1
|
Janicka M, Chodkowski M, Osinska A, Bylinska K, Obuch-Woszczatyńska O, Patrycy M, Chodaczek G, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Cymerys J, Krzyżowska M. Adjuvanticity of Tannic Acid-Modified Nanoparticles Improves Effectiveness of the Antiviral Response. Int J Nanomedicine 2025; 20:3977-3997. [PMID: 40191045 PMCID: PMC11972000 DOI: 10.2147/ijn.s512509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Herpes simplex virus type 1 (HSV-1) causes recurrent infections of skin and mucosal tissues with high global prevalence. HSV-1 also invades the nervous system where it establishes a lifelong latency-making infection poorly treatable We previously showed that both tannic acid-modified silver and gold nanoparticles (TA-Ag/AuNPs) inhibit HSV-1 infection in vitro. Methods We used an in vitro and in vivo model of HSV-1 infection to study how metal type, size and tannic acid modification of nanoparticles can influence development of the early innate response and the mounting of specific anti-HSV-1 response upon treatment of the nasal mucosa. Results We found that tannic acid is necessary for binding with HSV-1, with smaller sizes independent of the NPs composition, whereas for larger NPs, only TA-AgNPs can inhibit HSV-1 infection. Intranasal treatment of HSV-1 infection with TA-Ag/AuNPs results in lower viral titers and a better antiviral response, followed by increased IFN-α, CXCL9, and CXCL10 levels as well as infiltration of T cells and NK cells in the infected sites. We also found that the application of TA-NPs to the nasal cavities of infected mice induced infiltration of both monocytes and Langerhans cells (LCs), which lasted longer compared to the application of unmodified NPs. Furthermore, TA-NPs activated monocytes and microglia to produce antiviral cytokines and chemokines better than unmodified NPs, except for the large TA-AuNPs. Discussion Treatment of the mucosal tissues at the early stage of HSV-1 infection helps to modulate specific and effective antiviral immune response by attracting cytotoxic lymphocytes and inducing the production of antiviral cytokines and chemokines. Furthermore, tannic acid modification is helpful for the removal of nanoparticles from the respiratory tract, which increases the safety of nanoparticle applications to treat infections.
Collapse
Affiliation(s)
- Martyna Janicka
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Aleksandra Osinska
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Klaudia Bylinska
- Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Oliwia Obuch-Woszczatyńska
- Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Patrycy
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Grzegorz Chodaczek
- Łukasiewicz Research Network – PORT Polish Center for Technology Development, Life Sciences and Biotechnology Center, Wroclaw, Poland
| | | | - Emilia Tomaszewska
- University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Lodz, Poland
| | - Grzegorz Celichowski
- University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Lodz, Poland
| | - Jaroslaw Grobelny
- University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Lodz, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Krzyżowska
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
2
|
Richardo T, Liu X, Döhner K, Chao TY, Buch A, Binz A, Pohlmann A, de le Roi M, Baumgärtner W, Brand K, Bauerfeind R, Förster R, Sodeik B, Halle S. Herpes simplex virus assembly and spread in murine skin after infection from the outside. J Virol 2025; 99:e0163824. [PMID: 39945537 PMCID: PMC11915863 DOI: 10.1128/jvi.01638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Herpes simplex viruses (HSV) cause many skin diseases, particularly in immunocompromised patients. HSV-1 infection of murine skin recapitulates many aspects of human pathology. However, many protocols rely on mechanical or enzymatic skin disruption to induce lesions, although this can alter skin homeostasis and prime antiviral inflammation before inoculation. To investigate the initial events following HSV-1 primary skin infection before the onset of symptoms, we developed a novel murine ex vivo explant model using gentle depilation without further scarification and infected keratinocytes from the outside with minimal tissue damage. Two-photon microscopy showed that HSV-1 spread exclusively in the epidermis. The infection centers increased in number and size over time and contained hundreds of infected keratinocytes. We investigated the HSV-1 spread at the cellular level, using reporter strains with fluorescently tagged capsid protein VP26, and observed the formation of nuclear capsid assembly sites and nuclear capsid egress and the recruitment of the inner tegument protein pUL37GFP, the outer tegument protein VP11/12GFP, and the envelope protein gDGFP to cytoplasmic capsids. By using electron microscopy, the skin appeared intact, and keratinocytes contained many nuclear capsids, primary virions in the nuclear envelope, cytosolic membrane-associated capsids, and enveloped virions. Our protocol provides a robust and reproducible approach to investigate the very early events of HSV-1 spread in the skin, to characterize the phenotypes of HSV-1 mutants in terminally differentiated skin tissues, and to evaluate potentially antiviral small molecules in a preclinical ex vivo infection model. IMPORTANCE This study describes a novel murine ex vivo skin explant model to investigate early events in HSV-1 infection without causing significant tissue damage. To infect from the outside, via the apical keratinocytes, this method relies on gentle depilation, which maintains skin integrity. HSV-1 spread exclusively within the epidermis, with infection centers increasing over time and involving hundreds of keratinocytes. Using advanced microscopy techniques, we tracked HSV-1 spread at the cellular level and intracellular assembly of all intermediate virus structures. This model offers a valuable tool for studying the initial stages of HSV-1 infection, assessing viral mutant phenotypes, and testing antiviral compounds in a more physiological context to provide critical insights into HSV-1 pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Timmy Richardo
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Xiaokun Liu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tsung-Yu Chao
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
5
|
Rana H, Truong NR, Sirimanne DR, Cunningham AL. Breaching the Barrier: Investigating Initial Herpes Simplex Viral Infection and Spread in Human Skin and Mucosa. Viruses 2024; 16:1790. [PMID: 39599904 PMCID: PMC11599041 DOI: 10.3390/v16111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Herpes simplex virus (HSV) is sexually transmitted via the anogenital mucosa where it initially infects epidermal keratinocytes and mononuclear phagocytes (MNPs). It then spreads to the dorsal root ganglion via sensory nerve endings, to remain latent for life with periodic reactivation. Currently, there is no cure or vaccine. Initial or recurrent HSV infection can produce serious complications and mediate acquisition of HIV. This review outlines the initial events after the HSV infection of human anogenital mucosa to determine the optimal window to target the virus before it becomes latent. After infection, HSV spreads rapidly within the mid-layers of epidermal keratinocytes in the explanted human inner foreskin. Infected cells produce chemokines, which modulate nectin-1 distribution on the surface of adjacent keratinocytes, facilitating viral spread. Epidermal Langerhans cells and dendritic cells become infected with HSV followed by a "viral relay" to dermal MNPs, which then present viral antigen to T cells in the dermis or lymph nodes. These data indicate the need for interruption of spread within 24 h by diffusible vaccine-induced mediators such as antiviral cytokines from resident immune cells or antibodies. Intradermal/mucosal vaccines would need to target the relevant dermal MNPs to induce HSV-specific CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dona R. Sirimanne
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
7
|
Döhner K, Serrero MC, Viejo-Borbolla A, Sodeik B. A Hitchhiker's Guide Through the Cell: The World According to the Capsids of Alphaherpesviruses. Annu Rev Virol 2024; 11:215-238. [PMID: 38954634 DOI: 10.1146/annurev-virology-100422-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The nucleoplasm, the cytosol, the inside of virions, and again the cytosol comprise the world in which the capsids of alphaherpesviruses encounter viral and host proteins that support or limit them in performing their tasks. Here, we review the fascinating conundrum of how specific protein-protein interactions late in alphaherpesvirus infection orchestrate capsid nuclear assembly, nuclear egress, and cytoplasmic envelopment, but target incoming capsids to the nuclear pores in naive cells to inject the viral genomes into the nucleoplasm for viral transcription and replication. Multiple capsid interactions with viral and host proteins have been characterized using viral mutants and assays that reconstitute key stages of the infection cycle. Keratinocytes, fibroblasts, mucosal epithelial cells, neurons, and immune cells employ cell type-specific intrinsic and cytokine-induced resistance mechanisms to restrict several stages of the viral infection cycle. However, concomitantly, alphaherpesviruses have evolved countermeasures to ensure efficient capsid function during infection.
Collapse
Affiliation(s)
- Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Manutea Christophe Serrero
- Department of Biomedicine and Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Abel Viejo-Borbolla
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Beate Sodeik
- DZIF German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
8
|
Rana H, Truong NR, Johnson B, Baharlou H, Herbert JJ, Kandasamy S, Goddard R, Cohen RC, Wines M, Nasr N, Harman AN, Bertram KM, Sandgren KJ, Cunningham AL. Herpes simplex virus spreads rapidly in human foreskin, partly driven by chemokine-induced redistribution of Nectin-1 on keratinocytes. PLoS Pathog 2024; 20:e1012267. [PMID: 38857290 PMCID: PMC11164381 DOI: 10.1371/journal.ppat.1012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma. Rapid lateral spread of HSV1 to a mean of 13 keratinocytes wide occurred after 24 hours and free virus particles were observed between keratinocytes, consistent with an intercellular route of spread. Nectin-1 staining was markedly decreased in foci of infection in the epidermis and in the human keratinocyte HaCaT cell line. Nectin-1 was redistributed, at the protein level, in adjacent uninfected cells surrounding infection, inducible by CCL3, IL-8 (or CXCL8), and possibly CXCL10 and IL-6, thus facilitating spread. These findings provide the first insights into HSV1 entry and spread in human inner foreskin in situ.
Collapse
Affiliation(s)
- Hafsa Rana
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Naomi R. Truong
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Blake Johnson
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jason J. Herbert
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Robert Goddard
- Research and Development, Vaxxas Pty Ltd., Brisbane, Queensland, Australia
| | - Ralph C. Cohen
- University of Sydney and Australian National University, Children’s Hospital at Westmead, New South Wales, Australia
| | - Michael Wines
- Urology, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M. Bertram
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kerrie J. Sandgren
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Saha S, Barik D, Biswas D. AMPs as Host-Directed Immunomodulatory Agents against Skin Infections Caused by Opportunistic Bacterial Pathogens. Antibiotics (Basel) 2024; 13:439. [PMID: 38786167 PMCID: PMC11117387 DOI: 10.3390/antibiotics13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
Skin is the primary and largest protective organ of the human body. It produces a number of highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that not only directly destroys invading pathogens, but also optimally modulate the immune functions of the body to counter the establishment and spread of infections. The canonical direct antimicrobial functions of these AMPs have been in focus for a long time to design principles for enhanced therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have been a point of major focus in the field of host-directed therapeutics. Such strategies have the added benefit of not having the pathogens develop resistance against the immunomodulatory pathways, since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus, this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the different host immune cells with the view of providing a platform of information that might help in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies that would synergies with drug regimens to counter the current diversity of drug-resistant skin opportunistic pathogens.
Collapse
Affiliation(s)
| | | | - Debabrata Biswas
- Institute of Life Sciences, NALCO Square, Bhubaneswar 751023, Odisha, India; (S.S.); (D.B.)
| |
Collapse
|
10
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
11
|
Danastas K, Guo G, Merjane J, Hong N, Larsen A, Miranda-Saksena M, Cunningham AL. Interferon inhibits the release of herpes simplex virus-1 from the axons of sensory neurons. mBio 2023; 14:e0181823. [PMID: 37655893 PMCID: PMC10653907 DOI: 10.1128/mbio.01818-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Herpes simplex virus-1 (HSV-1) is a human pathogen known to cause cold sores and genital herpes. HSV-1 establishes lifelong infections in our sensory neurons, with no cure or vaccine available. HSV-1 can reactivate sporadically and travel back along sensory nerves, where it can form lesions in the oral and genital mucosa, eye, and skin, or be shed asymptomatically. New treatment options are needed as resistance is emerging to current antiviral therapies. Here, we show that interferons (IFNs) are capable of blocking virus release from nerve endings, potentially stopping HSV-1 transmission into the skin. Furthermore, we show that IFNγ has the potential to have widespread antiviral effects in the neuron and may have additional effects on HSV-1 reactivation. Together, this study identifies new targets for the development of immunotherapies to stop the spread of HSV-1 from the nerves into the skin.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nathan Hong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
12
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
14
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
15
|
Herpes Simplex Virus 1 Can Bypass Impaired Epidermal Barriers upon Ex Vivo Infection of Skin from Atopic Dermatitis Patients. J Virol 2022; 96:e0086422. [PMID: 35969080 PMCID: PMC9472615 DOI: 10.1128/jvi.00864-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.
Collapse
|
16
|
Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci Rep 2022; 12:8489. [PMID: 35590057 PMCID: PMC9119387 DOI: 10.1038/s41598-022-12597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.
Collapse
|
17
|
Tognarelli EI, Retamal-Díaz A, Farías MA, Duarte LF, Palomino TF, Ibañez FJ, Riedel CA, Kalergis AM, Bueno SM, González PA. Pharmacological Inhibition of IRE-1 Alpha Activity in Herpes Simplex Virus Type 1 and Type 2-Infected Dendritic Cells Enhances T Cell Activation. Front Immunol 2022; 12:764861. [PMID: 35069537 PMCID: PMC8766714 DOI: 10.3389/fimmu.2021.764861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host’s antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1α). Here, we sought to evaluate if the activation of the IRE-1α pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1α in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1α-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biotecnología, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás F Palomino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Ibañez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
MA F, LF D, EI T, PA G. Herpes simplex virus interference with immunity: Focus on dendritic cells. Virulence 2021; 12:2583-2607. [PMID: 34895058 PMCID: PMC8677016 DOI: 10.1080/21505594.2021.1980990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte LF
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli EI
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
20
|
Baharlou H, Canete NP, Bertram KM, Sandgren KJ, Cunningham AL, Harman AN, Patrick E. AFid: a tool for automated identification and exclusion of autofluorescent objects from microscopy images. Bioinformatics 2021; 37:559-567. [PMID: 32931552 DOI: 10.1093/bioinformatics/btaa780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Autofluorescence is a long-standing problem that has hindered the analysis of images of tissues acquired by fluorescence microscopy. Current approaches to mitigate autofluorescence in tissue are lab-based and involve either chemical treatment of sections or specialized instrumentation and software to 'unmix' autofluorescent signals. Importantly, these approaches are pre-emptive and there are currently no methods to deal with autofluorescence in acquired fluorescence microscopy images. RESULTS To address this, we developed Autofluorescence Identifier (AFid). AFid identifies autofluorescent pixels as discrete objects in multi-channel images post-acquisition. These objects can then be tagged for exclusion from downstream analysis. We validated AFid using images of FFPE human colorectal tissue stained for common immune markers. Further, we demonstrate its utility for image analysis where its implementation allows the accurate measurement of HIV-Dendritic cell interactions in a colorectal explant model of HIV transmission. Therefore, AFid represents a major leap forward in the extraction of useful data from images plagued by autofluorescence by offering an approach that is easily incorporated into existing workflows and that can be used with various samples, staining panels and image acquisition methods. We have implemented AFid in ImageJ, Matlab and R to accommodate the diverse image analysis community. AVAILABILITY AND IMPLEMENTATION AFid software is available at https://ellispatrick.github.io/AFid. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Heeva Baharlou
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicolas P Canete
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kirstie M Bertram
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kerrie J Sandgren
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anthony L Cunningham
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,School of Medical Sciences in the Faculty of Medicine and Health, Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ellis Patrick
- School of Medicine, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,Department of Mathematics and Statistics in the Faculty of Science, The University of Sydney, 2006 Sydney, NSW, Australia 4Centre for Virus Research, The Westmead Institute for Medical Research, 2145 Sydney NSW Australia
| |
Collapse
|
21
|
Boero E, Mnich ME, Manetti AGO, Soldaini E, Grimaldi L, Bagnoli F. Human Three-Dimensional Models for Studying Skin Pathogens. Curr Top Microbiol Immunol 2021; 430:3-27. [PMID: 32601967 DOI: 10.1007/82_2020_219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
22
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
24
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
25
|
Lloyd MG, Smith NA, Tighe M, Travis KL, Liu D, Upadhyaya PK, Kinchington PR, Chan GC, Moffat JF. A Novel Human Skin Tissue Model To Study Varicella-Zoster Virus and Human Cytomegalovirus. J Virol 2020; 94:e01082-20. [PMID: 32878893 PMCID: PMC7592229 DOI: 10.1128/jvi.01082-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses.IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.
Collapse
Affiliation(s)
- Megan G Lloyd
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nicholas A Smith
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | | | - Dongmei Liu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Paul R Kinchington
- Departments of Ophthalmology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary C Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
26
|
Herpes Simplex Virus Type 1 Interactions with the Interferon System. Int J Mol Sci 2020; 21:ijms21145150. [PMID: 32708188 PMCID: PMC7404291 DOI: 10.3390/ijms21145150] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is one of the first lines of defense activated against invading viral pathogens. Upon secretion, IFNs activate a signaling cascade resulting in the production of several interferon stimulated genes (ISGs), which work to limit viral replication and establish an overall anti-viral state. Herpes simplex virus type 1 is a ubiquitous human pathogen that has evolved to downregulate the IFN response and establish lifelong latent infection in sensory neurons of the host. This review will focus on the mechanisms by which the host innate immune system detects invading HSV-1 virions, the subsequent IFN response generated to limit viral infection, and the evasion strategies developed by HSV-1 to evade the immune system and establish latency in the host.
Collapse
|
27
|
Roychoudhury P, Swan DA, Duke E, Corey L, Zhu J, Davé V, Spuhler LR, Lund JM, Prlic M, Schiffer JT. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J Clin Invest 2020; 130:2903-2919. [PMID: 32125285 PMCID: PMC7260013 DOI: 10.1172/jci132583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/11/2020] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low CD8+ and CD4+ tissue-resident T cell (Trm cell) density are unknown. We analyzed shedding episodes during chronic HSV-2 infection; viral clearance always predominated within 24 hours of detection even when viral load exceeded 1 × 107 HSV DNA copies, and surges in granzyme B and IFN-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of Trm cells in in situ proliferation, trafficking, cytolytic effects, and cytokine alarm signaling from murine studies with viral kinetics, histopathology, and lesion size data from humans. A sufficiently high density of HSV-2-specific Trm cells predicted rapid elimination of infected cells, but our data suggest that such Trm cell densities are relatively uncommon in infected tissues. At lower, more commonly observed Trm cell densities, Trm cells must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.
Collapse
Affiliation(s)
- Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - David A. Swan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Duke
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Laura Richert Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
28
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
29
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
30
|
Schiffer JT, Swan DA, Prlic M, Lund JM. Herpes simplex virus-2 dynamics as a probe to measure the extremely rapid and spatially localized tissue-resident T-cell response. Immunol Rev 2019; 285:113-133. [PMID: 30129205 DOI: 10.1111/imr.12672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Bertram KM, Botting RA, Baharlou H, Rhodes JW, Rana H, Graham JD, Patrick E, Fletcher J, Plasto TM, Truong NR, Royle C, Doyle CM, Tong O, Nasr N, Barnouti L, Kohout MP, Brooks AJ, Wines MP, Haertsch P, Lim J, Gosselink MP, Ctercteko G, Estes JD, Churchill MJ, Cameron PU, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Identification of HIV transmitting CD11c + human epidermal dendritic cells. Nat Commun 2019; 10:2759. [PMID: 31227717 PMCID: PMC6588576 DOI: 10.1038/s41467-019-10697-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
Langerhans cells (LC) are thought to be the only mononuclear phagocyte population in the epidermis where they detect pathogens. Here, we show that CD11c+ dendritic cells (DCs) are also present. These cells are transcriptionally similar to dermal cDC2 but are more efficient antigen-presenting cells. Compared to LCs, epidermal CD11c+ DCs are enriched in anogenital tissues where they preferentially interact with HIV, express the higher levels of HIV entry receptor CCR5, support the higher levels of HIV uptake and replication and are more efficient at transmitting the virus to CD4 T cells. Importantly, these findings are observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a CD33low cell population, which is transcriptionally similar to LCs but does not appear to function as antigen-presenting cells or acts as HIV target cells. Our findings reveal that epidermal DCs in anogenital tissues potentially play a key role in sexual transmission of HIV. Composition and function of immune populations at barrier surfaces is crucial for response to infection. Here, the authors identify a population of dendritic cells in human epidermis, abundant in anogenital epithelia and distinct from Langerhans cells by surface phenotype and by high capacity for HIV infection and transmission.
Collapse
Affiliation(s)
- Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Caroline Royle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Chloe M Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Laith Barnouti
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, 185-211, Broadway, Sydney, New South Wales, 2007, Australia
| | - Andrew J Brooks
- Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Michael P Wines
- Royal North Shore Hospital, Reserve Rd, St Leonards, New South Wales, 2065, Australia
| | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, 2139, New South Wales, Australia
| | - Jake Lim
- Dr Jake Lim PLC, Shop 12, Cnr of Aird & Marsden Street, Parramatta, New South Wales, 2150, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21702, USA
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Eric Hunter
- Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Muzlifah A Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia.,The University of Sydney, Sydney, 2006, New South Wales, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales, 2145, Australia. .,The University of Sydney, Sydney, 2006, New South Wales, Australia.
| |
Collapse
|
32
|
Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 2019; 97:700-713. [PMID: 30989674 DOI: 10.1111/imcb.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front Cell Infect Microbiol 2019; 9:127. [PMID: 31114761 PMCID: PMC6503643 DOI: 10.3389/fcimb.2019.00127] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans for thousands of years and are present at a high prevalence in the population worldwide. HSV infections are responsible for several illnesses including skin and mucosal lesions, blindness and even life-threatening encephalitis in both, immunocompetent and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs represent significant public health burdens. Similar to other herpesviruses, HSV-1 and HSV-2 produce lifelong infections in the host by establishing latency in neurons and sporadically reactivating from these cells, eliciting recurrences that are accompanied by viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to persist and recur in otherwise healthy individuals is likely given by the numerous virulence factors that these viruses have evolved to evade host antiviral responses. Here, we review and discuss molecular mechanisms used by HSVs to evade early innate antiviral responses, which are the first lines of defense against these viruses. A comprehensive understanding of how HSVs evade host early antiviral responses could contribute to the development of novel therapies and vaccines to counteract these viruses.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás F Palomino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Tajpara P, Mildner M, Schmidt R, Vierhapper M, Matiasek J, Popow-Kraupp T, Schuster C, Elbe-Bürger A. A Preclinical Model for Studying Herpes Simplex Virus Infection. J Invest Dermatol 2018; 139:673-682. [PMID: 30414908 PMCID: PMC7100788 DOI: 10.1016/j.jid.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 01/29/2023]
Abstract
Herpes simplex virus (HSV) infections can cause considerable morbidity. Currently, nucleoside analogues such as acyclovir are widely used for treatment. However, HSV infections resistant to these drugs are a clinical problem among immunocompromised patients. To provide more efficient therapy and to counteract resistance, a different class of antiviral compounds has been developed. Pritelivir, a helicase primase inhibitor, represents a promising candidate for improved therapy. Here, we established an HSV-1 infection model on microneedle-pretreated human skin ex vivo. We identified HSV-1–specific histological changes (e.g., cytopathic effects, multinucleated giant cells), down-regulation of nectin-1, nuclear translocation of NF-κB (p65), interferon regulatory factor 3 (IRF3), and signaling of the IFN-inducible protein MxA. Accordingly, this model was used to test the potency of pritelivir compared with the standard drug acyclovir. We discovered that both drugs had a comparable efficacy for inhibiting HSV-1 replication, suggesting that pritelivir could be an alternative therapeutic agent for patients infected with acyclovir-resistant strains. To our knowledge, we present a previously unreported ex vivo HSV-1 infection model with abdominal human skin to test antiviral drugs, thus bridging the gap between in vitro and in vivo drug screening and providing a valuable preclinical platform for HSV research.
Collapse
Affiliation(s)
- Poojabahen Tajpara
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Ralf Schmidt
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Matiasek
- Department of Plastic, Aesthetic and Reconstructive Surgery, St. Josef Hospital, Vienna, Austria
| | - Theresia Popow-Kraupp
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018; 10:v10100524. [PMID: 30261662 PMCID: PMC6213294 DOI: 10.3390/v10100524] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Tannic acid is a plant-derived polyphenol showing antiviral activity mainly because of an interference with the viral adsorption. In this work, we tested whether the modification of silver nanoparticles with tannic acid (TA-AgNPs) can provide a microbicide with additional adjuvant properties to treat genital herpes infection. (2) Methods: The mouse model of the vaginal herpes simplex virus 2 (HSV-2) infection was used to test immune responses after treatment of the primary infection with TA-AgNPs, and later, after a re-challenge with the virus. (3) Results: The mice treated intravaginally with TA-AgNPs showed better clinical scores and lower virus titers in the vaginal tissues soon after treatment. Following a re-challenge, the vaginal tissues treated with TA-AgNPs showed a significant increase in the percentages of IFN-gamma+ CD8+ T-cells, activated B cells, and plasma cells, while the spleens contained significantly higher percentages of IFN-gamma+ NK cells and effector-memory CD8+ T cells in comparison to NaCl-treated group. TA-AgNPs-treated animals also showed significantly better titers of anti-HSV-2 neutralization antibodies in sera; and (4) Conclusions: Our findings suggest that TA-AgNPs sized 33 nm can be an effective anti-viral microbicide to be applied upon the mucosal tissues with additional adjuvant properties enhancing an anti-HSV-2 immune response following secondary challenge.
Collapse
|
38
|
Dendritic cells in the cornea during Herpes simplex viral infection and inflammation. Surv Ophthalmol 2018; 63:565-578. [DOI: 10.1016/j.survophthal.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022]
|
39
|
Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, Krzyzowska M. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Front Immunol 2018; 9:1115. [PMID: 29872440 PMCID: PMC5972285 DOI: 10.3389/fimmu.2018.01115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Silver nanoparticles (AgNPs) are promising new antimicrobial agents against a wide range of skin and mucosal pathogens. However, their interaction with the immune system is currently not fully understood. Dendritic cells (DCs) are crucial during development of T cell-specific responses against bacterial and viral pathogens. We have previously shown that tannic acid-modified silver nanoparticles (TA-AgNPs) consist of a promising microbicide against HSV-2. The aim of this study was to compare the ability of TA-AgNPs or TA-AuNPs of similar sizes (TA-Ag/AuNPs) to induce DCs maturation and activation in the presence of HSV-2 antigens when used at non-toxic doses. First, we used JAWS II DC line to test toxicity, ultrastructure as well as activation markers (MHC I and II, CD40, CD80, CD86, PD-L1) and cytokine production in the presence of TA-Ag/AuNPs. Preparations of HSV-2 treated with nanoparticles (TA-Ag/AuNPs-HSV-2) were further used to investigate HSV-2 antigen uptake, activation markers, TLR9 expression, and cytokine production. Additionally, we accessed proliferation and activation of HSV-2-specific T cells by DCs treated with TA-AgNP/AuNPs-HSV-2. We found that both TA-AgNPs and TA-AuNPs were efficiently internalized by DCs and induced activated ultrastructure. Although TA-AgNPs were more toxic than TA-AuNPs in corresponding sizes, they were also more potent stimulators of DCs maturation and TLR9 expression. TA-Ag/AuNPs-HSV-2 helped to overcome inhibition of DCs maturation by live or inactivated virus through up-regulation of MHC II and CD86 and down-regulation of CD80 expression. Down-regulation of CD40 expression in HSV-2-infected DCs was reversed when HSV-2 was treated with TA-NPs sized >30 nm. On the other hand, small-sized TA-AgNPs helped to better internalize HSV-2 antigens. HSV-2 treated with both types of NPs stimulated activation of JAWS II and memory CD8+ T cells, while TA-AgNPs treatment induced IFN-γ producing CD4+ and CD8+ T cells. Our study shows that TA-AgNPs or TA-AuNPs are good activators of DCs, albeit their final effect upon maturation and activation may be metal and size dependent. We conclude that TA-Ag/AuNPs consist of a novel class of nano-adjuvants, which can help to overcome virus-induced suppression of DCs activation.
Collapse
Affiliation(s)
- Piotr Orlowski
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | | | - Olga Labedz
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Wroclaw Research Centrum EIT+, Wroclaw, Poland
| |
Collapse
|
40
|
Effective Priming of Herpes Simplex Virus-Specific CD8 + T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol 2018; 92:JVI.01508-17. [PMID: 29142130 DOI: 10.1128/jvi.01508-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022] Open
Abstract
Resolution of virus infections depends on the priming of virus-specific CD8+ T cells by dendritic cells (DC). While this process requires major histocompatibility complex (MHC) class I-restricted antigen presentation by DC, the relative contribution to CD8+ T cell priming by infected DC is less clear. We have addressed this question in the context of a peripheral infection with herpes simplex virus 1 (HSV). Assessing the endogenous, polyclonal HSV-specific CD8+ T cell response, we found that effective in vivo T cell priming depended on the presence of DC subsets specialized in cross-presentation, while Langerhans cells and plasmacytoid DC were dispensable. Utilizing a novel mouse model that allows for the in vivo elimination of infected DC, we also demonstrated in vivo that this requirement for cross-presenting DC was not related to their infection but instead reflected their capacity to cross-present HSV-derived antigen. Taking the results together, this study shows that infected DC are not required for effective CD8+ T cell priming during a peripheral virus infection.IMPORTANCE The ability of some DC to present viral antigen to CD8+ T cells without being infected is thought to enable the host to induce killer T cells even when viruses evade or kill infected DC. However, direct experimental in vivo proof for this notion has remained elusive. The work described in this study characterizes the role that different DC play in the induction of virus-specific killer T cell responses and, critically, introduces a novel mouse model that allows for the selective elimination of infected DC in vivo Our finding that HSV-specific CD8+ T cells can be fully primed in the absence of DC infection shows that cross-presentation by DC is indeed sufficient for effective CD8+ T cell priming during a peripheral virus infection.
Collapse
|
41
|
Aravantinou M, Mizenina O, Calenda G, Kenney J, Frank I, Lifson JD, Szpara M, Jing L, Koelle DM, Teleshova N, Grasperge B, Blanchard J, Gettie A, Martinelli E, Derby N. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front Microbiol 2017; 8:2342. [PMID: 29259582 PMCID: PMC5723348 DOI: 10.3389/fmicb.2017.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Moriah Szpara
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States
| |
Collapse
|
42
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
43
|
Retamal-Díaz A, Weiss KA, Tognarelli EI, Freire M, Bueno SM, Herold BC, Jacobs WR, González PA. US6 Gene Deletion in Herpes Simplex Virus Type 2 Enhances Dendritic Cell Function and T Cell Activation. Front Immunol 2017; 8:1523. [PMID: 29176979 PMCID: PMC5686121 DOI: 10.3389/fimmu.2017.01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) produce lifelong infections that are associated with frequent asymptomatic or clinically apparent reactivation. Importantly, HSV express multiple virulence factors that negatively modulate innate and adaptive immune components. Notably, HSV interfere with dendritic cell (DC) viability and function, likely hindering the capacity of the host to mount effective immunity against these viruses. Recently, an HSV-2 virus that was deleted in glycoprotein D was engineered (designated ΔgD-2). The virus is propagated on a complementing cell line that expresses HSV-1 gD, which permits a single round of viral replication. ΔgD-2 is safe, immunogenic, and provided complete protection against vaginal or skin challenges with HSV-1 and HSV-2 in murine models. Here, we sought to assess the interaction of ΔgD-2 with DCs and found that, in contrast to wild-type (WT) virus which induces DC apoptosis, ΔgD-2 promoted their migration and capacity to activate naïve CD8+ and CD4+ T cells in vitro and in vivo. Furthermore, DCs exposed to the WT and ΔgD-2 virus experienced different unfolded protein responses. Mice primed with DCs infected with ΔgD-2 in vitro displayed significantly reduced infection and pathology after genital challenge with virulent HSV-2 compared to non-primed mice, suggesting that DCs play a role in the immune response to the vaccine strain.
Collapse
Affiliation(s)
- Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kayla A Weiss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Freire
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States.,Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, NY, United States
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa. J Virol 2017; 91:JVI.01295-17. [PMID: 28878080 DOI: 10.1128/jvi.01295-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Abstract
Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible.IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor.
Collapse
|
45
|
Retamal-Díaz AR, Kalergis AM, Bueno SM, González PA. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4 + and CD8 + T Cells. Front Immunol 2017; 8:904. [PMID: 28848543 PMCID: PMC5553038 DOI: 10.3389/fimmu.2017.00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.
Collapse
Affiliation(s)
- Angello R Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Botting RA, Bertram KM, Baharlou H, Sandgren KJ, Fletcher J, Rhodes JW, Rana H, Plasto TM, Wang XM, Lim JJK, Barnouti L, Kohout MP, Papadopoulos T, Merten S, Olbourne N, Cunningham AL, Haniffa M, Harman AN. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol 2017; 101:1393-1403. [PMID: 28270408 PMCID: PMC5433859 DOI: 10.1189/jlb.4a1116-496r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue.
Collapse
Affiliation(s)
- Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Xin Maggie Wang
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | | | - Laith Barnouti
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Steve Merten
- Pure Aesthetics Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia;
- The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Polak ME, Ung CY, Masapust J, Freeman TC, Ardern-Jones MR. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation. Sci Rep 2017; 7:668. [PMID: 28386100 PMCID: PMC5428800 DOI: 10.1038/s41598-017-00651-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023] Open
Abstract
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.
- Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | - Chuin Ying Ung
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Joanna Masapust
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael R Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| |
Collapse
|
48
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
49
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
50
|
Understanding natural herpes simplex virus immunity to inform next-generation vaccine design. Clin Transl Immunology 2016; 5:e94. [PMID: 27525067 PMCID: PMC4973325 DOI: 10.1038/cti.2016.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Incremental advances in our knowledge of how natural immune control of herpes simplex virus (HSV) develops have yielded insight as to why previous vaccine attempts have only been partially successful, however, our understanding of these pathways, particularly in humans, is still incomplete. Further elucidation of the innate immune events that are responsible for stimulating these effector responses is required to accurately inform vaccine design. An enhanced understanding of the mechanism of action of novel adjuvants will also facilitate the rational choice of adjuvant to optimise such responses. Here we review the reasons for the hitherto partial HSV vaccine success and align these with our current knowledge of how natural HSV immunity develops. In particular, we focus on the innate immune response and the role of dendritic cells in inducing protective T-cell responses and how these pathways might be recapitulated in a vaccine setting.
Collapse
|