1
|
Fowler EA, Sacramento LA, Bowman BA, Lee B, Lio CWJ, Dong YD, Spicer JA, Trapani JA, Novais FO. Hypoxia and IL-15 cooperate to induce perforin expression by CD8 T cells and promote damage to the skin in murine cutaneous leishmaniasis. J Invest Dermatol 2025:S0022-202X(25)00479-8. [PMID: 40373956 DOI: 10.1016/j.jid.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
Cutaneous leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania, and although parasites influence disease severity, cytotoxic CD8 T cell responses mediate damage to the infected skin. We found that the cytotoxic protein perforin was expressed in CD8 T cells only upon recruitment to Leishmania-infected skin, suggesting that lesional inflammatory cues induced perforin. Here, using a mouse model of Leishmania major infection, we demonstrated that the expression of perforin was driven by a combination of hypoxia and IL-15, both of which are microenvironmental signals present within Leishmania-infected skin. We also demonstrated that the major sources of Il15 mRNA in cutaneous leishmaniasis lesions are neutrophils and macrophages and that macrophages exposed to hypoxia in vitro produce more Il15. Since perforin is only present in lesions, we reformulated a small molecule perforin inhibitor for topical application and found that local inhibition of perforin is sufficient to ameliorate disease in established cutaneous leishmaniasis. Thus, topical perforin inhibition may be considered a therapeutic strategy for patients with cutaneous leishmaniasis and other inflammatory skin diseases where cytotoxic CD8 T cells contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Erin A Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Laís Amorim Sacramento
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, USA
| | - Bridget A Bowman
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Bella Lee
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Chan-Wang J Lio
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA; Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Yao-Da Dong
- Medicine Manufacturing Innovation Centre, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Julie A Spicer
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | | | - Fernanda O Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA.
| |
Collapse
|
2
|
Sepahpour T, Alshaweesh J, Azodi N, Singh K, Ireland DDC, Valanezhad F, Nakamura R, Satoskar AR, Dey R, Hamano S, Nakhasi HL, Gannavaram S. Downregulation of IRF7-mediated type-I interferon response by LmCen -/- parasites is necessary for protective immunity. NPJ Vaccines 2024; 9:250. [PMID: 39702382 DOI: 10.1038/s41541-024-01032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Leishmaniasis is a tropical disease caused by Leishmania parasites and currently has no licensed vaccines. We developed a dermotropic Leishmania major centrin gene-deleted strain (LmCen-/-) as a live attenuated vaccine. Recent studies have shown that type I interferons (IFNs) play important roles in immunity to parasitic and viral pathogens. However, their relevance in protective immunity following vaccination is not understood. We found that immunization with LmCen-/- induces a transient increase in type I IFN response along with its regulatory factor IRF7 that is downregulated 7-21 days post-immunization, coincided with the induction of a robust Th1 adaptive immune response. Challenge infection with virulent L. donovani parasites showed a significant reduction of splenic and hepatic parasite burden in IRF7-/- mice than wild type mice following immunization with LmCen-/-, suggesting that ablation of type I IFN response is a pre-requisite for the induction of LmCen-/- mediated Th1 immunity against L. donovani infection.
Collapse
Affiliation(s)
- Telly Sepahpour
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Jalal Alshaweesh
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan, and Graduate School of Biomedical Sciences, Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Komudi Singh
- National Heart Lung Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Derek D C Ireland
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Farzaneh Valanezhad
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan, and Graduate School of Biomedical Sciences, Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan, and Graduate School of Biomedical Sciences, Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, USA
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA.
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan, and Graduate School of Biomedical Sciences, Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan.
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
3
|
Fowler EA, Farias Amorim C, Mostacada K, Yan A, Amorim Sacramento L, Stanco RA, Hales ED, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. J Clin Invest 2024; 134:e177992. [PMID: 38833303 PMCID: PMC11245163 DOI: 10.1172/jci177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Erin A. Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Klauss Mostacada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Allison Yan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Rae A. Stanco
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily D.S. Hales
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wenjing Zong
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, Brazil
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fernanda O. Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Swaminathan S, Mai LT, Meli AP, Carmona-Pérez L, Charpentier T, Lamarre A, King IL, Stäger S. LAG-3- and CXCR5-expressing CD4 T cells display progenitor-like properties during chronic visceral leishmaniasis. Cell Rep 2024; 43:113879. [PMID: 38416647 DOI: 10.1016/j.celrep.2024.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Maintenance of CD4 T cells during chronic infections is vital for limiting pathogen burden and disease recrudescence. Although inhibitory receptor expression by CD4 T cells is commonly associated with immune suppression and exhaustion, such cell-intrinsic mechanisms that control activation are also associated with cell survival. Using a mouse model of visceral leishmaniasis (VL), we discovered a subset of lymphocyte activation gene 3 (LAG-3)-expressing CD4 T cells that co-express CXCR5. Although LAG3+CXCR5+ CD4 T cells are present in naive mice, they expand during VL. These cells express gene signatures associated with self-renewal capacity, suggesting progenitor-like properties. When transferred into Rag1-/- mice, these LAG3+CXCR5+ CD4 T cells differentiated into multiple effector types upon Leishmania donovani infection. The transcriptional repressor B cell lymphoma-6 was partially required for their maintenance. Altogether, we propose that the LAG3+CXCR5+ CD4 T cell subset could play a role in maintaining CD4 T cell responses during persistent infections.
Collapse
Affiliation(s)
- Sharada Swaminathan
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Linh Thuy Mai
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Alexandre P Meli
- Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada
| | - Liseth Carmona-Pérez
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Tania Charpentier
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Alain Lamarre
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada
| | - Simona Stäger
- INRS-Centre Armand-Frappier Santé Biotechnologie and Infectiopôle INRS, 531 Boulevard des Prairies, Laval, QC, Canada.
| |
Collapse
|
5
|
Fowler EA, Amorim CF, Mostacada K, Yan A, Sacramento LA, Stanco RA, Hales EDS, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Pathogenic CD8 T cell responses are driven by neutrophil-mediated hypoxia in cutaneous leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562926. [PMID: 37904953 PMCID: PMC10614852 DOI: 10.1101/2023.10.18.562926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8 T cell responses mediate disease. While these responses originate in the lymph node, we find that expression of the cytolytic effector molecule granzyme B is restricted to lesional CD8 T cells in Leishmania - infected mice, suggesting that local cues within inflamed skin induce cytolytic function. Expression of Blimp-1 ( Prdm1 ), a transcription factor necessary for cytolytic CD8 T cell differentiation, is driven by hypoxia within the inflamed skin. Hypoxia is further enhanced by the recruitment of neutrophils that consume oxygen to produce reactive oxygen species, ultimately increasing granzyme B expression in CD8 T cells. Importantly, lesions from cutaneous leishmaniasis patients exhibit hypoxia transcription signatures that correlate with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8 T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as other inflammatory skin diseases where cytolytic CD8 T cells contribute to pathogenesis.
Collapse
|
6
|
Ben-Cheikh A, Bali A, Guerfali FZ, Atri C, Attia H, Laouini D. Hypoxia-Inducible Factor-1 Alpha Stabilization in Human Macrophages during Leishmania major Infection Is Impaired by Parasite Virulence. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:317-325. [PMID: 36320108 PMCID: PMC9633161 DOI: 10.3347/kjp.2022.60.5.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.
Collapse
Affiliation(s)
- Ali Ben-Cheikh
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia,Faculty of Sciences, Tunis,
Tunisia
| | - Aymen Bali
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Fatma Z Guerfali
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Chiraz Atri
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Hanène Attia
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia,Corresponding author (; )
| |
Collapse
|
7
|
Venugopal G, Bird JT, Washam CL, Roys H, Bowlin A, Byrum SD, Weinkopff T. In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Negl Trop Dis 2022; 16:e0010518. [PMID: 35789215 PMCID: PMC9286232 DOI: 10.1371/journal.pntd.0010518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/15/2022] [Accepted: 05/18/2022] [Indexed: 01/02/2023] Open
Abstract
Leishmania parasites cause cutaneous leishmaniasis (CL), a disease characterized by disfiguring, ulcerative skin lesions. Both parasite and host gene expression following infection with various Leishmania species has been investigated in vitro, but global transcriptional analysis following L. major infection in vivo is lacking. Thus, we conducted a comprehensive transcriptomic profiling study combining bulk RNA sequencing (RNA-Seq) and single-cell RNA sequencing (scRNA-Seq) to identify global changes in gene expression in vivo following L. major infection. Bulk RNA-Seq analysis revealed that host immune response pathways like the antigen processing and presentation pathway were significantly enriched amongst differentially expressed genes (DEGs) upon infection, while ribosomal pathways were significantly downregulated in infected mice compared to naive controls. scRNA-Seq analyses revealed cellular heterogeneity including distinct resident and recruited cell types in the skin following murine L. major infection. Within the individual immune cell types, several DEGs indicative of many interferon induced GTPases and antigen presentation molecules were significantly enhanced in the infected ears including macrophages, resident macrophages, and inflammatory monocytes. Ingenuity Pathway Analysis of scRNA-Seq data indicated the antigen presentation pathway was increased with infection, while EIF2 signaling is the top downregulated pathway followed by eIF4/p70S6k and mTOR signaling in multiple cell types including macrophages, blood and lymphatic endothelial cells. Altogether, this transcriptomic profile highlights known recruitment of myeloid cells to lesions and recognizes a potential role for EIF2 signaling in murine L. major infection in vivo.
Collapse
Affiliation(s)
- Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| |
Collapse
|
8
|
Margaroni M, Agallou M, Vasilakaki A, Karagkouni D, Skoufos G, Hatzigeorgiou AG, Karagouni E. Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms 2022; 10:microorganisms10071271. [PMID: 35888991 PMCID: PMC9322131 DOI: 10.3390/microorganisms10071271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell population orchestrating immune responses against several diseases, including leishmaniasis, by bridging innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host–pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double-sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC-T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs-Leishmania interplay and eventually disease establishment.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Maria Agallou
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Athina Vasilakaki
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
- Correspondence: ; Tel.: +30-21-0647-8826
| |
Collapse
|
9
|
Costa-Madeira JC, Trindade GB, Almeida PHP, Silva JS, Carregaro V. T Lymphocyte Exhaustion During Human and Experimental Visceral Leishmaniasis. Front Immunol 2022; 13:835711. [PMID: 35585983 PMCID: PMC9108272 DOI: 10.3389/fimmu.2022.835711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
A key point of immunity against protozoan Leishmania parasites is the development of an optimal T cell response, which includes a low apoptotic rate, high proliferative activity and polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen resulting in pathogen control but not elimination, promoting the development and the maintenance of a population of circulating effector cells that mount rapid response quickly after re-exposure to the parasite. However, in the case of visceral disease, the functionality of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor response to specific restimulation, and suboptimal homeostatic proliferation, a term referred to as T cell exhaustion. Multiple factors, including parasite load, infection duration and host immunity, affect T lymphocyte exhaustion. These factors contribute to antigen persistence by promoting inhibitory receptor expression and sustained production of soluble mediators, influencing suppressive cell function and the release of endogenous molecules into chronically inflamed tissue. Together, these signals encourage several changes, reprogramming cells into a quiescent state, which reflects disease progression to more severe forms, and development of acquired resistance to conventional drugs to treat the disease. These points are discussed in this review.
Collapse
Affiliation(s)
- Juliana C. Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Gabrielly B. Trindade
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Paulo H. P. Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Alves Mota C, Stéfanie Sara Lopes Lera-Nonose D, Ávila Brustolin A, Chiqueto Duarte G, Carolina Mota Dos Santos M, Valdrinez Campana Lonardoni M, Gomes Verzignassi Silveira T. Low expression of hypoxia-inducible factor-1α and differential expression of immune mediators during experimental infection with Leishmania (Viannia) spp. Cytokine 2022; 153:155833. [PMID: 35247649 DOI: 10.1016/j.cyto.2022.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Leishmania (Viannia) species are the major agents of cutaneous leishmaniasis (CL) in the Americas. Ulcerative stigmatizing skin lesions generally characterize CL. The microenvironment during Leishmania infection is rich in inflammatory cells and molecules, which contrasts with low oxygen levels. The hypoxia-inducible factor (HIF)-1α activates several genes in response to hypoxia and inflammatory reactions, but its role in the CL course is poorly understood. We investigated the expression pattern of the genes HIF-1α, arginase, inducible NO synthase (iNOS), interferon (IFN)-γ, interleukin (IL)-12, and IL-10 in skin lesions and lymph nodes of golden hamsters infected with L. braziliensis, L. lainsoni, and L. naiffi. The animals were infected and followed for 105 days, with paw volume measurements and photos taken weekly. Euthanasia was performed at 0, 15, 56, and 105 days post-infection. The parasite load of paw and lymph node tissues were measured through absolute quantification at real-time PCR (qPCR), and reverse transcription qPCR (RT-qPCR) was applied to demonstrate the relative mRNA expression of the target genes. Among groups, animals infected with L. braziliensis had the highest parasite load in paws and lymph nodes. HIF-1α mRNA was down-regulated during chronic Leishmania (Viannia) infection but demonstrated less inhibition in hamsters infected with L. lainsoni and L. naiffi. Arginase was the most detectable gene in animals infected by L. braziliensis; IFN-γ and IL-10 genes were the most detectable in L. lainsoni and L. naiffi-infected animals. HIF-1α gene transcription seemed to be down-modulated byL. (Viannia)infection and was less inhibited by L. lainsoni and L. naiffi when compared toL. braziliensis. Animals with L. lainsoni and L. naiffi showed better control of the disease. Further studies are necessary to evaluate the mechanism influencing HIF-1α expression and its role on CL protection; such research could elucidate potential use of HIF-1α as a therapeutic target.
Collapse
Affiliation(s)
- Camila Alves Mota
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brasil.
| | | | - Aline Ávila Brustolin
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | | | | | - Maria Valdrinez Campana Lonardoni
- Laboratório de Leishmanioses, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Thaís Gomes Verzignassi Silveira
- Laboratório de Leishmanioses, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| |
Collapse
|
11
|
VAMP3 and VAMP8 regulate the development and functionality of parasitophorous vacuoles housing Leishmania amazonensis. Infect Immun 2022; 90:e0018321. [PMID: 35130453 DOI: 10.1128/iai.00183-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor proteins to the expansion and functionality of communal vacuoles as well as on the replication of the parasite. The differential recruitment patterns of Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor to communal vacuoles harboring L. amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither proteins has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Collapse
|
12
|
Arango Duque G, Dion R, Matte C, Fabié A, Descoteaux J, Stäger S, Descoteaux A. Sec22b Regulates Inflammatory Responses by Controlling the Nuclear Translocation of NF-κB and the Secretion of Inflammatory Mediators. THE JOURNAL OF IMMUNOLOGY 2021; 207:2297-2309. [PMID: 34580108 DOI: 10.4049/jimmunol.2100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) regulate the vesicle transport machinery in phagocytic cells. Within the secretory pathway, Sec22b is an endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-resident SNARE that controls phagosome maturation and function in macrophages and dendritic cells. The secretory pathway controls the release of cytokines and may also impact the secretion of NO, which is synthesized by the Golgi-active inducible NO synthase (iNOS). Whether ERGIC SNARE Sec22b controls NO and cytokine secretion is unknown. Using murine bone marrow-derived dendritic cells, we demonstrated that inducible NO synthase colocalizes with ERGIC/Golgi markers, notably Sec22b and its partner syntaxin 5, in the cytoplasm and at the phagosome. Pharmacological blockade of the secretory pathway hindered NO and cytokine release, and inhibited NF-κB translocation to the nucleus. Importantly, RNA interference-mediated silencing of Sec22b revealed that NO and cytokine production were abrogated at the protein and mRNA levels. This correlated with reduced nuclear translocation of NF-κB. We also found that Sec22b co-occurs with NF-κB in both the cytoplasm and nucleus, pointing to a role for this SNARE in the shuttling of NF-κB. Collectively, our data unveiled a novel function for the ERGIC/Golgi, and its resident SNARE Sec22b, in the production and release of inflammatory mediators.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Renaud Dion
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Christine Matte
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Aymeric Fabié
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Julien Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Simona Stäger
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Albert Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
13
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
14
|
Abstract
Hypoxia is an important feature of the tumor microenvironment, and is closely associated with cell proliferation, angiogenesis, metabolism and the tumor immune response. All these factors can further promote tumor progression, increase tumor aggressiveness, enhance tumor metastatic potential and lead to poor prognosis. In this review, these effects of hypoxia on tumor biology will be discussed, along with their significance for tumor detection and treatment.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Kiani AA, Elyasi H, Ghoreyshi S, Nouri N, Safarzadeh A, Nafari A. Study on hypoxia-inducible factor and its roles in immune system. Immunol Med 2021; 44:223-236. [PMID: 33896415 DOI: 10.1080/25785826.2021.1910187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hypoxia-Inducible Factor-1 (HIF-1) is a dimeric protein complex that plays a significant role in responding to low oxygen or hypoxia concentrations. Chronic inflammation is one of the immune system responses and can increase HIF expression in involved tissues through lowering the oxygen and hypoxia. The HIF factor has many critical roles in immunity, and thus, we reviewed the crucial roles of this factor in the immune system. The results showed various key roles on the immune system, including physical defenses, innate immune (neutrophils apoptosis, macrophages) and inflammatory responses (pyrexia and local heat, iron access, etc.), upregulation in response to microbial infections, cytokines expression (IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF, etc.), drug targeting, etc. The HIF roles in the acquired immune system include: enhance the adaptation of cells (dendritic cells) to new conditions and triggering the signal pathways. The findings of the present review demonstrated that the HIF has important roles in the immune system, including physical defense, innate immune as well as acquired immunity; therefore, it may be considered as a potent drug targeting several diseases such as cancers, infectious diseases, etc.
Collapse
Affiliation(s)
- Ali Asghar Kiani
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hossein Elyasi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Shadiyeh Ghoreyshi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Negar Nouri
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Safarzadeh
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Amirhossein Nafari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Peng Y, Chen B, Sheng X, Qian Y. Polymorphisms in IRF5 and TYK2 Genes Are Associated with Rheumatoid Arthritis in a Chinese Han Population. Med Sci Monit 2021; 27:e928455. [PMID: 33583939 PMCID: PMC7893827 DOI: 10.12659/msm.928455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The IRF5 and TYK2 gene polymorphisms are associated with autoimmune diseases. However, the relationship between the IRF5 and TYK2 gene polymorphisms and RA risk in the Chinese Han population was inconsistent. MATERIAL AND METHODS A total of 578 RA patients (case group) and 578 healthy controls (control group) were assessed in a case-control study. Genotyping of IRF5 (Exon 6 insertion/deletion (in/de), rs2004640, rs2070197, rs10954213) and TYK2 (rs280500, rs280519, rs280521, rs8108236, rs12720253) was performed by direct sequencing method. Data analysis was performed by SHEsis. RESULTS The rs2004640T allele (P=0.0003) and the dominant (P=0.001) and recessive (P=0.01) models of rs2004640 were associated with RA risk after stringent Bonferroni correction (0.05/4). The IRF5 exon 6 (in), rs2070197 and rs10954213 were not associated with RA (P>0.05). Two haplotypes of IRF5 (DTAT and DTGG) were associated with RA susceptibility (P<0.05). In addition, the frequencies of TYK2 rs280500A, rs280521A, and rs8108236A were significantly higher in the RA group compared with the control group (P<0.05). TYK2 rs280500, rs280521, and rs8108236 were associated with RA susceptibility in the dominant model, but the same was not observed for rs280519 and rs12720253 (P<0.05). Furthermore, 3 risk haplotypes (AAAGT, AGGAT, and GAAAT) and a protective haplotype (GAGGT) of TYK2 gene were associated with RA susceptibility (P<0.05). CONCLUSIONS Our results suggest that IRF5 rs2004640, TYK2 rs280500, rs280521, rs8108236, and haplotypes IRF5 (DTAT and DTGG) and TYK2 (AAAGT, AGGAT, GAAAT, and GAGGT) are susceptible factors for RA in a Chinese Han population.
Collapse
|
17
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
18
|
Tran CW, Gold MJ, Garcia-Batres C, Tai K, Elford AR, Himmel ME, Elia AJ, Ohashi PS. Hypoxia-inducible factor 1 alpha limits dendritic cell stimulation of CD8 T cell immunity. PLoS One 2020; 15:e0244366. [PMID: 33382742 PMCID: PMC7775062 DOI: 10.1371/journal.pone.0244366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells are sentinels of the immune system and represent a key cell in the activation of the adaptive immune response. Hypoxia-inducible factor 1 alpha (HIF-1α)–a crucial oxygen sensor stabilized during hypoxic conditions–has been shown to have both activating and inhibitory effects in immune cells in a context- and cell-dependent manner. Previous studies have demonstrated that in some immune cell types, HIF-1α serves a pro-inflammatory role. Genetic deletion of HIF-1α in macrophages has been reported to reduce their pro-inflammatory function. In contrast, loss of HIF-1α enhanced the pro-inflammatory activity of dendritic cells in a bacterial infection model. In this study, we aimed to further clarify the effects of HIF-1α in dendritic cells. Constitutive expression of HIF-1α resulted in diminished immunostimulatory capacity of dendritic cells in vivo, while conditional deletion of HIF-1α in dendritic cells enhanced their ability to induce a cytotoxic T cell response. HIF-1α-expressing dendritic cells demonstrated increased production of inhibitory mediators including IL-10, iNOS and VEGF, which correlated with their reduced capacity to drive effector CD8+ T cell function. Altogether, these data reveal that HIF-1α can promote the anti-inflammatory functions of dendritic cells and provides insight into dysfunctional immune responses in the context of HIF-1α activation.
Collapse
Affiliation(s)
- Charles W. Tran
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Kelly Tai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew J. Elia
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
20
|
Hammond FR, Lewis A, Elks PM. If it's not one thing, HIF's another: immunoregulation by hypoxia inducible factors in disease. FEBS J 2020; 287:3907-3916. [PMID: 32633061 PMCID: PMC7362030 DOI: 10.1111/febs.15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia‐inducible factors (HIFs) have emerged in recent years as critical regulators of immunity. Localised, low oxygen tension is a hallmark of inflamed and infected tissues. Subsequent myeloid cell HIF stabilisation plays key roles in the innate immune response, alongside emerging oxygen‐independent roles. Manipulation of regulatory proteins of the HIF transcription factor family can profoundly influence inflammatory profiles, innate immune cell function and pathogen clearance and, as such, has been proposed as a therapeutic strategy against inflammatory diseases. The direction and mode of HIF manipulation as a therapy are dictated by the inflammatory properties of the disease in question, with innate immune cell HIF reduction being, in general, advantageous during chronic inflammatory conditions, while upregulation of HIF is beneficial during infections. The therapeutic potential of targeting myeloid HIFs, both genetically and pharmacologically, has been recently illuminated in vitro and in vivo, with an emerging range of inhibitory and activating strategies becoming available. This review focuses on cutting edge findings that uncover the roles of myeloid cell HIF signalling on immunoregulation in the contexts of inflammation and infection and explores future directions of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ffion R Hammond
- The Bateson Centre, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Amy Lewis
- The Bateson Centre, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Philip M Elks
- The Bateson Centre, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, UK
| |
Collapse
|
21
|
Regli IB, Passelli K, Martínez-Salazar B, Amore J, Hurrell BP, Müller AJ, Tacchini-Cottier F. TLR7 Sensing by Neutrophils Is Critical for the Control of Cutaneous Leishmaniasis. Cell Rep 2020; 31:107746. [DOI: 10.1016/j.celrep.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
|
22
|
Cvitas I, Oberhänsli S, Leeb T, Dettwiler M, Müller E, Bruggman R, Marti EI. Investigating the epithelial barrier and immune signatures in the pathogenesis of equine insect bite hypersensitivity. PLoS One 2020; 15:e0232189. [PMID: 32343720 PMCID: PMC7188278 DOI: 10.1371/journal.pone.0232189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 12/05/2022] Open
Abstract
Insect bite hypersensitivity (IBH) is a Th-2, IgE-mediated dermatitis of horses caused by bites of insects of the genus Culicoides that has common features with human atopic dermatitis. Together with Th-2 cells, the epithelial barrier plays an important role in development of type I hypersensitivities. In order to elucidate the role of the epithelial barrier and of the skin immune response in IBH we studied the transcriptome of lesional whole skin of IBH-horses (IBH-LE; n = 9) in comparison to non-lesional skin (IBH-NL; n = 8) as well as to skin of healthy control horses (H; n = 9). To study the "baseline state" of the epithelial barrier, we investigated the transcriptome of non-lesional epidermis in IBH-horses (EPI-IBH-NL; n = 10) in comparison with healthy epidermis from controls (EPI-H; n = 9). IBH-LE skin displayed substantial transcriptomic difference compared to H. IBH-LE was characterized by a downregulation of genes involved in tight junction formation, alterations in keratins and substantial immune signature of both Th-1 and Th-2 types with particular upregulation of IL13, as well as involvement of the hypoxic pathway. IBH-NL shared a number of differentially expressed genes (DEGs) with IBH-LE, but was overall more similar to H skin. In the epidermis, genes involved in metabolism of epidermal lipids, pruritus development, as well as IL25, were significantly differentially expressed between EPI-IBH-NL and EPI-H. Taken together, our data suggests an impairment of the epithelial barrier in IBH-affected horses that may act as a predisposing factor for IBH development. Moreover, these new mechanisms could potentially be used as future therapeutic targets. Importantly, many transcriptional features of equine IBH skin are shared with human atopic dermatitis, confirming equine IBH as a natural model of skin allergy.
Collapse
Affiliation(s)
- Iva Cvitas
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| | - Simone Oberhänsli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martina Dettwiler
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Remy Bruggman
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Eliane Isabelle Marti
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Mai LT, Smans M, Silva-Barrios S, Fabié A, Stäger S. IRF-5 Expression in Myeloid Cells Is Required for Splenomegaly in L. donovani Infected Mice. Front Immunol 2020; 10:3071. [PMID: 32038622 PMCID: PMC6985270 DOI: 10.3389/fimmu.2019.03071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Persistent Leishmania donovani infection is characterized by chronic inflammation, immune suppression, and splenomegaly. We have previously reported that the transcription factor interferon regulatory factor 5 (IRF-5) is largely responsible for inducing the inflammatory response and maintaining protective Th1 cells following L. donovani inoculation in mice. However, the cellular source responsible for these effects is yet unknown. In this study, we investigated the role of IRF-5 in myeloid cells during experimental visceral leishmaniasis (VL). First, we show that the LysM-Cre mouse model is not suited for investigating gene expression in splenic myeloid cells during experimental VL. Using the Cd11c-Cre mouse model, we demonstrate that Irf5 expression in CD11c+ cells (monocytes, dendritic cells, activated macrophages) is essential for inducing splenomegaly and for recruiting myeloid cells to the spleen, but it is not required for the development or maintenance of parasite-specific IFNγ-producing CD4 T cells. CD11c-specific Irf5 -/- mice are more resistant to L. donovani infection, suggesting that the induction of splenomegaly is detrimental to the host.
Collapse
Affiliation(s)
- Linh Thuy Mai
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Mélina Smans
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sasha Silva-Barrios
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Aymeric Fabié
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Simona Stäger
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| |
Collapse
|
24
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|
25
|
Fabié A, Mai LT, Dagenais-Lussier X, Hammami A, van Grevenynghe J, Stäger S. IRF-5 Promotes Cell Death in CD4 T Cells during Chronic Infection. Cell Rep 2019; 24:1163-1175. [PMID: 30067973 DOI: 10.1016/j.celrep.2018.06.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
The transcription factor interferon regulatory factor 5 (IRF-5) plays an important function in innate immunity and in initiating pro-inflammatory responses against pathogens. IRF-5 is constitutively expressed in several cell types, including plasmacytoid dendritic cells, monocytes, and B cells. We have previously reported that IRF-5 is also expressed in T cells during infection. The role of IRF-5 in T cells is yet unknown. Here, we demonstrate that IRF-5 is increasingly expressed in interferon (IFN)-γ+ CD4 T cells over the course of L. donovani infection. This transcription factor is induced by apoptotic material via Toll-like receptor 7 (TLR7) and promotes the expression of death receptor 5 (DR5). IRF-5 activation sensitizes CD4 T cells to cell death. Because tissue disruption and chronic inflammation are common characteristics of persistent infections, activation of IRF-5 in CD4 T cells may represent a common pathway that leads to suppression of protective CD4 T cell responses, favoring the establishment of chronic infection.
Collapse
Affiliation(s)
- Aymeric Fabié
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Linh Thuy Mai
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | - Akil Hammami
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | - Simona Stäger
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
26
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J 2019; 286:4160-4175. [PMID: 31365790 PMCID: PMC6899673 DOI: 10.1111/febs.15028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Zuoren Yu
- Research Center for Translational MedicineEast HospitalTongJi University School of MedicineShanghaiChina
| | - Jun Mi
- Department of Biochemistry and Molecular Cell BiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
- Hongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
27
|
Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infect Immun 2019; 87:IAI.00088-19. [PMID: 31451620 PMCID: PMC6803331 DOI: 10.1128/iai.00088-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.
Collapse
|
28
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
30
|
Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. THE FEBS JOURNAL 2019. [PMID: 31365790 DOI: 10.1111/febs.15028.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Tumor immunotherapy has achieved remarkable efficacy, with immune-checkpoint inhibitors as especially promising candidates for cancer therapy. However, some issues caused by immunotherapy have raised attention, such as limited efficacy for some patients, narrow antineoplastic spectrum, and adverse reactions, suggesting that using regulators of tumor immune response may prove to be more complicated than anticipated. Current evidence indicates that different factors collectively constituting the unique tumor microenvironment promote immune tolerance, and these include the expression of co-inhibitory molecules, the secretion of lactate, and competition for nutrients between tumor cells and immune cells. Furthermore, cancer-associated fibroblasts, the main cellular components of solid tumors, promote immunosuppression through inhibition of T cell function and extracellular matrix remodeling. Here, we summarize the research advances in tumor immunotherapy and the latest insights into the influence of microenvironment on tumor immunotherapy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xiang Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Zuoren Yu
- Research Center for Translational Medicine, East Hospital, TongJi University School of Medicine, Shanghai, China
| | - Jun Mi
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.,Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
31
|
The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathog 2019; 15:e1007982. [PMID: 31356625 PMCID: PMC6687203 DOI: 10.1371/journal.ppat.1007982] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/08/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV. Leishmania promastigotes are internalized by phagocytes into a highly modified phagosome that promotes parasite growth and differentiation into the amastigote form. To survive in the phagosome, Leishmania employs surface-bound glycoconjugates such as the GP63 metalloprotease and lipophosphoglycan to subvert the phagosome’s microbicidal potential. In particular, GP63 cleaves host cell vesicle fusion molecules that regulate phagosomal processes ranging from antigen cross-presentation to cytokine secretion. Unlike apicomplexan parasites and bacteria, Leishmania does not inject its virulence-associated glycoconjugates across the phagosome membrane. We found that post-phagocytosis, Leishmania co-opts the host cell secretory pathway to promote the egress of its virulence factors out of the phagosome. Importantly, chemical and genetic inhibition of endoplasmic reticulum (ER) to Golgi transport hindered the redistribution of GP63 and lipophosphoglycan, thereby impeding the cleavage of GP63 target Synaptotagmin XI. Notably, knockdown ER/ERGIC-resident membrane fusion regulators Sec22b and syntaxin-5 revealed that these host molecules were essential to the phagosomal egress of Leishmania virulence factors. These findings provide new insight into how Leishmania sabotages the host cell endomembrane system for its own benefit.
Collapse
|
32
|
Knight M, Stanley S. HIF-1α as a central mediator of cellular resistance to intracellular pathogens. Curr Opin Immunol 2019; 60:111-116. [PMID: 31229914 DOI: 10.1016/j.coi.2019.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible transcription factor-1α (HIF-1α) was originally identified as a master regulator of cellular responses to hypoxia. More recently, HIF-1α has emerged as a critical regulator of immune cell function that couples shifts in cellular metabolism to cell type-specific transcriptional outputs. Activation of macrophages with inflammatory stimuli leads to induction of the metabolic program aerobic glycolysis and to HIF-1α stabilization, which reinforce one another in a positive feedback loop that helps drive macrophage activation. This activation of aerobic glycolysis and HIF-1α is important both for production of inflammatory cytokines, such as IL-1β, and for cell intrinsic control of infection. Here, we review the importance of HIF-1α for control of bacterial, fungal, and protozoan intracellular pathogens, highlighting recent findings that reveal mechanisms by which HIF-1α is activated during infection and how HIF-1α coordinates antimicrobial responses of macrophages.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, United States; School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA, United States.
| |
Collapse
|
33
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
34
|
Tibúrcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front Immunol 2019; 10:227. [PMID: 30873156 PMCID: PMC6401646 DOI: 10.3389/fimmu.2019.00227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are a diverse group of leukocytes responsible for bridging innate and adaptive immunity. Despite their functional versatility, DCs exist primarily in two basic functional states: immature and mature. A large body of evidence suggests that upon interactions with pathogens, DCs undergo intricate cellular processes that culminate in their activation, which is paramount to the orchestration of effective immune responses against Leishmania parasites. Herein we offer a concise review of the emerging hallmarks of DCs activation in leishmaniasis as well as a comprehensive discussion of the following underlying molecular events: DC-Leishmania interaction, antigen uptake, costimulatory molecule expression, parasite ability to affect DC migration, antigen presentation, metabolic reprogramming, and epigenetic alterations.
Collapse
Affiliation(s)
- Rafael Tibúrcio
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Ivanéia Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Reinan Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Natalia Machado Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
35
|
Macdougall CE, Longhi MP. Adipose tissue dendritic cells in steady-state. Immunology 2019; 156:228-234. [PMID: 30552824 DOI: 10.1111/imm.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Healthy white adipose tissue (WAT) participates in regulating systemic metabolism, whereas dysfunctional WAT plays a prominent role in the development of obesity-associated co-morbidities. Tissue-resident immune cells are important for maintaining WAT homeostasis, including conventional dendritic cells (cDCs) which are critical in the initiation and regulation of adaptive immune responses. Due to phenotypic overlap with other myeloid cells, the distinct contribution of WAT cDCs has been poorly understood. This review will discuss the contribution of cDCs in the maintenance of WAT homeostasis. In particular, the review will focus on the metabolic cross-talk between cDCs and adipocytes that regulates local immune responses during physiological conditions.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Peñaloza HF, Alvarez D, Muñoz-Durango N, Schultz BM, González PA, Kalergis AM, Bueno SM. The role of myeloid-derived suppressor cells in chronic infectious diseases and the current methodology available for their study. J Leukoc Biol 2018; 105:857-872. [PMID: 30480847 DOI: 10.1002/jlb.mr0618-233r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022] Open
Abstract
An effective pathogen has the ability to evade the immune response. The strategies used to achieve this may be based on the direct action of virulence factors or on the induction of host factors. Myeloid-derived suppressor cells (MDSCs) are immune cells with an incredible ability to suppress the inflammatory response, which makes them excellent targets to be exploited by pathogenic bacteria, viruses, or parasites. In this review, we describe the origin and suppressive mechanisms of MDSCs, as well as their role in chronic bacterial, viral, and parasitic infections, where their expansion seems to be essential in the chronicity of the disease. We also analyze the disadvantages of current MDSC depletion strategies and the different in vitro generation methods, which can be useful tools for the deeper study of these cells in the context of microbial infections.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana Alvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Gene Profile Expression Related to Type I Interferons in HT-29 Cells Exposed to Cryptosporidium parvum. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.63071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Krzywinska E, Stockmann C. Hypoxia, Metabolism and Immune Cell Function. Biomedicines 2018; 6:E56. [PMID: 29762526 PMCID: PMC6027519 DOI: 10.3390/biomedicines6020056] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
| | - Christian Stockmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
39
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
40
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Hammami A, Abidin BM, Heinonen KM, Stäger S. HIF-1α hampers dendritic cell function and Th1 generation during chronic visceral leishmaniasis. Sci Rep 2018; 8:3500. [PMID: 29472618 PMCID: PMC5823892 DOI: 10.1038/s41598-018-21891-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/13/2018] [Indexed: 01/24/2023] Open
Abstract
Inflammation, although responsible for controlling infection, is often associated with the pathogenesis of chronic diseases. Leishmania donovani, the causative agent of visceral leishmaniasis, induces a strong inflammatory response that leads to splenomegaly and ultimately immune suppression. Inflamed tissues are typically characterized by low levels of oxygen, a microenvironment that triggers the hypoxia-inducible transcription factor 1α (HIF-1α). Although HIF-1α plays an integral role in dendritic cell function, its involvement in the generation of protective Th1 responses against Leishmania has not yet been studied. Here we demonstrate that HIF-1α inhibits IL-12 production in dendritic cells, limiting therefore Th1 cell development. Indeed, depletion of HIF-1α in CD11c+ cells resulted in higher and sustained expression of IL-12 and complete abrogation of IL-10. Moreover, CD11c-specific HIF-1α-deficient mice showed higher frequencies of IFN-γ-producing CD4 T cells in the spleen and bone marrow and, consequently, a significantly reduced parasite burden in both organs. Taken together, our results suggest that HIF-1α expression in dendritic cells largely contributes to the establishment of persistent Leishmania infection and may therefore represent a possible therapeutic target.
Collapse
Affiliation(s)
- Akil Hammami
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), H7V 1B7, Canada
| | - Belma Melda Abidin
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), H7V 1B7, Canada
| | - Krista M Heinonen
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), H7V 1B7, Canada
| | - Simona Stäger
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), H7V 1B7, Canada.
| |
Collapse
|
42
|
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017; 17:774-785. [PMID: 28972206 PMCID: PMC5799081 DOI: 10.1038/nri.2017.103] [Citation(s) in RCA: 459] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, 80045 Colorado, USA
| |
Collapse
|
43
|
Hammami A, Abidin BM, Charpentier T, Fabié A, Duguay AP, Heinonen KM, Stäger S. HIF-1α is a key regulator in potentiating suppressor activity and limiting the microbicidal capacity of MDSC-like cells during visceral leishmaniasis. PLoS Pathog 2017; 13:e1006616. [PMID: 28892492 PMCID: PMC5608422 DOI: 10.1371/journal.ppat.1006616] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/21/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Leishmania donovani is known to induce myelopoiesis and to dramatically increase extramedullary myelopoiesis. This results in splenomegaly, which is then accompanied by disruption of the splenic microarchitecture, a chronic inflammatory environment, and immunosuppression. Chronically inflamed tissues are typically hypoxic. The role of hypoxia on myeloid cell functions during visceral leishmaniasis has not yet been studied. Here we show that L. donovani promotes the output from the bone marrow of monocytes with a regulatory phenotype that function as safe targets for the parasite. We also demonstrate that splenic myeloid cells acquire MDSC-like function in a HIF-1α-dependent manner. HIF-1α is also involved in driving the polarization towards M2-like macrophages and rendering intermediate stage monocytes more susceptible to L. donovani infection. Our results suggest that HIF-1α is a major player in the establishment of chronic Leishmania infection and is crucial for enhancing immunosuppressive functions and lowering leishmanicidal capacity of myeloid cells. The protozoan parasite Leishmania donovani causes chronic infection in the spleen, which is accompanied by a chronic inflammatory environment, an enlargement of the organ, and immunosuppression. The environment of chronically inflamed tissues is characterized by low oxygen levels and tissue disruption, which induce the expression of the transcription factor HIF-1α in all cells. The kinetics of monocyte production and differentiation in the bone marrow and the spleen, and the role of hypoxia in myeloid cell functions during visceral leishmaniasis have not yet been studied. Here we show that L. donovani promotes the output from the bone marrow of monocytes with a regulatory phenotype that function as safe targets for the parasite. We also demonstrate that HIF-1α potentiates inhibitory functions of myeloid cells and is involved in driving the polarization towards M2-like macrophages and rendering them more susceptible to L. donovani infection. Our results suggest that HIF-1α is a major player in the establishment of chronic Leishmania infection and is crucial for enhancing immunosuppressive functions and lowering leishmanicidal capacity of myeloid cells.
Collapse
Affiliation(s)
- Akil Hammami
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Belma Melda Abidin
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Tania Charpentier
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Aymeric Fabié
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Annie-Pier Duguay
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Krista M. Heinonen
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Simona Stäger
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
- * E-mail:
| |
Collapse
|
44
|
Cai H, Yao Z, Li W. IRF-5 accelerates leukocyte adhesion to endothelial cells in ischemia-reperfusion injury through regulating the transcription of VCAM-1. Biochem Biophys Res Commun 2017; 492:192-198. [PMID: 28818665 DOI: 10.1016/j.bbrc.2017.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Ischemia-reperfusion injury (IRI) has been implicated in many pathological conditions, including cardiovascular diseases. Adhesion of leukocytes to the surface of endothelial cells has been considered as one of the principle steps in the pathological cascade of inflammatory tissue damage during IRI. The role of the transcriptional factor interferon regulatory factor-5 (IRF-5) in endothelial physiology remains unknown. Here, we report that IRF-5 is expressed in human umbilical vein endothelial cells (HUVECs) and is rapidly upregulated in response to IRI, mediated by the JAK2/STAT3 pathway. Importantly, IRF-5 is involved in IRI-induced attachment of THP-1 leukocytes to HUVECs. Mechanistically, it was found that IRF-5 targeted the expression of vascular cell adhesion molecule 1 (VCAM-1) at the transcriptional level by binding to its promoter. In conclusion, we identify IRF-5 as a new regulator and thus a therapeutic target in IRI-driven cardiovascular pathologies.
Collapse
Affiliation(s)
- Hongbin Cai
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China.
| | - Wenting Li
- Department of Cardiology, Tianjin People's Hospital, Tianjin, 300120, China
| |
Collapse
|
45
|
Abidin BM, Hammami A, Stäger S, Heinonen KM. Infection-adapted emergency hematopoiesis promotes visceral leishmaniasis. PLoS Pathog 2017; 13:e1006422. [PMID: 28787450 PMCID: PMC5560750 DOI: 10.1371/journal.ppat.1006422] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/17/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Cells of the immune system are derived from hematopoietic stem cells (HSCs) residing in the bone marrow. HSCs become activated in response to stress, such as acute infections, which adapt the bone marrow output to the needs of the immune response. However, the impact of infection-adapted HSC activation and differentiation on the persistence of chronic infections is poorly understood. We have examined here the bone marrow outcome of chronic visceral leishmaniasis and show that the parasite Leishmania donovani induces HSC expansion and skews their differentiation towards non-classical myeloid progenitors with a regulatory phenotype. Our results further suggest that emergency hematopoiesis contributes to the pathogenesis of visceral leishmaniasis, as decreased HSC expansion results in a lower parasite burden. Conversely, monocytes derived in the presence of soluble factors from the infected bone marrow environment are more permissive to infection by Leishmania. Our results demonstrate that L. donovani is able to subvert host bone marrow emergency responses to facilitate parasite persistence, and put forward hematopoiesis as a novel therapeutic target in chronic infections. Hematopoietic stem cells (HSCs) are responsible for the generation of all blood cells and thus play an important but often underappreciated role in the host response to infections. HSCs are normally dormant, but they can become activated in response to stress, such as infections. This stress response is meant to generate more blood cells and help the body to eliminate the invading pathogen. We have studied here the activation of HSCs in a mouse model of chronic infection with the parasite Leishmania donovani. We found that the parasite efficiently activates HSCs and steers them to produce large numbers of specific blood cells that are among the preferred targets of the parasite and become even more susceptible to infection when produced within the diseased environment. Using a mouse strain in which HSC activation cannot be sustained, we found that diminished HSC activity correlated with decreased parasite numbers. We therefore propose that HSC activation by the parasite promotes the infection and could be used as a new target for treatment.
Collapse
Affiliation(s)
- Belma Melda Abidin
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Akil Hammami
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Simona Stäger
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre for Host-Parasite interactions, Laval, Québec, Canada
| | - Krista M. Heinonen
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre for Host-Parasite interactions, Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
46
|
Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, Navarro MN, Murray J, Finlay DK. Glucose represses dendritic cell-induced T cell responses. Nat Commun 2017; 8:15620. [PMID: 28555668 PMCID: PMC5459989 DOI: 10.1038/ncomms15620] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
Glucose and glycolysis are important for the proinflammatory functions of many immune cells, and depletion of glucose in pathological microenvironments is associated with defective immune responses. Here we show a contrasting function for glucose in dendritic cells (DCs), as glucose represses the proinflammatory output of LPS-stimulated DCs and inhibits DC-induced T-cell responses. A glucose-sensitive signal transduction circuit involving the mTOR complex 1 (mTORC1), HIF1α and inducible nitric oxide synthase (iNOS) coordinates DC metabolism and function to limit DC-stimulated T-cell responses. When multiple T cells interact with a DC, they compete for nutrients, which can limit glucose availability to the DCs. In such DCs, glucose-dependent signalling is inhibited, altering DC outputs and enhancing T-cell responses. These data reveal a mechanism by which T cells regulate the DC microenvironment to control DC-induced T-cell responses and indicate that glucose is an important signal for shaping immune responses.
Collapse
Affiliation(s)
- Simon J Lawless
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Nidhi Kedia-Mehta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Jessica F Walls
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Ryan McGarrigle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Orla Convery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Maria N Navarro
- Departamento Medicina/Universidad Autónoma de Madrid, Instituto Investigación Sanitaria/Hospital Universitario de la Princesa, C/Diego de Léon, 62, Madrid 28006, Spain
| | - James Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| |
Collapse
|
47
|
Charpentier T, Hammami A, Stäger S. Hypoxia inducible factor 1α: A critical factor for the immune response to pathogens and Leishmania. Cell Immunol 2016; 309:42-49. [DOI: 10.1016/j.cellimm.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
48
|
Schatz V, Strüssmann Y, Mahnke A, Schley G, Waldner M, Ritter U, Wild J, Willam C, Dehne N, Brüne B, McNiff JM, Colegio OR, Bogdan C, Jantsch J. Myeloid Cell-Derived HIF-1α Promotes Control of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2016; 197:4034-4041. [PMID: 27798163 DOI: 10.4049/jimmunol.1601080] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L. major-infected C57BL/6 mice exhibited substantial amounts of HIF-1α in acute cutaneous lesions. In vitro, HIF-1α was required for leishmanicidal activity and high-level NO production by IFN-γ/LPS-activated macrophages. Mice deficient for HIF-1α in their myeloid cell compartment had a more severe clinical course of infection and increased parasite burden in the skin lesions compared with wild-type controls. These findings were paralleled by reduced expression of type 2 NO synthase by lesional CD11b+ cells. Together, these data illustrate that HIF-1α is required for optimal innate leishmanicidal immune responses and, thereby, contributes to the cure of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Yannic Strüssmann
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Alexander Mahnke
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gunnar Schley
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maximilian Waldner
- Medizinische Klinik 1, Gastroenterologie, Pneumologie und Endokrinologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Uwe Ritter
- Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Carsten Willam
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Oscar R Colegio
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany;
| |
Collapse
|
49
|
Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest 2016; 126:3716-3724. [PMID: 27454299 DOI: 10.1172/jci84433] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.
Collapse
|
50
|
Gannavaram S, Bhattacharya P, Ismail N, Kaul A, Singh R, Nakhasi HL. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules. Front Immunol 2016; 7:187. [PMID: 27242794 PMCID: PMC4865500 DOI: 10.3389/fimmu.2016.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the polarization of antigen-presenting cells and subsequent role of costimulatory and coinhibitory molecules in mediating vaccine-induced immunity using live-attenuated Leishmania parasites as specific examples.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Amit Kaul
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Rakesh Singh
- Department of Biochemistry, Banaras Hindu University , Varanasi , India
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| |
Collapse
|