Michel Thiberge
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lais da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yann Le Duff
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Mathew Hurley
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Paul W Bowyer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France.
| |
Collapse
|
16
|
Sheokand PK, Yamaryo-Botté Y, Narwal M, Arnold CS, Thakur V, Islam MM, Banday MM, Asad M, Botté CY, Mohmmed A. A Plasmodium falciparum lysophospholipase regulates host fatty acid flux via parasite lipid storage to enable controlled asexual schizogony. Cell Rep 2023; 42:112251. [PMID: 37015228 DOI: 10.1016/j.celrep.2023.112251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phospholipid metabolism is crucial for membrane biogenesis and homeostasis of Plasmodium falciparum. To generate such phospholipids, the parasite extensively scavenges, recycles, and reassembles host lipids. P. falciparum possesses an unusually large number of lysophospholipases, whose roles and importance remain to be elucidated. Here, we functionally characterize one P. falciparum lysophospholipase, PfLPL3, to reveal its key role in parasite propagation during asexual blood stages. PfLPL3 displays a dynamic localization throughout asexual stages, mainly localizing in the host-parasite interface. Inducible knockdown of PfLPL3 disrupts parasite development from trophozoites to schizont, inducing a drastic reduction in merozoite progenies. Detailed lipidomic analyses show that PfLPL3 generates fatty acids from scavenged host lipids to generate neutral lipids. These are then timely mobilized to allow schizogony and merozoite formation. We then identify inhibitors of PfLPL3 from Medicine for Malaria Venture (MMV) with potent antimalarial activity, which could also serve as pertinent chemical tools to study parasite lipid synthesis.
Collapse
Affiliation(s)
- Pradeep Kumar Sheokand
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Christophe-Sébastien Arnold
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mudassir M Banday
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
17
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
18
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
19
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
20
|
Borgo GM, Burke TP, Tran CJ, Lo NTN, Engström P, Welch MD. A patatin-like phospholipase mediates Rickettsia parkeri escape from host membranes. Nat Commun 2022; 13:3656. [PMID: 35760786 PMCID: PMC9237051 DOI: 10.1038/s41467-022-31351-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/15/2022] [Indexed: 12/25/2022] Open
Abstract
Rickettsia species of the spotted fever group are arthropod-borne obligate intracellular bacteria that can cause mild to severe human disease. These bacteria invade host cells, replicate in the cell cytosol, and spread from cell to cell. To access the host cytosol and avoid immune detection, they escape membrane-bound vacuoles by expressing factors that disrupt host membranes. Here, we show that a patatin-like phospholipase A2 enzyme (Pat1) facilitates Rickettsia parkeri infection by promoting escape from host membranes and cell-cell spread. Pat1 is important for infection in a mouse model and, at the cellular level, is crucial for efficiently escaping from single and double membrane-bound vacuoles into the host cytosol, and for avoiding host galectins that mark damaged membranes. Pat1 is also important for avoiding host polyubiquitin, preventing recruitment of autophagy receptor p62, and promoting actin-based motility and cell-cell spread. Pathogenic Rickettsia species are arthropod-borne, obligate intracellular bacteria that invade host cells, replicate in the cell cytosol, and spread from cell to cell. Here, Borgo et al. identify a Rickettsia phospholipase enzyme that is important for infection by helping the bacteria escape from host cell vacuoles into the host cytosol, preventing targeting by autophagy, and promoting bacterial motility and spread to other cells.
Collapse
Affiliation(s)
- Gina M Borgo
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Thomas P Burke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Cuong J Tran
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Primordial Genetics, San Diego, CA, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Hentzschel F, Gibbins MP, Attipa C, Beraldi D, Moxon CA, Otto TD, Marti M. Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. SCIENCE ADVANCES 2022; 8:eabm7348. [PMID: 35476438 PMCID: PMC9045723 DOI: 10.1126/sciadv.abm7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthew P. Gibbins
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Charalampos Attipa
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dario Beraldi
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Christopher A. Moxon
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
Disrupting a Plasmodium berghei putative phospholipase impairs efficient egress of merosomes. Int J Parasitol 2022; 52:547-558. [DOI: 10.1016/j.ijpara.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023]
|
23
|
Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. Cell Microbiol 2022. [DOI: 10.1155/2022/7647976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, initially invades and develops in hepatocytes where it resides in a parasitophorous vacuole (PV). A single invaded parasite develops into thousands of daughter parasites. Survival of the host cell is crucial for successful completion of liver stage development. Nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a transcription factor known to induce transcription of cytoprotective genes when activated. Here we show that NRF2 is activated in Plasmodium berghei-infected hepatocytes. We observed that this NRF2 activation depends on PV membrane resident p62 recruiting KEAP1, the negative regulator of NRF2. Disrupting the NRF2 gene results in reduced parasite survival, indicating that NRF2 signaling is an important event for parasite development in hepatocytes. Together, our observations uncovered a novel mechanism of how Plasmodium parasites ensure host cell survival during liver stage development.
Collapse
|
24
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
GlmS mediated knock-down of a phospholipase expedite alternate pathway to generate phosphocholine required for phosphatidylcholine synthesis in Plasmodium falciparum. Biochem J 2021; 478:3429-3444. [PMID: 34133721 DOI: 10.1042/bcj20200549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
Phospholipid synthesis is crucial for membrane proliferation in malaria parasites during the entire cycle in the host cell. The major phospholipid of parasite membranes, phosphatidylcholine (PC), is mainly synthesized through the Kennedy pathway. The phosphocholine required for this synthetic pathway is generated by phosphorylation of choline derived from catabolism of the lyso-phosphatidylcholine (LPC) scavenged from the host milieu. Here we have characterized a Plasmodium falciparum lysophospholipase (PfLPL20) which showed enzymatic activity on LPC substrate to generate choline. Using GFP- targeting approach, PfLPL20 was localized in vesicular structures associated with the neutral lipid storage bodies present juxtaposed to the food-vacuole. The C-terminal tagged glmS mediated inducible knock-down of PfLPL20 caused transient hindrance in the parasite development, however, the parasites were able to multiply efficiently, suggesting that PfLPL20 is not essential for the parasite. However, in PfLPL20 depleted parasites, transcript levels of enzyme of SDPM pathway (Serine Decarboxylase-Phosphoethanolamine Methyltransferase) were altered along with upregulation of phosphocholine and SAM levels; these results show upregulation of alternate pathway to generate the phosphocholine required for PC synthesis through the Kennedy pathway. Our study highlights presence of alternate pathways for lipid homeostasis/membrane-biogenesis in the parasite; these data could be useful to design future therapeutic approaches targeting phospholipid metabolism in the parasite.
Collapse
|
26
|
De Niz M, Caldelari R, Kaiser G, Zuber B, Heo WD, Heussler VT, Agop-Nersesian C. Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J Cell Sci 2021; 134:jcs252213. [PMID: 34013963 PMCID: PMC8186485 DOI: 10.1242/jcs.252213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Benoit Zuber
- Institute for Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Won Do Heo
- Dept. of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
27
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
28
|
Witmer K, Dahalan FA, Metcalf T, Talman AM, Howick VM, Lawniczak MKN. Using scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage. Front Cell Infect Microbiol 2021; 11:604129. [PMID: 33732658 PMCID: PMC7958875 DOI: 10.3389/fcimb.2021.604129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
The crossing of the mosquito midgut epithelium by the malaria parasite motile ookinete form represents the most extreme population bottleneck in the parasite life cycle and is a prime target for transmission blocking strategies. However, we have little understanding of the clonal variation that exists in a population of ookinetes in the vector, partially because the parasites are difficult to access and are found in low numbers. Within a vector, variation may result as a response to specific environmental cues or may exist independent of those cues as a potential bet-hedging strategy. Here we use single-cell RNA-seq to profile transcriptional variation in Plasmodium berghei ookinetes across different vector species, and between and within individual midguts. We then compare our results to low-input transcriptomes from individual Anopheles coluzzii midguts infected with the human malaria parasite Plasmodium falciparum. Although the vast majority of transcriptional changes in ookinetes are driven by development, we have identified candidate genes that may be responding to environmental cues or are clonally variant within a population. Our results illustrate the value of single-cell and low-input technologies in understanding clonal variation of parasite populations.
Collapse
Affiliation(s)
- Kathrin Witmer
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Farah Aida Dahalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tom Metcalf
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Arthur M. Talman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Virginia M. Howick
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mara K. N. Lawniczak
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
29
|
Relitti N, Federico S, Pozzetti L, Butini S, Lamponi S, Taramelli D, D'Alessandro S, Martin RE, Shafik SH, Summers RL, Babij SK, Habluetzel A, Tapanelli S, Caldelari R, Gemma S, Campiani G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur J Med Chem 2021; 215:113227. [PMID: 33601312 DOI: 10.1016/j.ejmech.2021.113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Due to the surge in resistance to common therapies, malaria remains a significant concern to human health worldwide. In chloroquine (CQ)-resistant (CQ-R) strains of Plasmodium falciparum, CQ and related drugs are effluxed from the parasite's digestive vacuole (DV). This process is mediated by mutant isoforms of a protein called CQ resistance transporter (PfCRT). CQ-R strains can be partially re-sensitized to CQ by verapamil (VP), primaquine (PQ) and other compounds, and this has been shown to be due to the ability of these molecules to inhibit drug transport via PfCRT. We have previously developed a series of clotrimazole (CLT)-based antimalarial agents that possess inhibitory activity against PfCRT (4a,b). In our endeavor to develop novel PfCRT inhibitors, and to perform a structure-activity relationship analysis, we synthesized a new library of analogues. When the benzhydryl system was linked to a 4-aminoquinoline group (5a-f) the resulting compounds exhibited good cytotoxicity against both CQ-R and CQ-S strains of P. falciparum. The most potent inhibitory activity against the PfCRT-mediated transport of CQ was obtained with compound 5k. When compared to the reference compound, benzhydryl analogues of PQ (5i,j) showed a similar activity against blood-stage parasites, and a stronger in vitro potency against liver-stage parasites. Unfortunately, in the in vivo transmission blocking assays, 5i,j were inactive against gametocytes.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Robert L Summers
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Simone K Babij
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| |
Collapse
|
30
|
CRISPR/Cas9-Based Knockout of GNAQ Reveals Differences in Host Cell Signaling Necessary for Egress of Apicomplexan Parasites. mSphere 2020; 5:5/6/e01001-20. [PMID: 33361125 PMCID: PMC7763550 DOI: 10.1128/msphere.01001-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. Toxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages. IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.
Collapse
|
31
|
Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition. mBio 2020; 11:mBio.02312-20. [PMID: 33173001 PMCID: PMC7667033 DOI: 10.1128/mbio.02312-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
Collapse
|
32
|
Bindschedler A, Wacker R, Egli J, Eickel N, Schmuckli-Maurer J, Franke-Fayard BM, Janse CJ, Heussler VT. Plasmodium berghei sporozoites in nonreplicative vacuole are eliminated by a PI3P-mediated autophagy-independent pathway. Cell Microbiol 2020; 23:e13271. [PMID: 32979009 PMCID: PMC7757174 DOI: 10.1111/cmi.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium‐associated autophagy‐related (PAAR) response. This is characterised by a long‐lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3‐phosphate (PI3P)‐labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P‐labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3‐labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.
Collapse
Affiliation(s)
- Annina Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jessica Egli
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Nina Eickel
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Blandine M Franke-Fayard
- Leiden malaria group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden malaria group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
33
|
Putrianti ED, Schmidt-Christensen A, Heussler V, Matuschewski K, Ingmundson A. A Plasmodium cysteine protease required for efficient transition from the liver infection stage. PLoS Pathog 2020; 16:e1008891. [PMID: 32956401 PMCID: PMC7529260 DOI: 10.1371/journal.ppat.1008891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/01/2020] [Accepted: 08/15/2020] [Indexed: 01/23/2023] Open
Abstract
The transitions between developmental stages are critical points in the Plasmodium life cycle. The development of Plasmodium in the livers of their mammalian hosts bridges malaria transmission and the onset of clinical symptoms elicited by red blood cell infection. The egress of Plasmodium parasites from the liver must be a carefully orchestrated process to ensure a successful switch to the blood stage of infection. Cysteine protease activity is known to be required for liver-stage Plasmodium egress, but the crucial cysteine protease(s) remained unidentified. Here, we characterize a member of the papain-like cysteine protease family, Plasmodium berghei serine repeat antigen 4 (PbSERA4), that is required for efficient initiation of blood-stage infection. Through the generation PbSERA4-specific antisera and the creation of transgenic parasites expressing fluorescently tagged protein, we show that PbSERA4 is expressed and proteolytically processed in the liver and blood stages of infection. Targeted disruption of PbSERA4 results in viable and virulent blood-stage parasites. However, upon transmission from mosquitoes to mice, Pbsera4(-) parasites displayed a reduced capacity to initiate a new round of asexual blood-stage replication. Our results from cultured cells indicate that this defect results from an inability of the PbSERA4-deficient parasites to egress efficiently from infected cells at the culmination of liver-stage development. Protection against infection with wildtype P. berghei could be generated in animals in which Pbsera4(-) parasites failed to establish infection. Our findings confirm that liver-stage merozoite release is an active process and demonstrate that this parasite-encoded cysteine protease contributes to parasite escape from the liver. Plasmodium parasites cause over 200 million cases of malaria every year. When parasites are transmitted by mosquito bite, they initially colonize the liver before they move into the blood and cause disease. During successful transition from the liver into the blood, Plasmodium cloak themselves in host plasma membrane as they egress from the liver cells. Although some aspects of how Plasmodium exit their host hepatocytes appear unique, certain attributes are shared across diverse pathogens. For example, protease activity is required not only for multiple stages of Plasmodium exit, but is also involved in the egress of some bacteria and other protozoan. Here we characterize a protease in Plasmodium berghei that is expressed in the liver and conserved across Plasmodium species. Through gene targeting, we found PbSERA4 is required for efficient egress of Plasmodium from the liver. In the absence of this protease the transition between the liver and blood stages of growth is prolonged due to inefficient parasite release from liver cells. These findings provide new insights into the function of a conserved Plasmodium protease and into the process of Plasmodium escape from the liver.
Collapse
Affiliation(s)
- Elyzana Dewi Putrianti
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Metabolism of Microbial Pathogens, Robert Koch Institute, Berlin, Germany
| | - Anja Schmidt-Christensen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Volker Heussler
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Alyssa Ingmundson
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
34
|
De Niz M, Kehrer J, Brancucci NMB, Moalli F, Reynaud EG, Stein JV, Frischknecht F. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS One 2020; 15:e0238134. [PMID: 32936796 PMCID: PMC7494115 DOI: 10.1371/journal.pone.0238134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria is a life-threatening disease, caused by Apicomplexan parasites of the Plasmodium genus. The Anopheles mosquito is necessary for the sexual replication of these parasites and for their transmission to vertebrate hosts, including humans. Imaging of the parasite within the insect vector has been attempted using multiple microscopy methods, most of which are hampered by the presence of the light scattering opaque cuticle of the mosquito. So far, most imaging of the Plasmodium mosquito stages depended on either sectioning or surgical dissection of important anatomical sites, such as the midgut and the salivary glands. Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) enable imaging fields of view in the centimeter scale whilst providing micrometer resolution. In this paper, we compare different optical clearing protocols and present reconstructions of the whole body of Plasmodium-infected, optically cleared Anopheles stephensi mosquitoes and their midguts. The 3D-reconstructions from OPT imaging show detailed features of the mosquito anatomy and enable overall localization of parasites in midguts. Additionally, LSFM imaging of mosquito midguts shows detailed distribution of oocysts in extracted midguts. This work was submitted as a pre-print to bioRxiv, available at https://www.biorxiv.org/content/10.1101/682054v2.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Research Group, University of Bern, Bern, Switzerland
| | - Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Nicolas M. B. Brancucci
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
35
|
Govindasamy K, Bhanot P. Overlapping and distinct roles of CDPK family members in the pre-erythrocytic stages of the rodent malaria parasite, Plasmodium berghei. PLoS Pathog 2020; 16:e1008131. [PMID: 32866196 PMCID: PMC7485973 DOI: 10.1371/journal.ppat.1008131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 09/11/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites initiates the pre-erythrocytic step of a malaria infection. Subsequent development of the parasite within hepatocytes and exit from them is essential for starting the disease-causing erythrocytic cycle. Identification of signaling pathways that operate in pre-erythrocytic stages provides insight into a critical step of infection and potential targets for chemoprotection from malaria. We demonstrate that P. berghei homologs of Calcium Dependent Protein Kinase 1 (CDPK1), CDPK4 and CDPK5 play overlapping but distinct roles in sporozoite invasion and parasite egress from hepatocytes. All three kinases are expressed in sporozoites. All three are required for optimal motility of sporozoites and consequently their invasion of hepatocytes. Increased cGMP can compensate for the functional loss of CDPK1 and CDPK5 during sporozoite invasion but cannot overcome loss of CDPK4. CDPK1 and CDPK5 expression is downregulated after sporozoite invasion. CDPK5 reappears in a subset of late stage liver stages and is present in all merosomes. Chemical inhibition of CDPK4 and depletion of CDPK5 in liver stages implicate these kinases in the formation and/or release of merosomes from mature liver stages. Furthermore, depletion of CDPK5 in merosomes significantly delays initiation of the erythrocytic cycle without affecting infectivity of hepatic merozoites. These data suggest that CDPK5 may be required for the rupture of merosomes. Our work provides evidence that sporozoite invasion requires CDPK1 and CDPK5, and suggests that CDPK5 participates in the release of hepatic merozoites. The malaria-parasite Plasmodium begins its mammalian cycle by infecting hepatocytes in the liver. A single parasite differentiates into tens of thousands of hepatic merozoites which exit the host cell in vesicles called merosomes. Hepatic merozoites initiate the first round of erythrocytic infection that eventually causes disease. We show that optimal invasion of liver cells by Plasmodium requires the action of three closely-related parasite kinases, CDPK1, 4 and 5. Loss of any of the three enzymes in the parasite significantly reduces infection of liver cells. Furthermore, CDPK5 is likely required for release of hepatic merozoites from merosomes and therefore for initiation of the erythrocytic cycle. A better understanding of how these kinases function could lead to drugs that prevent malaria.
Collapse
Affiliation(s)
- Kavitha Govindasamy
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, New Jersey, United States of America
| | - Purnima Bhanot
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
36
|
Experimentally Engineered Mutations in a Ubiquitin Hydrolase, UBP-1, Modulate In Vivo Susceptibility to Artemisinin and Chloroquine in Plasmodium berghei. Antimicrob Agents Chemother 2020; 64:AAC.02484-19. [PMID: 32340987 PMCID: PMC7318008 DOI: 10.1128/aac.02484-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022] Open
Abstract
As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in Southeast Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other regions where malaria is endemic. Reduced susceptibility to artemisinin in Southeast Asia has been primarily linked to mutations in the Plasmodium falciparum Kelch-13 gene, which is currently widely recognized as a molecular marker of artemisinin resistance. As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in Southeast Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other regions where malaria is endemic. Reduced susceptibility to artemisinin in Southeast Asia has been primarily linked to mutations in the Plasmodium falciparum Kelch-13 gene, which is currently widely recognized as a molecular marker of artemisinin resistance. However, two mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with reduced artemisinin susceptibility in a rodent model of malaria, and some cases of UBP-1 mutation variants associated with artemisinin treatment failure have been reported in Africa and SEA. In this study, we employed CRISPR-Cas9 genome editing and preemptive drug pressures to test these artemisinin susceptibility-associated mutations in UBP-1 in Plasmodium berghei sensitive lines in vivo. Using these approaches, we show that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine (CQ) and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines, whereas simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work provides independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions.
Collapse
|
37
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
38
|
Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, Caldelari R, Golomingi M, Nyonda M, Pandey V, Schwach F, Chevalley S, Ramesar J, Metcalf T, Herd C, Burda PC, Rayner JC, Soldati-Favre D, Janse CJ, Hatzimanikatis V, Billker O, Heussler VT. Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell 2020; 179:1112-1128.e26. [PMID: 31730853 PMCID: PMC6904910 DOI: 10.1016/j.cell.2019.10.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development. 1,342 barcoded P. berghei knockout (KO) mutants analyzed for stage-specific phenotypes Life-stage-specific metabolic models reveal reprogramming of cellular function High agreement between blood/liver stage metabolic models and genetic screening data Essential metabolic pathways for parasite development and mechanistic origin revealed
Collapse
Affiliation(s)
- Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Ellen Bushell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Mary Nyonda
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Vikash Pandey
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Frank Schwach
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Séverine Chevalley
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Colin Herd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland; Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2, 0XY, UK
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Oliver Billker
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden.
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
39
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
40
|
Abstract
Theileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells. Parasitic protozoans of the genus Theileria are intracellular pathogens that induce the cellular transformation of leukocytes, causing uncontrolled proliferation of the infected host cell. The transforming stage of the parasite has a strictly intracellular lifestyle and ensures its distribution to both daughter cells during host cell cytokinesis by aligning itself across the metaphase plate and by binding tightly to central spindle and astral microtubules. Given the importance of the parasite surface in maintaining interactions with host microtubules, we analyzed the ultrastructure of the host-parasite interface using transmission electron microscopy combined with high-resolution fluorescence microscopy and live-cell imaging. We show that porous membranes, termed annulate lamellae (AL), closely associate with the Theileria surface in infected T cells, B cells, and macrophages and are not detectable in noninfected bovine cell lines such as BL20 or BoMACs. AL are membranous structures found in the cytoplasm of fast-proliferating cells such as cancer cells, oocytes, and embryonic cells. Although AL were first observed more than 60 years ago, the function of these organelles is still not known. Indirect immunofluorescence analysis with a pan-nuclear pore complex antibody, combined with overexpression of a panel of nuclear pore proteins, revealed that the parasite recruits nuclear pore complex components close to its surface. Importantly, we show that, in addition to structural components of the nuclear pore complex, nuclear trafficking machinery, including importin beta 1, RanGAP1, and the small GTPase Ran, also accumulated close to the parasite surface. IMPORTANCETheileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells.
Collapse
|
41
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
42
|
Functional annotation of serine hydrolases in the asexual erythrocytic stage of Plasmodium falciparum. Sci Rep 2019; 9:17532. [PMID: 31772212 PMCID: PMC6879560 DOI: 10.1038/s41598-019-54009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from α/β hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.
Collapse
|
43
|
Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J 2019; 18:330. [PMID: 31551073 PMCID: PMC6760107 DOI: 10.1186/s12936-019-2968-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.
Collapse
Affiliation(s)
- Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | - Sunil Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | | | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
44
|
Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ, Natarajan K, Butungi H, Metcalf T, Verzier LH, Rayner JC, Berriman M, Herren JK, Billker O, Hemberg M, Talman AM, Lawniczak MKN. The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle. Science 2019; 365:eaaw2619. [PMID: 31439762 PMCID: PMC7056351 DOI: 10.1126/science.aaw2619] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.
Collapse
Affiliation(s)
- Virginia M Howick
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Andrew J C Russell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Haynes Heaton
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Kedar Natarajan
- Danish Institute of Advanced Study (D-IAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lisa H Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Oliver Billker
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Arthur M Talman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
45
|
Role of a patatin-like phospholipase in Plasmodium falciparum gametogenesis and malaria transmission. Proc Natl Acad Sci U S A 2019; 116:17498-17508. [PMID: 31413195 DOI: 10.1073/pnas.1900266116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transmission of Plasmodium falciparum involves a complex process that starts with the ingestion of gametocytes by female Anopheles mosquitoes during a blood meal. Activation of gametocytes in the mosquito midgut triggers "rounding up" followed by egress of both male and female gametes. Egress requires secretion of a perforin-like protein, PfPLP2, from intracellular vesicles to the periphery, which leads to destabilization of peripheral membranes. Male gametes also develop flagella, which assist in binding female gametes for fertilization. This process of gametogenesis, which is key to malaria transmission, involves extensive membrane remodeling as well as vesicular discharge. Phospholipase A2 enzymes (PLA2) are known to mediate membrane remodeling and vesicle secretion in diverse organisms. Here, we show that a P. falciparum patatin-like phospholipase (PfPATPL1) with PLA2 activity plays a key role in gametogenesis. Conditional deletion of the gene encoding PfPATPL1 does not affect P. falciparum blood stage growth or gametocyte development but reduces efficiency of rounding up, egress, and exflagellation of gametocytes following activation. Interestingly, deletion of the PfPATPL1 gene inhibits secretion of PfPLP2, reducing the efficiency of gamete egress. Deletion of PfPATPL1 also reduces the efficiency of oocyst formation in mosquitoes. These studies demonstrate that PfPATPL1 plays a role in gametogenesis, thereby identifying PLA2 phospholipases such as PfPATPL1 as potential targets for the development of drugs to block malaria transmission.
Collapse
|
46
|
Choudhary HH, Gupta R, Mishra S. PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life Sci Alliance 2019; 2:2/3/e201900352. [PMID: 31142638 PMCID: PMC6545604 DOI: 10.26508/lsa.201900352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
The mutant salivary gland sporozoites lacking PKAc are able to glide, invade hepatocytes, and mature into hepatic merozoites, which release successfully from the merosome, however, fail to initiate blood stage infection when inoculated into mice. Plasmodium sporozoites invade hepatocytes to initiate infection in the mammalian host. In the infected hepatocytes, sporozoites undergo rapid expansion and differentiation, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Both sporozoites and merozoites invade their host cells by activation of a signaling cascade followed by discharge of micronemal content. cAMP-dependent protein kinase catalytic subunit (PKAc)–mediated signaling plays an important role in merozoite invasion of erythrocytes, but its role during other stages of the parasite remains unknown. Becaused of the essentiality of PKAc in blood stages, we generated conditional mutants of PKAc by disrupting the gene in Plasmodium berghei sporozoites. The mutant salivary gland sporozoites were able to glide, invaded hepatocytes, and matured into hepatic merozoites which were released successfully from merosome, however failed to initiate blood stage infection when inoculated into mice. Our results demonstrate that malaria parasite complete preerythrocytic stages development without PKAc, raising the possibility that the PKAc independent signaling operates in preerythrocytic stages of P. berghei.
Collapse
Affiliation(s)
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
47
|
Niklaus L, Agop-Nersesian C, Schmuckli-Maurer J, Wacker R, Grünig V, Heussler VT. Deciphering host lysosome-mediated elimination of Plasmodium berghei liver stage parasites. Sci Rep 2019; 9:7967. [PMID: 31138850 PMCID: PMC6538699 DOI: 10.1038/s41598-019-44449-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Liver stage Plasmodium parasites reside in a parasitophorous vacuole (PV) that associates with lysosomes. It has previously been shown that these organelles can have beneficial as well as harmful effects on the parasite. Yet it is not clear how the association of lysosomes with the parasite is controlled and how interactions with these organelles lead to the antagonistic outcomes. In this study we used advanced imaging techniques to characterize lysosomal interactions with the PV. In host cells harboring successfully developing parasites we observed that these interaction events reach an equilibrium at the PV membrane (PVM). In a population of arrested parasites, this equilibrium appeared to shift towards a strongly increased lysosomal fusion with the PVM witnessed by strong PVM labeling with the lysosomal marker protein LAMP1. This was followed by acidification of the PV and elimination of the parasite. To systematically investigate elimination of arrested parasites, we generated transgenic parasites that express the photosensitizer KillerRed, which leads to parasite killing after activation. Our work provides insights in cellular details of intracellular killing and lysosomal elimination of Plasmodium parasites independent of cells of the immune system.
Collapse
Affiliation(s)
- L Niklaus
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - C Agop-Nersesian
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | | - R Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - V Grünig
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - V T Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
48
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
49
|
Glushakova S, Beck JR, Garten M, Busse BL, Nasamu AS, Tenkova-Heuser T, Heuser J, Goldberg DE, Zimmerberg J. Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes. Cell Microbiol 2018; 20:e12868. [PMID: 29900649 DOI: 10.1111/cmi.12868] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Because Plasmodium falciparum replicates inside of a parasitophorous vacuole (PV) within a human erythrocyte, parasite egress requires the rupture of two limiting membranes. Parasite Ca2+ , kinases, and proteases contribute to efficient egress; their coordination in space and time is not known. Here, the kinetics of parasite egress were linked to specific steps with specific compartment markers, using live-cell microscopy of parasites expressing PV-targeted fluorescent proteins, and specific egress inhibitors. Several minutes before egress, under control of parasite [Ca2+ ]i , the PV began rounding. Then after ~1.5 min, under control of PfPKG and SUB1, there was abrupt rupture of the PV membrane and release of vacuolar contents. Over the next ~6 min, there was progressive vacuolar membrane deterioration simultaneous with erythrocyte membrane distortion, lasting until the final minute of the egress programme when newly formed parasites mobilised and erythrocyte membranes permeabilised and then ruptured-a dramatic finale to the parasite cycle of replication.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Josh R Beck
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri.,Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Brad L Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Armiyaw S Nasamu
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri
| | - Tatyana Tenkova-Heuser
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - John Heuser
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
50
|
De Niz M, Meibalan E, Mejia P, Ma S, Brancucci NMB, Agop-Nersesian C, Mandt R, Ngotho P, Hughes KR, Waters AP, Huttenhower C, Mitchell JR, Martinelli R, Frischknecht F, Seydel KB, Taylor T, Milner D, Heussler VT, Marti M. Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. SCIENCE ADVANCES 2018; 4:eaat3775. [PMID: 29806032 PMCID: PMC5966192 DOI: 10.1126/sciadv.aat3775] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 05/13/2023]
Abstract
Transmission of Plasmodium parasites to the mosquito requires the formation and development of gametocytes. Studies in infected humans have shown that only the most mature forms of Plasmodium falciparum gametocytes are present in circulation, whereas immature forms accumulate in the hematopoietic environment of the bone marrow. We used the rodent model Plasmodium berghei to study gametocyte behavior through time under physiological conditions. Intravital microscopy demonstrated preferential homing of early gametocyte forms across the intact vascular barrier of the bone marrow and the spleen early during infection and subsequent development in the extravascular environment. During the acute phase of infection, we observed vascular leakage resulting in further parasite accumulation in this environment. Mature gametocytes showed high deformability and were found entering and exiting the intact vascular barrier. We suggest that extravascular gametocyte localization and mobility are essential for gametocytogenesis and transmission of Plasmodium to the mosquito.
Collapse
Affiliation(s)
- Mariana De Niz
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Mejia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicolas M. B. Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Rebecca Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Priscilla Ngotho
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Katie R. Hughes
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Centre, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Friedrich Frischknecht
- Parasitology Centre for Infectious Diseases, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | - Karl B. Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| |
Collapse
|