1
|
Zhao X, Li Y, Gu D, Wang X, Han G, Yao Y, Ren L, Yao Q, Li X, Qi Y. The up-regulated expression level of deubiquitinating enzyme USP46 induces the apoptosis of A549 cells by TRAF6. Invest New Drugs 2025; 43:328-336. [PMID: 40263244 DOI: 10.1007/s10637-025-01532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigates the function of Ubiquitin-specific protease 46 (USP46), a deubiquitinase, in the context of lung cancer, particularly its role in regulating cell proliferation via the ubiquitination of TRAF6. In A549 lung cancer cells, analysis revealed a significant downregulation of USP46 expression, while TRAF6 levels were notably elevated. These findings were corroborated by Western blotting, which confirmed the altered expression patterns. To further assess the implications of these changes, several experimental assays, including the Cell Counting Kit-8, transwell migration assays, and flow cytometry, were conducted to evaluate cell viability and apoptosis rates. Co-immunoprecipitation experiments demonstrated a direct interaction between USP46 and TRAF6, implicating USP46 in the modulation of TRAF6 ubiquitination, a process that is fundamental to tumor physiology. The results indicated that decreased USP46 expression led to an increase in the levels of the anti-apoptotic protein Bcl-2, while there was a corresponding decrease in key pro-apoptotic proteins such as caspase-3, caspase-9, and Bax. Additionally, the study found elevated levels of phosphorylated AKT and mTOR, which suggest the activation of survival signaling pathways in the cancer cells. These findings collectively suggest that the up-regulated USP46 promotes apoptosis in lung cancer cells through the regulation of TRAF6. Therefore, targeting the USP46/TRAF6 signaling pathway presents a promising therapeutic strategy for lung cancer treatment, potentially offering new avenues for intervention in cancer progression and cell survival mechanisms.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yanan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dandan Gu
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaoru Wang
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Guangxin Han
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yasen Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Limei Ren
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Qingguo Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaobing Li
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yonghao Qi
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Innovative Drug Research and Evaluation in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
2
|
Thi Pham KH, Tran MH, Nam LB, Pham PTV, Nguyen TK. Structure, Inhibitors, and Biological Function in Nervous System and Cancer of Ubiquitin-Specific Protease 46. Bioinform Biol Insights 2024; 18:11779322241285982. [PMID: 39410943 PMCID: PMC11475357 DOI: 10.1177/11779322241285982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development. Ubiquitin-specific protease 46 (USP46) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Over the past 10 years, some studies have steadily demonstrated the significance of USP46 in several biological processes, although it was identified later and early research progress was modest. Specifically, in the last few years, the carcinogenic properties of USP46 have become more apparent. In the current review, we provide a comprehensive overview of the current knowledge about USP46 including its characteristics, structure, inhibitors, function in diseases, especially in the nervous system, and the correlation of USP46 with cancers.
Collapse
Affiliation(s)
- Khanh Huyen Thi Pham
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Manh Hung Tran
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Le Ba Nam
- Faculty of Pharmacy, Thanh Do University, Hanoi City, Vietnam
| | - Phu Tran Vinh Pham
- Department of Biomedical Science, VN-UK Institute for Research and Executive Education, The University of Danang, Danang City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Danang City, Vietnam
| |
Collapse
|
3
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
4
|
Shu J, Yang C, Miao Y, Li J, Zheng T, Xiao J, Kong W, Xu Z, Feng H. USP46 promotes the interferon antiviral signaling in black carp by deubiquitinating TBK1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105170. [PMID: 38522716 DOI: 10.1016/j.dci.2024.105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Ubiquitin-specific peptidase 46 (USP46) functions as a deubiquitinating enzyme, facilitating the removal of ubiquitin molecules attached to substrate proteins and playing a critical role in cancer and neurodegenerative diseases. However, its function in innate antiviral immunity is unknown. In this study we cloned and identified bcUSP46, a homolog of USP46 from black carp. We discovered that overexpression of bcUSP46 enhanced the transcription of interferon (IFN) promoters and increased the expression of IFN, PKR, and Mx1. In addition, bcUSP46 knockdown significantly inhibited the expression of ISG genes, as well as the antiviral activity of the host cells. Interestingly, when bcUSP46 was co-expressed with the RLR factors, it significantly enhanced the activity of the IFN promoter mediated by these factors, especially TANK-binding kinase 1 (TBK1). The subsequent co-immunoprecipitation (co-IP) and immunofluorescence (IF) assay confirmed the association between bcUSP46 and bcTBK1. Noteworthily, co-expression of bcUSP46 with bcTBK1 led to an elevation of bcTBK1 protein level. Further analysis revealed that bcUSP46 stabilized bcTBK1 by eliminating the K48-linked ubiquitination of bcTBK1. Overall, our findings highlight the unique role of USP46 in modulating TBK1/IFN signaling and enrich our knowledge of the function of deubiquitination in regulating innate immunity in vertebrates.
Collapse
Affiliation(s)
- Juanjuan Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yujia Miao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinyi Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tianle Zheng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Bristol JA, Nelson SE, Ohashi M, Casco A, Hayes M, Ranheim EA, Pawelski AS, Singh DR, Hodson DJ, Johannsen EC, Kenney SC. Latent Epstein-Barr virus infection collaborates with Myc over-expression in normal human B cells to induce Burkitt-like Lymphomas in mice. PLoS Pathog 2024; 20:e1012132. [PMID: 38620028 PMCID: PMC11045125 DOI: 10.1371/journal.ppat.1012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/25/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Deo R. Singh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Vera-Peralta H, Najburg V, Combredet C, Douché T, Gianetto QG, Matondo M, Tangy F, Mura M, Komarova AV. Applying Reverse Genetics to Study Measles Virus Interactions with the Host. Methods Mol Biol 2024; 2808:89-103. [PMID: 38743364 DOI: 10.1007/978-1-0716-3870-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Valerie Najburg
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Chantal Combredet
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics Hub, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, Proteomics Platform, Mass Spectrometry for Biology, CNRS, Paris, France
| | | | - Marie Mura
- Institut Pasteur, Université Paris Cité, Innovation Lab: Vaccines, Paris, France
- Institut de recherche biomédicale des armées, Immunopathologie, Bretigny-sur-Orge, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, Paris, France.
| |
Collapse
|
7
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
8
|
Xing J, Hu C, Che S, Lan Y, Huang L, Liu L, Yin Y, Li H, Liao M, Qi W. USP1-Associated Factor 1 Modulates Japanese Encephalitis Virus Replication by Governing Autophagy and Interferon-Stimulated Genes. Microbiol Spectr 2023; 11:e0318622. [PMID: 36988464 PMCID: PMC10269463 DOI: 10.1128/spectrum.03186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a typical mosquito-borne flavivirus that can cause central nervous system diseases in humans and animals. Host factors attempt to limit virus replication when the viruses invade the host by using various strategies for replication. It is essential to clarify the host factors that affect the life cycle of JEV and explore its underlying mechanism. Here, we found that USP1-associated factor 1 (UAF1; also known as WD repeat-containing protein 48) modulated JEV replication. We found that JEV propagation significantly increased in UAF1-depleted Huh7 cells. Moreover, we found that knockdown of UAF1 activated cell autophagic flux in further functional analysis. Subsequently, we demonstrated that autophagy can be induced by JEV, which promotes viral replication by inhibiting interferon-stimulated gene (ISG) expression in Huh7 cells. The knockdown of UAF1 reduced ISG expression during JEV infection. To explore the possible roles of autophagy in UAF1-mediated inhibition of JEV propagation, we knocked out ATG7 to generate autophagy-deficient cells and found that depletion of UAF1 failed to promote JEV replication in ATG7 knockout cells. Moreover, in ATG7-deficient Huh7 cells, interference with UAF1 expression did not lead to the induction of autophagy. Taken together, these findings indicate that UAF1 is a critical regulator of autophagy and reveal a mechanism by which UAF1 knockdown activates autophagy to promote JEV replication. IMPORTANCE Host factors play an essential role in virus replication and pathogenesis. Although UAF1 is well known to form complexes with ubiquitin-specific proteases, little is known about the function of the UAF1 protein itself. In this study, we confirmed that UAF1 is involved in JEV replication. Notably, we discovered a novel function for UAF1 in regulating autophagy. Furthermore, we demonstrated that UAF1 modulated JEV replication through its autophagy regulation. This study is the first description of the novel function of UAF1 in regulating autophagy, and it clarifies the underlying mechanism of the antiviral effect of UAF1 against JEV. These results provide a new mechanistic insight into the functional annotation of UAF1 and provide a potential target for increasing virus production during vaccine production.
Collapse
Affiliation(s)
- Jinchao Xing
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chen Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siqi Che
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yixin Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lihong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lele Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Youqin Yin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Huanan Li
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
9
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang C, Liu X, Liang J, Narita Y, Ding W, Li D, Zhang L, Wang H, Leong MML, Hou I, Gerdt C, Jiang C, Zhong Q, Tang Z, Forney C, Kottyan L, Weirauch MT, Gewurz BE, Zeng MS, Jiang S, Teng M, Zhao B. A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth. Nat Commun 2023; 14:1598. [PMID: 36949074 PMCID: PMC10033825 DOI: 10.1038/s41467-023-37347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) to lymphoblastoid cell lines (LCLs) models human DNA tumor virus oncogenesis. RBL and LCL chromatin interaction maps are compared to identify the spatial and temporal genome architectural changes during EBV B cell transformation. EBV induces global genome reorganization where contact domains frequently merge or subdivide during transformation. Repressed B compartments in RBLs frequently switch to active A compartments in LCLs. LCLs gain 40% new contact domain boundaries. Newly gained LCL boundaries have strong CTCF binding at their borders while in RBLs, the same sites have much less CTCF binding. Some LCL CTCF sites also have EBV nuclear antigen (EBNA) leader protein EBNALP binding. LCLs have more local interactions than RBLs at LCL dependency factors and super-enhancer targets. RNA Pol II HiChIP and FISH of RBL and LCL further validate the Hi-C results. EBNA3A inactivation globally alters LCL genome interactions. EBNA3A inactivation reduces CTCF and RAD21 DNA binding. EBNA3C inactivation rewires the looping at the CDKN2A/B and AICDA loci. Disruption of a CTCF site at AICDA locus increases AICDA expression. These data suggest that EBV controls lymphocyte growth by globally reorganizing host genome architecture to facilitate the expression of key oncogenes.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiyue Ding
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Difei Li
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Luyao Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Hongbo Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Merrin Man Long Leong
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Isabella Hou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Catherine Gerdt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Leah Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA.
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Ke L, Jia Z, Gao W, Luo L. Ubiquitin specific protease 46 potentiates triple negative breast cancer development by stabilizing PGAM1-mediated glycolysis. Cell Biol Int 2023; 47:41-51. [PMID: 36335636 DOI: 10.1002/cbin.11937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Triple-negative breast cancer (TNBC) is a malignancy with high metastasis rate and poor prognosis. Limited drugs are effective for the treatment of TNBC patients. Ubiquitin specific proteases (USPs) are important posttranscription modulators that promote protein stability by reducing the ubiquitination of the proteins. Aberrant expression of USPs is involved in the development of numerous cancers. However, it remains poorly understood on the role of USP46 in TNBC growth and metastasis. In this study, we explored the clinical relevance, function and molecular mechanisms of USP46 in TNBC. USP46 expression was increased in breast cancer tissues. High expression of USP46 was associated with the poorer prognosis of the patients. Overexpression and knockdown experiments demonstrated that USP46 was critical for TNBC cell growth, migration, and tumorigenesis. Mechanistically, USP46 enhanced the protein stability of phosphoglycerate mutase 1 (PGAM1) via direct interaction. Importantly, USP46 stimulated the glycolysis and promoted the malignant growth of TNBC cells through upregulation of PGAM1. Our study reveals that USP46/PGAM1 axis contributes to TNBC progression and is a potential target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Longzhu Ke
- Oncology Department, GuiHang Guiyang Hospital, Guiyang, China
| | - Zhaoyang Jia
- Department of Radiation Oncology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wei Gao
- Department of Radiation Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Li Luo
- Oncology Department, GuiHang Guiyang Hospital, Guiyang, China
| |
Collapse
|
12
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chang M, Li B, Liao M, Rong X, Wang Y, Wang J, Yu Y, Zhang Z, Wang C. Differential expression of miRNAs in the body wall of the sea cucumber Apostichopus japonicus under heat stress. Front Physiol 2022; 13:929094. [PMID: 35936896 PMCID: PMC9351827 DOI: 10.3389/fphys.2022.929094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs, as one of the post-transcriptional regulation of genes, play an important role in the development process, cell differentiation and immune defense. The sea cucumber Apostichopus japonicus is an important cold-water species, known for its excellent nutritional and economic value, which usually encounters heat stress that affects its growth and leads to significant economic losses. However, there are few studies about the effect of miRNAs on heat stress in sea cucumbers. In this study, high-throughput sequencing was used to analyze miRNA expression in the body wall of sea cucumber between the control group (CS) and the heat stress group (HS). A total of 403 known miRNAs and 75 novel miRNAs were identified, of which 13 miRNAs were identified as significantly differentially expressed miRNAs (DEMs) in response to heat stress. A total of 16,563 target genes of DEMs were predicted, and 101 inversely correlated target genes that were potentially regulated by miRNAs in response to heat stress of sea cucumbers were obtained. Based on these results, miRNA-mRNA regulatory networks were constructed. The expression results of high-throughput sequencing were validated in nine DEMs and four differentially expressed genes (DEGs) by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, pathway enrichment of target genes suggested that several important regulatory pathways may play an important role in the heat stress process of sea cucumber, including ubiquitin-mediated proteolysis, notch single pathway and endocytosis. These results will provide basic data for future studies in miRNA regulation and molecular adaptive mechanisms of sea cucumbers under heat stress.
Collapse
Affiliation(s)
- Mengyang Chang
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fishers and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bin Li
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijie Liao
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Meijie Liao, ; Xiaojun Rong,
| | - Xiaojun Rong
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Meijie Liao, ; Xiaojun Rong,
| | - Yingeng Wang
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinjin Wang
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongxiang Yu
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zheng Zhang
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunyuan Wang
- Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y. Grouper USP12 exerts antiviral activity against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:332-341. [PMID: 35032679 DOI: 10.1016/j.fsi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-specific proteases (USPs) have attracted particular attention due to their multiple functions in different biological processes. USP12, a member of the USP family, has been demonstrated to exert critical roles in diverse cellular processes, including cell death, cancer and antiviral immunity. Here, we cloned a USP12 homolog from orange spotted grouper (Epinephelus coioides, E. coioides), and its roles in fish RNA virus replication were investigated. EcUSP12 contained a 1119-bp open reading frame (ORF) encoding a 372-amino acid polypeptide, which shared 100.00% and 91.32% identity with USP12 homolog of Etheostoma cragini and Homo sapiens, respectively. Sequence analysis indicated that EcUSP12 contained a conserved peptidase-C19G domain (aa 40-369). qPCR analysis showed that EcUSP12 transcript was most abundant in head kidney and spleen of grouper E. coioides. The expression of EcUSP12 was significantly upregulated in grouper spleen (GS) cells in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization analysis showed that EcUSP12 was evenly distributed throughout the cytoplasm, and mainly co-localized with endoplasmic reticulum (ER). Interestingly, during RGNNV infection, the endogenous distribution of EcUSP12 was obviously altered, and mostly overlapped with viral coat protein (CP). Co-Immunoprecipitation (Co-IP) assay indicated that EcUSP12 interacted with viral CP. In addition, overexpression of EcUSP12 significantly inhibited the replication of RGNNV in vitro, as evidenced by the decrease in viral gene transcription and protein synthesis during infection. Consistently, knockdown of EcUSP12 by small interfering RNA (siRNA) promoted the replication of RGNNV. Furthermore, EcUSP12 overexpression also increased the transcription level of inflammatory factors and interferon-related genes, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, interferon regulatory factor 3 (IRF3), and IRF7. Taken together, our results demonstrated that EcUSP12, as a positive regulator of IFN signaling, interacted with viral CP to inhibit virus infection.
Collapse
Affiliation(s)
- Ya Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Youhua Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
16
|
Kiran S, Wilson B, Saha S, Graff JA, Dutta A. HPVE6-USP46 Mediated Cdt2 Stabilization Reduces Set8 Mediated H4K20-Methylation to Induce Gene Expression Changes. Cancers (Basel) 2021; 14:30. [PMID: 35008200 PMCID: PMC8750077 DOI: 10.3390/cancers14010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
E6 from high-risk strains of HPV is well known to transform cells by deregulating p53. We reported that in HPV transformed cell-lines E6 from high-risk HPV can recruit the USP46 deubiquitinase to substrates such as Cdt2 and stabilize the latter, and that USP46 is important for growth of HPV induced tumors in xenografts. Here we show that in cervical cancer biopsies the stabilization of Cdt2 in the HPV-induced cancers leads to the decrease of a CRL4-Cdt2 substrate, the histone H4K20 mono-methyltransferase Set8, and decrease in H4K20me1 or H4K20me3 that can be detected by immunohistochemistry. In HPV-transformed cancer cell lines in vitro, knockdown of E6 decreases Cdt2 and increases Set8. Co-knockdown of Set8 shows that some of the gene expression changes produced by E6 knockdown is due to the increase of Set8. EGFR and EGFR regulated genes were identified in this set of genes. Turning to the mechanism by which E6 stabilizes Cdt2, we find that a purified E6:USP46 complex has significantly more de-ubiquitinase activity in vitro than USP46 alone, demonstrating that E6 can directly interact with USP46 in the absence of other proteins and that it can substitute for the known activators of USP46, UAF1 and WDR20. Deletion mapping of Cdt2 shows that there are three discrete, but redundant, parts of the substrate that are essential for stabilization by E6: USP46. The helix-loop-helix region or the WD40 repeat driven beta-propeller structure of Cdt2 are dispensable for the stabilization implying that interaction with DDB1 (and the rest of the CRL4 complex) or with the substrate of the CRL4-Cdt2 E3 ligase is not necessary for E6:USP46 to interact with and stabilize Cdt2. The identification of 50 amino acid stretches in the 731 amino acid Cdt2 protein as being important for the stabilization by E6 underlines the specificity of the process. In summary, E6 activates the deubiquitinase activity of USP46, stabilizes Cdt2 utilizing multiple sites on Cdt2, and leads to degradation of Set8 and changes in gene-expression in HPV-transformed cells.
Collapse
Affiliation(s)
- Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Julia Ann Graff
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; (B.W.); (S.S.); (J.A.G.)
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Lu P, Xu Y, Sheng ZY, Peng XG, Zhang JJ, Wu QH, Wu YQ, Cheng XS, Zhu K. De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced cardiac hypertrophy. Exp Cell Res 2021; 406:112761. [PMID: 34339675 DOI: 10.1016/j.yexcr.2021.112761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Stresses, such as neurohumoral activation, induced pathological cardiac hypertrophy is the main risk factor for heart failure. The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role and mechanism of deubiquitinating enzymes (DUBs) in cardiac hypertrophy is limited. Here, we observe that the deubiquitinating enzyme ubiquitin-specific protease 12(USP12) is upregulated in Ang II-induced hypertrophic hearts and primary neonatal rat cardiomyocytes (NRCMs). Inhibition of USP12 ameliorate Ang II-induced myocardial hypertrophy, while overexpression of USP12 have the opposite effect. USP12 deficiency also significantly attenuate the phenotype of Ang II-induced cardiac hypertrophy in vivo. Moreover, we demonstrate that USP12 aggravate Ang II-induced cardiac hypertrophy by enhancing METTL3, a methyltransferase which catalyze N6-methyladenosine (m6A) modification on messenger RNA and acts as a harmful factor in pathological cardiac hypertrophy. Upregulation of METTL3 reverse the reduction of myocardial hypertrophy induced by USP12 silencing in NRCMs. In contrast, knockdown of METTL3 attenuate the aggravation of myocardial hypertrophy in USP12-overexpressing NRCMs. Furthermore, we discover that USP12 promote the expression of METTL3 via upregulating p300. Mechanistically, USP12 binds and stabilizes p300, thereby activating the transcription of its downstream gene METTL3. Finally, our data show that USP12 is partially dependent on the stabilization of p300 to activate METTL3 expression and promote myocardial hypertrophy. Taken together, our results demonstrate that USP12 acts as a pro-hypertrophic deubiquitinating enzyme via enhancing p300/METTL3 axis, indicating that targeting USP12 could be a potential treatment strategy for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yun Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhi-Yong Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiao-Gang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jing-Jing Zhang
- Graduate School of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qing-Hua Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yan-Qing Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kai Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Genetic Patterns Found in the Nuclear Localization Signals (NLSs) Associated with EBV-1 and EBV-2 Provide New Insights into Their Contribution to Different Cell-Type Specificities. Cancers (Basel) 2021; 13:cancers13112569. [PMID: 34073836 PMCID: PMC8197229 DOI: 10.3390/cancers13112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) has been implicated in several human neoplastic diseases. The EBV-1 can transform B cells into LCL more efficiently than EBV-2, and EBV-2 preferentially infects T-cell lymphocytes. The EBNA3A oncoprotein has an essential role in B-cell transformation. The six peptide motifs called nuclear localization signals (NLSs) from EBNA3A ensure nucleocytoplasmic protein trafficking. Multiple NLSs have been suggested to enhance EBNA3 function or different specificities to different cell types; however, a comprehensive assessment of their genetic variability has not been addressed. Our objective was to study the NLSs’ variability and their relationship with EBV types. Based on a comprehensive analysis of over a thousand EBNA3A sequences from different clinical manifestations and geographic locations, we found that EBNA3A from EBV-2 has two of the six NLSs altered, and genetic patterns in the NLSs are associated with EBV-1 and EBV-2. Abstract The Epstein–Barr virus (EBV) is a globally dispersed pathogen involved in several human cancers of B-cell and non-B-cell origin. EBV has been classified into EBV-1 and EBV-2, which have differences in their transformative ability. EBV-1 can transform B-cells into LCL more efficiently than EBV-2, and EBV-2 preferentially infects T-cell lymphocytes. The EBNA3A oncoprotein is a transcriptional regulator of virus and host cell genes, and is required in order to transform B-cells. EBNA3A has six peptide motifs called nuclear localization signals (NLSs) that ensure nucleocytoplasmic protein trafficking. The presence of multiple NLSs has been suggested to enhance EBNA3 function or different specificities in different cell types. However, studies about the NLS variability associated with EBV types are scarce. Based on a systematic sequence analysis considering more than a thousand EBNA3A sequences of EBV from different human clinical manifestations and geographic locations, we found differences in NLSs’ nucleotide structures among EBV types. Compared with the EBNA3A EBV-1, EBNA3A EBV-2 has two of the six NLSs altered, and these mutations were possibly acquired by recombination. These genetic patterns in the NLSs associated with EBV-1 and EBV-2 provide new information about the traits of EBNA3A in EBV biology.
Collapse
|
19
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
20
|
Ohashi M, Hayes M, McChesney K, Johannsen E. Epstein-Barr virus nuclear antigen 3C (EBNA3C) interacts with the metabolism sensing C-terminal binding protein (CtBP) repressor to upregulate host genes. PLoS Pathog 2021; 17:e1009419. [PMID: 33720992 PMCID: PMC7993866 DOI: 10.1371/journal.ppat.1009419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with the development of specific types of lymphoma and some epithelial cancers. EBV infection of resting B-lymphocytes in vitro drives them to proliferate as lymphoblastoid cell lines (LCLs) and serves as a model for studying EBV lymphomagenesis. EBV nuclear antigen 3C (EBNA3C) is one of the genes required for LCL growth and previous work has suggested that suppression of the CDKN2A encoded tumor suppressor p16INK4A and possibly p14ARF is central to EBNA3C’s role in this growth transformation. To directly assess whether loss of p16 and/or p14 was sufficient to explain EBNA3C growth effects, we used CRISPR/Cas9 to disrupt specific CDKN2A exons in EBV transformed LCLs. Disruption of p16 specific exon 1α and the p16/p14 shared exon 2 were each sufficient to restore growth in the absence of EBNA3C. Using EBNA3C conditional LCLs knocked out for either exon 1α or 2, we identified EBNA3C induced and repressed genes. By trans-complementing with EBNA3C mutants, we determined specific genes that require EBNA3C interaction with RBPJ or CtBP for their regulation. Unexpectedly, interaction with the CtBP repressor was required not only for repression, but also for EBNA3C induction of many host genes. Contrary to previously proposed models, we found that EBNA3C does not recruit CtBP to the promoters of these genes. Instead, our results suggest that CtBP is bound to these promoters in the absence of EBNA3C and that EBNA3C interaction with CtBP interferes with the repressive function of CtBP, leading to EBNA3C mediated upregulation. Epstein-Barr virus (EBV) is a gammaherpesvirus that establishes lifelong infection in about 95% of adult humans. EBV infection is usually benign, but can rarely result in several different malignancies, particularly lymphomas. EBV infection of resting B-lymphocytes in the laboratory drives them to proliferate as lymphoblastoid cell lines (LCLs), a model for EBV lymphomagenesis. In this manuscript we study how one EBV protein expressed in LCLs, EBNA3C, contributes to B lymphocyte transformation. Prior work has established that EBNA3C turns off the CDKN2A gene, but there is disagreement regarding the relative importance of silencing the two CDKN2A gene products: p14 and p16. Using a CRISPR/Cas9 gene editing strategy we confirm that p16 knock-out rescues LCL growth in the absence of EBNA3C even in the presence of wildtype p14. We then use these knock-out LCLs to identify EBNA3C regulated genes and uncover extensive growth-independent changes in B lymphocytes due to the EBNA3C transcription factor. We also discover an unexpected role for the CtBP repressor protein in EBNA3C gene upregulation. Contrary to prior models, we do not observe CtBP recruitment to target genes by EBNA3C. Instead, our data are consistent with EBNA3C interfering with the ability of pre-bound CtBP to repress genes.
Collapse
Affiliation(s)
- Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, Jia M, Zhao W. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun 2020; 11:6042. [PMID: 33247121 PMCID: PMC7695691 DOI: 10.1038/s41467-020-19939-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation. NLRP3 inflammasome activation is regulated by various signaling pathways to ensure inflammation does not go unchecked. Here the authors show how deubiquitination avoids this regulation to activate the NLRP3 inflammasome through the function of UAF1/USP deubiquitinase complexes.
Collapse
Affiliation(s)
- Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Chunyuan Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.,Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Qizhao Li
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Rongzhen Yan
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Ying Qin
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
22
|
Huo H, Hu G. CRISPR/Cas9-mediated LMP1 knockout inhibits Epstein-Barr virus infection and nasopharyngeal carcinoma cell growth. Infect Agent Cancer 2019; 14:30. [PMID: 31673282 PMCID: PMC6816172 DOI: 10.1186/s13027-019-0246-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Background A strong association between Epstein-Barr virus (EBV) infection and nasopharyngeal carcinoma (NPC) has been widely recognized in recent decades. The aim of the present study was to investigate latent membrane protein 1 (LMP1) regulation of nasopharyngeal carcinoma (NPC) CNE-2 cell growth and then examine the effects of LMP1-knockout with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9on Epstein-Barr virus (EBV) infection and CNE-2 cell growth. Methods Human NPC CNE-2 cells were infected with the recombinant LMP1- and LMP2A-carrying lentivirus, and then examined for cell growth with the colony forming assay as well as for the activation of transcription of eukaryotic translation initiation factor 4E (eIF4E) with reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and western blot. CRISPR/Cas9-mediated knockout of LMP1 or LMP2A was performed with a single-guide RNA (sgRNA) targeting sequences within LMP1 or LMP2A. The knockout effect and the EBV proliferation were examined with RT-qPCR, western blot and cell growth assay. Results LMP1 overexpression promoted CNE-2 cell growth, compared to LMP2A overexpression. Loss-of-function experiments confirmed that eukaryotic translation initiation factor 4E (eIF4E) upregulation mediated this effect. LMP1 knockout significantly inhibited EBV proliferation in CNE-2 cells and markedly inhibited LMP1-mediated promotion of cell growth. The knockout of either LMP1 or LMP2A blocked the eIF4E activation, which is induced either by the EBV infection or by the overexpression of LMP1 or LMP2A. Conclusion We confirmed the LMP1-mediated promotion of NPC cell growth. Such promotion can be effectively blocked by CRISPR/Cas9-mediated LMP1 knockout. Precise LMP1 knockout might be a promising method for targeted inhibition of EBV infection and NPC cell growth.
Collapse
Affiliation(s)
- Haifeng Huo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
23
|
Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019; 15:e1008030. [PMID: 31518366 PMCID: PMC6760809 DOI: 10.1371/journal.ppat.1008030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/25/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with multiple human malignancies. EBV drives B-cell proliferation, which contributes to the pathogenesis of multiple lymphomas. Yet, knowledge of how EBV subverts host biosynthetic pathways to transform resting lymphocytes into activated lymphoblasts remains incomplete. Using a temporal proteomic dataset of EBV primary human B-cell infection, we identified that cholesterol and fatty acid biosynthetic pathways were amongst the most highly EBV induced. Epstein-Barr nuclear antigen 2 (EBNA2), sterol response element binding protein (SREBP) and MYC each had important roles in cholesterol and fatty acid pathway induction. Unexpectedly, HMG-CoA reductase inhibitor chemical epistasis experiments revealed that mevalonate pathway production of geranylgeranyl pyrophosphate (GGPP), rather than cholesterol, was necessary for EBV-driven B-cell outgrowth, perhaps because EBV upregulated the low-density lipoprotein receptor in newly infected cells for cholesterol uptake. Chemical and CRISPR genetic analyses highlighted downstream GGPP roles in EBV-infected cell small G protein Rab activation. Rab13 was highly EBV-induced in an EBNA3-dependent manner and served as a chaperone critical for latent membrane protein (LMP) 1 and 2A trafficking and target gene activation in newly infected and in lymphoblastoid B-cells. Collectively, these studies identify highlight multiple potential therapeutic targets for prevention of EBV-transformed B-cell growth and survival. EBV, the first human tumor virus identified, persistently infects >95% of adults worldwide. Upon infection of small, resting B-lymphocytes, EBV establishes a state of viral latency, where viral oncoproteins and non-coding RNAs activate host pathways to promote rapid B-cell proliferation. EBV’s growth-transforming properties are closely linked to the pathogenesis of multiple immunoblastic lymphomas, particularly in immunosuppressed hosts. While EBV oncogenes important for B-cell transformation have been identified, knowledge remains incomplete of how these EBV factors remodel cellular metabolism, a hallmark of human cancers. Using a recently established proteomic map of EBV-mediated B-cell growth transformation, we found that EBV induces biosynthetic pathways that convert acetyl-coenzyme A (acetyl-CoA) into isoprenoids, steroids, terpenoids, cholesterol, and long-chain fatty acids. Viral nuclear antigens cooperated with EBV-activated host transcription factors to upregulate rate-limiting enzymes of these biosynthetic pathways. The isoprenoid geranylgeranyl pyrophosphate was identified as a key product of the EBV-induced mevalonate pathway. Our studies highlighted GGPP roles in Rab protein activation, and Rab13 was identified as a highly EBV-upregulated GTPase critical for LMP1 and LMP2A trafficking and signaling. These studies identify multiple EBV-induced metabolic enzymes important for B-cell transformation, including potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin E. Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kusano S, Ikeda M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription. J Biol Chem 2019; 294:15104-15116. [PMID: 31434743 DOI: 10.1074/jbc.ra119.008193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/15/2019] [Indexed: 11/06/2022] Open
Abstract
Human phospholipid scramblase 1 (PLSCR1) is strongly expressed in response to interferon (IFN) treatment and viral infection, and PLSCR1 has been suggested to play an important role in IFN-dependent antiviral responses. In this study, we showed that the basal expression of PLSCR1 was significantly elevated in Epstein-Barr virus (EBV)-infected nasopharyngeal carcinoma (NPC). PLSCR1 was observed to directly interact with the EBV immediate-early transactivator BZLF1 in vitro and in vivo, and this interaction repressed the BZLF1-mediated transactivation of an EBV lytic BMRF1 promoter construct. In addition, PLSCR1 expression decreased the BZLF1-mediated up-regulation of lytic BMRF1 mRNA and protein expression in WT and PLSCR1-knockout EBV-infected NPC cells. Furthermore, we showed that PLSCR1 represses the interaction between BZLF1 and CREB-binding protein (CBP), which enhances the BZLF1-mediated transactivation of EBV lytic promoters. These results reveal for the first time that PLSCR1 specifically interacts with BZLF1 and negatively regulates its transcriptional regulatory activity by preventing the formation of the BZLF1-CBP complex. This interaction may contribute to the establishment of latent EBV infection in EBV-infected NPC cells.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| |
Collapse
|
25
|
Greenblatt R, Bacchetti P, Boylan R, Kober K, Springer G, Anastos K, Busch M, Cohen M, Kassaye S, Gustafson D, Aouizerat B, on behalf of the Women’s Interagency HIV Study. Genetic and clinical predictors of CD4 lymphocyte recovery during suppressive antiretroviral therapy: Whole exome sequencing and antiretroviral therapy response phenotypes. PLoS One 2019; 14:e0219201. [PMID: 31415590 PMCID: PMC6695188 DOI: 10.1371/journal.pone.0219201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Increase of peripheral blood CD4 lymphocyte counts is a key goal of combined antiretroviral therapy (cART); most, but not all, recipients respond adequately and promptly. A small number of studies have examined specific genetic factors associated with the extent of CD4 recovery. We report a genome-wide examination of factors that predict CD4 recovery in HIV-infected women. We identified women in in a cohort study who were on cART with viral load below 400 copies, and drew racially and ethnically matched samples of those with good CD4 response over 2 years or poor response. We analyzed the exomes of those women employing next generation sequencing for genes associated with CD4 recovery after controlling for non-genetic factors identified through forward stepwise selection as important. We studied 48 women with good CD4 recovery and 42 with poor CD4 recovery during virologically-suppressive cART. Stepwise logistic regression selected only age as a statistically significant (p<0.05) non-genetic predictor of response type (each additional year of age reduced the odds of good recovery by 11% (OR = 0.89, CI = 0.84–0.96, p = 0.0009). After adjustment for age and genomic estimates of race and ethnicity, 41 genes harbored variations associated with CD4 recovery group (p≤0.001); 5 of these have been previously reported to be associated with HIV infection, 4 genes would likely influence CD4 homeostasis, and 13 genes either had known functions or were members of product families that had functions for which interactions with HIV or effects on lymphocyte homeostasis were biologically plausible. Greater age was the strongest acquired factor that predicted poor CD4 cell recovery. Sequence variations spanning 41 genes were independently predictive of CD4 recovery. Many of these genes have functions that impact the cell cycle, apoptosis, lymphocyte migration, or have known interactions with HIV. These findings may help inform new hypotheses related to responses to HIV therapy and CD4 lymphocyte homeostasis.
Collapse
Affiliation(s)
- Ruth Greenblatt
- UCSF School of Pharmacy, Department of Clinical Pharmacy, San Francisco, CA, United States of America
- UCSF School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, United States of America
- UCSF School of Medicine, Department of Medicine, San Francisco, CA, United States of America
- * E-mail:
| | - Peter Bacchetti
- UCSF School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, United States of America
| | - Ross Boylan
- UCSF School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, United States of America
| | - Kord Kober
- UCSF School of Nursing, Department of Physiological Nursing, San Francisco, CA, United States of America
| | - Gayle Springer
- Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, United States of America
| | - Kathryn Anastos
- Albert Einstein College of Medicine and Montefiore Health Systems, Bronx, NY, United States of America
| | - Michael Busch
- UCSF School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, United States of America
- Blood Systems Research Institute, San Francisco, CA, United States of America
| | - Mardge Cohen
- Stroger Hospital, Chicago, IL, United States of America
| | - Seble Kassaye
- Georgetown University Medical Center, Department of Medicine, Washington, DC, United States of America
| | - Deborah Gustafson
- State University of New York, Downstate Medical Center, Department of Neurology, Brooklyn, NY, United States of America
| | - Bradley Aouizerat
- New York University School of Dentistry and Bluestone Center for Clinical Research, NY, NY, United States of America
| | | |
Collapse
|
26
|
Li Y, Shi F, Hu J, Xie L, Bode AM, Cao Y. The Role of Deubiquitinases in Oncovirus and Host Interactions. JOURNAL OF ONCOLOGY 2019; 2019:2128410. [PMID: 31396277 PMCID: PMC6668545 DOI: 10.1155/2019/2128410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Infection-related cancer comprises one-sixth of the global cancer burden. Oncoviruses can directly or indirectly contribute to tumorigenesis. Ubiquitination is a dynamic and reversible posttranslational modification that participates in almost all cellular processes. Hijacking of the ubiquitin system by viruses continues to emerge as a central theme around the viral life cycle. Deubiquitinating enzymes (DUBs) maintain ubiquitin homeostasis by removing ubiquitin modifications from target proteins, thereby altering protein function, stability, and signaling pathways, as well as acting as key mediators between the virus and its host. In this review, we focus on the multiple functions of DUBs in RIG-I-like receptors (RLRs) and stimulator of interferon genes (STING)-mediated antiviral signaling pathways, oncoviruses regulation of NF-κB activation, oncoviral life cycle, and the potential of DUB inhibitors as therapeutic strategies.
Collapse
Affiliation(s)
- Yueshuo Li
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Feng Shi
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Jianmin Hu
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Longlong Xie
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M. Bode
- 4The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
- 5Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China
- 6Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China
- 7National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| |
Collapse
|
27
|
Xie Y, Wang D, Lan F, Wei G, Ni T, Chai R, Liu D, Hu S, Li M, Li D, Wang H, Wang Y. Author Correction: An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci Rep 2018; 8:17900. [PMID: 30538257 PMCID: PMC6289988 DOI: 10.1038/s41598-018-36738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yifang Xie
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Daqi Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Feng Lan
- Beijing Anzhen Hospital, Beijing Insitute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, 100029, China
| | - Gang Wei
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ting Ni
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Renjie Chai
- Co-innovation Center of Neuro regeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Soochow, 215007, China
| | - Mingqing Li
- The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Dajin Li
- The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Hongyan Wang
- The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
28
|
Jiang S, Zhou H, Liang J, Gerdt C, Wang C, Ke L, Schmidt SCS, Narita Y, Ma Y, Wang S, Colson T, Gewurz B, Li G, Kieff E, Zhao B. The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host Microbe 2018; 22:561-573.e4. [PMID: 29024646 DOI: 10.1016/j.chom.2017.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) transforms B cells to continuously proliferating lymphoblastoid cell lines (LCLs), which represent an experimental model for EBV-associated cancers. EBV nuclear antigens (EBNAs) and LMP1 are EBV transcriptional regulators that are essential for LCL establishment, proliferation, and survival. Starting with the 3D genome organization map of LCL, we constructed a comprehensive EBV regulome encompassing 1,992 viral/cellular genes and enhancers. Approximately 30% of genes essential for LCL growth were linked to EBV enhancers. Deleting EBNA2 sites significantly reduced their target gene expression. Additional EBV super-enhancer (ESE) targets included MCL1, IRF4, and EBF. MYC ESE looping to the transcriptional stat site of MYC was dependent on EBNAs. Deleting MYC ESEs greatly reduced MYC expression and LCL growth. EBNA3A/3C altered CDKN2A/B spatial organization to suppress senescence. EZH2 inhibition decreased the looping at the CDKN2A/B loci and reduced LCL growth. This study provides a comprehensive view of the spatial organization of chromatin during EBV-driven cellular transformation.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Gerdt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Liangru Ke
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Stefanie C S Schmidt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Narita
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yijie Ma
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tyler Colson
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Gewurz
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Robust imaging and gene delivery to study human lymphoblastoid cell lines. J Hum Genet 2018; 63:945-955. [DOI: 10.1038/s10038-018-0483-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
31
|
McClurg UL, Azizyan M, Dransfield DT, Namdev N, Chit NCTH, Nakjang S, Robson CN. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018; 9:24992-25007. [PMID: 29861848 PMCID: PMC5982776 DOI: 10.18632/oncotarget.25167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.
Collapse
Affiliation(s)
- Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahsa Azizyan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel T Dransfield
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA.,Current address: Siamab Therapeutics, Suite 100, Newton, MA 02458, USA
| | - Nivedita Namdev
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA
| | - Nay C T H Chit
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
32
|
Ju LG, Lin X, Yan D, Li QL, Wu M, Li LY. Characterization of WDR20: A new regulator of the ERAD machinery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:970-980. [PMID: 29655804 DOI: 10.1016/j.bbamcr.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
Abstract
ERAD is an important process of protein quality control that eliminates misfolded or unassembled proteins from ER. Before undergoing proteasome degradation, the misfolded proteins are dislocated from ER membrane into cytosol, which requires the AAA ATPase p97/VCP and its cofactor, the NPL4-UFD1 dimer. Here, we performed a CRISPR-based screen and identify many candidates for ERAD regulation. We further confirmed four proteins, FBOX2, TRIM6, UFL1 and WDR20, are novel regulators for ERAD. Then the molecular mechanism for WDR20 in ERAD is further characterized. Depletion of WDR20 inhibits the degradation of TCRα, a typical ERAD substrate, while WDR20 overexpression reduces TCRα protein level. WDR20 associates with TCRα and central regulators of the ERAD system, p97, GP78 and HRD1. A portion of WDR20 localizes to the ER-containing microsomal membrane. WDR20 expression increases TCRα ubiquitination, and HRD1 E3 ligase is essential for the process. WDR20 seems to serve as an adaptor protein to mediate the interaction between p97 and TCRα. Our study provides novel candidates and reveals an unexpected role of WDR20 in ERAD regulation.
Collapse
Affiliation(s)
- Lin-Gao Ju
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Lin
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dong Yan
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qing-Lan Li
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
33
|
CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions. Viruses 2018; 10:v10020055. [PMID: 29385696 PMCID: PMC5850362 DOI: 10.3390/v10020055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.
Collapse
|
34
|
mRNA Processing Factor CstF-50 and Ubiquitin Escort Factor p97 Are BRCA1/BARD1 Cofactors Involved in Chromatin Remodeling during the DNA Damage Response. Mol Cell Biol 2018; 38:MCB.00364-17. [PMID: 29180510 PMCID: PMC5789026 DOI: 10.1128/mcb.00364-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. In this study, we provide evidence of the roles of the polyadenylation factor cleavage stimulation factor 50 (CstF-50) and the ubiquitin (Ub) escort factor p97 as cofactors of BRCA1/BARD1 E3 Ub ligase, facilitating chromatin remodeling during the DNA damage response (DDR). CstF-50 and p97 formed complexes with BRCA1/BARD1, Ub, and some BRCA1/BARD1 substrates, such as RNA polymerase (RNAP) II and histones. Furthermore, CstF-50 and p97 had an additive effect on the activation of the ubiquitination of these BRCA1/BARD1 substrates during DDR. Importantly, as a result of these functional interactions, BRCA1/BARD1/CstF-50/p97 had a specific effect on the chromatin structure of genes that were differentially expressed. This study provides new insights into the roles of RNA processing, BRCA1/BARD1, the Ub pathway, and chromatin structure during DDR.
Collapse
|
35
|
Jiang S, Wang LW, Walsh MJ, Trudeau SJ, Gerdt C, Zhao B, Gewurz BE. CRISPR/Cas9-Mediated Genome Editing in Epstein-Barr Virus-Transformed Lymphoblastoid B-Cell Lines. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2018; 121:31.12.1-31.12.23. [PMID: 29337376 DOI: 10.1002/cpmb.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV) efficiently transforms primary human B cells into immortalized lymphoblastoid cell lines (LCLs), which are extensively used in human genetic, immunological and virological studies. LCLs provide unlimited sources of DNA for genetic investigation, but can be difficult to manipulate, for instance because low retroviral or lentiviral transduction frequencies hinder experiments that require co-expression of multiple components. This unit details Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 engineering for robust LCL genome editing. We describe the generation and delivery of single-guide RNAs (sgRNAs), or dual-targeting sgRNAs, via lentiviral transduction of LCLs that stably express Cas9 protein. CRISPR/Cas9 editing allows LCL loss-of-function studies, including knock-out of protein-coding genes or deletion of DNA regulatory elements, and can be adapted for large-scale screening approaches. Low transfection efficiencies are a second barrier to performing CRISPR editing in LCLs, which are not typically lipid-transfectable. To circumvent this barrier, we provide an optimized protocol for LCL nucleofection of Cas9/sgRNA ribonucleoprotein complexes (RNPs) as an alternative route to achieve genome editing in LCLs. These editing approaches can also be employed in other B-cell lines, including Burkitt lymphoma and diffuse large B-cell lymphoma cells, and are highly reproducible. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sizun Jiang
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Present Address: Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California
| | - Liang Wei Wang
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael J Walsh
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Stephen J Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Catherine Gerdt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Benjamin E Gewurz
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
37
|
Lv DW, Zhong J, Zhang K, Pandey A, Li R. Understanding Epstein-Barr Virus Life Cycle with Proteomics: A Temporal Analysis of Ubiquitination During Virus Reactivation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:27-37. [PMID: 28271981 DOI: 10.1089/omi.2016.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus associated with cancer, including Burkitt lymphoma, nasopharyngeal, and gastric carcinoma. EBV reactivation in latently infected B cells is essential for persistent infection whereby B cell receptor (BCR) activation is a physiologically relevant stimulus. Yet, a global view of BCR activation-regulated protein ubiquitination is lacking when EBV is actively replicating. We report here, for the first time, the long-term effects of IgG cross-linking-regulated protein ubiquitination and offer a basis for dissecting the cellular environment during the course of EBV lytic replication. Using the Akata-BX1 (EBV+) and Akata-4E3 (EBV-) Burkitt lymphoma cells, we monitored the dynamic changes in protein ubiquitination using quantitative proteomics. We observed temporal alterations in the level of ubiquitination at ∼150 sites in both EBV+ and EBV- B cells post-IgG cross-linking, compared with controls with no cross-linking. The majority of protein ubiquitination was downregulated. The upregulated ubiquitination events were associated with proteins involved in RNA processing. Among the downregulated ubiquitination events were proteins involved in apoptosis, ubiquitination, and DNA repair. These comparative and quantitative proteomic observations represent the first analysis on the effects of IgG cross-linking at later time points when the majority of EBV genes are expressed and the viral genome is actively being replicated. In all, these data enhance our understanding of mechanistic linkages connecting protein ubiquitination, RNA processing, apoptosis, and the EBV life cycle.
Collapse
Affiliation(s)
- Dong-Wen Lv
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Jun Zhong
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kun Zhang
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Akhilesh Pandey
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Diana Helis Henry Medical Research Foundation , New Orleans, Louisiana
| | - Renfeng Li
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia.,5 Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia.,6 Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
38
|
Paschos K, Bazot Q, Ho G, Parker GA, Lees J, Barton G, Allday MJ. Core binding factor (CBF) is required for Epstein-Barr virus EBNA3 proteins to regulate target gene expression. Nucleic Acids Res 2017; 45:2368-2383. [PMID: 27903901 PMCID: PMC5389572 DOI: 10.1093/nar/gkw1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes. A comparison of EBNA3 binding sites with known transcription factor binding sites in LCL GM12878 revealed substantial co-localization of EBNA3s with RUNX3-a protein induced by EBV during B cell transformation. The beta-subunit of core binding factor (CBFβ), that heterodimerizes with RUNX3, could co-immunoprecipitate robustly EBNA3B and EBNA3C, but only weakly EBNA3A. Depletion of either RUNX3 or CBFβ with lentivirus-delivered shRNA impaired epitope-tagged EBNA3B and EBNA3C binding at multiple regulated gene loci, indicating a requirement for CBF heterodimers in EBNA3 recruitment during target-gene regulation. ShRNA-mediated depletion of CBFβ in an EBNA3C-conditional LCL confirmed the role of CBF in the regulation of EBNA3C-induced and -repressed genes. These results reveal an important role for RUNX3/CBF during B cell transformation and EBV latency that was hitherto unexplored.
Collapse
Affiliation(s)
- Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Quentin Bazot
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Guiyi Ho
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Gillian A. Parker
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Jonathan Lees
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Geraint Barton
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Martin J. Allday
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
39
|
Affinity Purification-Mass Spectroscopy Methods for Identifying Epstein-Barr Virus-Host Interactions. Methods Mol Biol 2017; 1532:79-92. [PMID: 27873268 DOI: 10.1007/978-1-4939-6655-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considerable insight into the function and mechanism of action of viral proteins has come from identifying the cellular proteins with which they interact. In recent years, mass spectrometry-based methods have emerged as the method of choice for protein interaction discovery due to their comprehensive and unbiased nature. Methods involving single affinity purifications of epitope-tagged viral proteins (AP-MS) and tandem affinity purifications of viral proteins with two purification tags (TAP tagging) have both been used to identify novel host interactions with EBV proteins. However, to date these methods have only been applied to a small number of EBV proteins. Here we provide detailed methods of AP-MS and TAP tagging approaches that can be applied to any EBV protein in order to discover its host interactions.
Collapse
|
40
|
Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc Natl Acad Sci U S A 2016; 113:14121-14126. [PMID: 27864512 DOI: 10.1073/pnas.1616697113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) super-enhancers (ESEs) are essential for lymphoblastoid cell (LCL) growth and survival. Reanalyses of LCL global run-on sequencing (Gro-seq) data found abundant enhancer RNAs (eRNAs) being transcribed at ESEs. Inactivation of ESE components, EBV nuclear antigen 2 (EBNA2) and bromodomain-containing protein 4 (BRD4), significantly decreased eRNAs at ESEs -428 and -525 kb upstream of the MYC oncogene transcription start site (TSS). shRNA knockdown of the MYC -428 and -525 ESE eRNA caused LCL growth arrest and reduced cell growth. Furthermore, MYC ESE eRNA knockdown also significantly reduced MYC expression, ESE H3K27ac signals, and MYC ESEs looping to MYC TSS. These data indicate that ESE eRNAs strongly affect cell gene expression and enable LCL growth.
Collapse
|
41
|
Gan J, Qiao N, Strahan R, Zhu C, Liu L, Verma SC, Wei F, Cai Q. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Rev Med Virol 2016; 26:435-445. [DOI: 10.1002/rmv.1900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Niu Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Roxanne Strahan
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Lei Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Subhash C. Verma
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
42
|
Bhattacharjee S, Ghosh Roy S, Bose P, Saha A. Role of EBNA-3 Family Proteins in EBV Associated B-cell Lymphomagenesis. Front Microbiol 2016; 7:457. [PMID: 27092119 PMCID: PMC4824013 DOI: 10.3389/fmicb.2016.00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) is highly ubiquitous in human population and establishes a lifelong asymptomatic infection within the infected host unless the immune system is compromised. Following initial infection in the oropharyngeal epithelial cells, EBV primarily infects naive B-lymphocytes and develops a number of B-cell lymphomas particularly in immune-deficient individuals. In vitro, EBV can also infect and subsequently transform quiescent B-lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) resembling EBV-induced lymphoproliferative disorders in which a subset of latent transcripts are detected. Genetic studies revealed that EBNA-3 family comprising of three adjacent genes in the viral genome-EBNA-3A and -3C, but not -3B, are critical for B-cell transformation. Nevertheless, all three proteins appear to significantly contribute to maintain the overall proliferation and viability of transformed cells, suggesting a critical role in lymphoma development. Apart from functioning as important viral transcriptional regulators, EBNA-3 proteins associate with many cellular proteins in different signaling networks, providing a suitable platform for lifelong survival of the virus and concurrent lymphoma development in the infected host. The chapter describes the function of each these EBV nuclear antigen 3 proteins employed by the virus as a means to understand viral pathogenesis of several EBV-associated B-cell malignancies.
Collapse
Affiliation(s)
| | | | - Priyanka Bose
- Department of Biological Sciences, Presidency University Kolkata, India
| | - Abhik Saha
- Department of Biological Sciences, Presidency University Kolkata, India
| |
Collapse
|
43
|
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are a group of conditions that involve uncontrolled proliferation of lymphoid cells as a consequence of extrinsic immunosuppression after organ or haematopoietic stem cell transplant. PTLDs show some similarities to classic lymphomas in the non-immunosuppressed general population. The oncogenic Epstein-Barr virus (EBV) is a key pathogenic driver in many early-onset cases, through multiple mechanisms. The incidence of PTLD varies with the type of transplant; a clear distinction should therefore be made between the conditions after solid organ transplant and after haematopoietic stem cell transplant. Recipient EBV seronegativity and the intensity of immunosuppression are among key risk factors. Symptoms and signs depend on the localization of the lymphoid masses. Diagnosis requires histopathology, although imaging techniques can provide additional supportive evidence. Pre-emptive intervention based on monitoring EBV levels in blood has emerged as the preferred strategy for PTLD prevention. Treatment of established disease includes reduction of immunosuppression and/or administration of rituximab (a B cell-specific antibody against CD20), chemotherapy and EBV-specific cytotoxic T cells. Despite these strategies, the mortality and morbidity remains considerable. Patient outcome is influenced by the severity of presentation, treatment-related complications and risk of allograft loss. New innovative treatment options hold promise for changing the outlook in the future.
Collapse
|
44
|
EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1. PLoS Pathog 2016; 12:e1005339. [PMID: 26752713 PMCID: PMC4709166 DOI: 10.1371/journal.ppat.1005339] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/21/2015] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival. Epstein-Barr Virus (EBV) reprograms host cell transcription through multiple mechanisms. Here, we show that EBV-encoded transcriptional co-activator EBNA2 drives the formation of new chromosome binding sites for host cell factors RBP-jκ and EBF1. The formation of these new sites is EBNA2-dependent. These newly formed sites have overlapping or neighboring consensus binding sites for these factors, but are only co-occupied in the presence of EBNA2. Newly formed, co-occupied binding sites are highly enriched at promoter and enhancer regulatory elements of genes activated by EBV and required for B-cell proliferation and survival. These findings indicate that EBNA2 drives cooperative and combinatorial transcription factor interactions on chromosomal DNA. We suggest that models depicting the static binding of master regulatory transcription factors to consensus binding sites be revised, and that co-activators, like EBNA2, induce dynamic and combinatorial selection of genome-wide binding sites to alter gene regulation.
Collapse
|
45
|
Epstein-Barr Virus Nuclear Antigen 3 (EBNA3) Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic Sites. J Virol 2015; 90:2906-19. [PMID: 26719268 DOI: 10.1128/jvi.02737-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear. Our chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis of the EBNA3 proteins analyzed in concert with prior EBNA2 and RBPJ data demonstrated that EBNA3A, EBNA3B, and EBNA3C bind to distinct, partially overlapping genomic locations. Although RBPJ interaction is critical for EBNA3A and EBNA3C growth effects, only 30 to 40% of EBNA3-bound sites colocalize with RBPJ. Using LCLs conditional for EBNA3A or EBNA3C activity, we demonstrate that EBNA2 binding at sites near EBNA3A- or EBNA3C-regulated genes is specifically regulated by the respective EBNA3. To investigate EBNA3 binding specificity, we identified sequences and transcription factors enriched at EBNA3A-, EBNA3B-, and EBNA3C-bound sites. This confirmed the prior observation that IRF4 is enriched at EBNA3A- and EBNA3C-bound sites and revealed IRF4 enrichment at EBNA3B-bound sites. Using IRF4-negative BJAB cells, we demonstrate that IRF4 is essential for EBNA3C, but not EBNA3A or EBNA3B, binding to specific sites. These results support a model in which EBNA2 and EBNA3s compete for distinct subsets of RBPJ sites to regulate cell genes and where EBNA3 subset specificity is determined by interactions with other cell transcription factors. IMPORTANCE Epstein-Barr virus (EBV) latent gene products cause human cancers and transform B lymphocytes into immortalized lymphoblastoid cell lines in vitro. EBV nuclear antigens (EBNAs) and membrane proteins constitutively activate pathways important for lymphocyte growth and survival. An important unresolved question is how four different EBNAs (EBNA2, -3A, -3B, and -3C) exert unique effects via a single transcription factor, RBPJ. Here, we report that each EBNA binds to distinct but partially overlapping sets of genomic sites. EBNA3A and EBNA3C specifically regulate EBNA2's access to different RBPJ sites, providing a mechanism by which each EBNA can regulate distinct cell genes. We show that IRF4, an essential regulator of B cell differentiation, is critical for EBNA3C binding specificity; EBNA3A and EBNA3B specificities are likely due to interactions with other cell transcription factors. EBNA3 titration of EBNA2 transcriptional function at distinct sites likely limits cell defenses that would be triggered by unchecked EBNA2 prooncogenic activity.
Collapse
|