1
|
Adade NE, Ahator SD, García-Romero I, Algarañás M, Appiah V, Valvano MA, Duodu S. Stress adaptation under in vitro evolution influences survival and metabolic phenotypes of clinical and environmental strains of Vibrio cholerae El-Tor. Microbiol Spectr 2025; 13:e0121124. [PMID: 39932327 PMCID: PMC11878068 DOI: 10.1128/spectrum.01211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Bacterial adaptation to stress can lead to phenotypic variants with diverse levels of niche competitiveness, pathogenicity, and antimicrobial resistance. In this work, we employed experimental evolution to investigate whether exposure to various stress conditions results in new phenotypic and metabolic properties in clinical and environmental strains of Vibrio cholerae. Our findings revealed the emergence of variants with metabolic and genetic variations and enhanced survival under stress compared to the parental isolates. Phenotypic changes in the evolved variants included colony morphology, biofilm formation, and the appearance of proteolytic and hemolytic activities. The variants demonstrated metabolic changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates, while the genetic changes included single nucleotide polymorphisms (SNPs), breakpoints, translocations, and single nucleotide insertions and deletions. Mutations in genes encoding EAL and HD-GYP domain-containing proteins correlated with increased biofilm formation and different colony morphotypes. The combined analysis of the metabolic and genomic data pointed to pathways implicated in stress survival. The environmental strains were generally more pathogenic than the clinical strains in the Galleria mellonella infection model prior to the experimental evolution, and these differences did not change in the evolved variants. This study highlights the contribution of stress conditions as drivers for the evolution of genetic modifications and metabolic adaptation in V. cholerae, which may explain the continuous evolution of El-Tor biotype strains toward variants with improved survival in the environment.IMPORTANCEHow Vibrio cholerae, the causative agent of cholera, survives during the periods between outbreaks remains a critical question. Using experimental evolution based on serial bacterial passages in culture media mimicking diverse environmental stress conditions, we investigated whether clinical and environmental isolates of V. cholerae develop changes in survival and in their metabolism. The evolved variants exhibited alterations in colony morphology, biofilm formation, and metabolism, including changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates. These changes were accompanied by various genetic modifications, notably in genes encoding second messenger molecules that regulate multiple biochemical pathways implicated in stress survival and increased pathogenic potential. Our results suggest a continuous evolution of V. cholerae strains toward variants displaying increased survival under environmental stress conditions that may also be encountered in the human host.
Collapse
Affiliation(s)
- Nana Eghele Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inmaculada García-Romero
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Macarena Algarañás
- Laboratorio de Biofilms Microbianos, CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Miguel A. Valvano
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Neißner K, Keller H, Kirchner L, Düsterhus S, Duchardt-Ferner E, Averhoff B, Wöhnert J. The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus. J Biol Chem 2025; 301:108041. [PMID: 39615687 PMCID: PMC11731258 DOI: 10.1016/j.jbc.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif. The traffic ATPase PilF from Thermus thermophilus is important for type IV pilus biogenesis, twitching motility, surface attachment, and natural DNA-uptake and contains three consecutive homologous GPSII domains. We show that only two of these domains bind c-di-GMP and define the structural basis for the exceptional high affinity of the GSPII-B domain for c-di-GMP, which is 83-fold higher than that of the prototypical MshEN domain. Our work establishes an extended consensus sequence for the c-di-GMP-binding motif and highlights the role of hydrophobic residues for high-affinity recognition of c-di-GMP. Our structure is the first example for a c-di-GMP-binding domain not relying on arginine residues for ligand recognition. We also show that c-di-GMP-binding induces local unwinding of an α-helical turn as well as subdomain reorientation to reinforce intermolecular contacts between c-di-GMP and the C-terminal subdomain. Abolishing c-di-GMP binding to GSPII-B reduces twitching motility and surface attachment but not natural DNA-uptake. Overall, our work contributes to a better characterization of c-di-GMP binding in this class of effector domains, allows the prediction of high-affinity c-di-GMP-binding family members, and advances our understanding of the importance of c-di-GMP binding for T4P-related functions.
Collapse
Affiliation(s)
- Konstantin Neißner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Heiko Keller
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany.
| |
Collapse
|
3
|
Roberge NA, Burrows LL. Building permits-control of type IV pilus assembly by PilB and its cofactors. J Bacteriol 2024; 206:e0035924. [PMID: 39508682 PMCID: PMC11656802 DOI: 10.1128/jb.00359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Many bacteria produce type IV pili (T4P), surfaced-exposed protein filaments that enable cells to interact with their environment and transition from planktonic to surface-adapted states. T4P are dynamic, undergoing rapid cycles of filament extension and retraction facilitated by a complex protein nanomachine powered by cytoplasmic motor ATPases. Dedicated assembly motors drive the extension of the pilus fiber into the extracellular space, but like any machine, this process is tightly organized. These motors are coordinated by various ligands and binding partners, which control or optimize their functional associations with T4P machinery before cells commit to the crucial first step of building a pilus. This review focuses on the molecular mechanisms that regulate T4P extension motor function. We discuss secondary messenger-dependent transcriptional or post-translational regulation acting both directly on the motor and through protein effectors. We also discuss the recent discoveries of naturally occurring extension inhibitors as well as alternative mechanisms of pilus assembly and motor-dependent signaling pathways. Given that T4P are important virulence factors for many bacterial pathogens, studying these motor regulatory systems will provide new insights into T4P-dependent physiology and efficient strategies to disable them.
Collapse
Affiliation(s)
- Nathan A. Roberge
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Oklitschek M, Carreira LAM, Muratoğlu M, Søgaard-Andersen L, Treuner-Lange A. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA. J Bacteriol 2024; 206:e0010824. [PMID: 39404445 PMCID: PMC11580455 DOI: 10.1128/jb.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Type IVa pili (T4aP) are widespread and enable bacteria to translocate across surfaces. T4aP engage in cycles of extension, surface adhesion, and retraction, thereby pulling cells forward. Accordingly, the number and localization of T4aP are critical to efficient translocation. Here, we address how T4aP formation is regulated in Myxococcus xanthus, which translocates with a well-defined leading and lagging cell pole using T4aP at the leading pole. This localization is orchestrated by the small GTPase MglA and its downstream effector SgmX that both localize at the leading pole and recruit the PilB extension ATPase to the T4aP machinery at this pole. Here, we identify the previously uncharacterized protein SopA and show that it interacts directly with SgmX, localizes at the leading pole, stimulates polar localization of PilB, and is important for T4aP formation. We corroborate that MglA also recruits FrzS to the leading pole, and FrzS stimulates SgmX recruitment. In addition, FrzS and SgmX separately recruit SopA. Precise quantification of T4aP-formation and T4aP-dependent motility in various mutants supports a model whereby the main pathway for stimulating T4aP formation is the MglA/SgmX pathway. FrzS stimulates this pathway by recruiting SgmX and SopA. SopA stimulates the MglA/SgmX pathway by stimulating the function of SgmX, likely by promoting the SgmX-dependent recruitment of PilB to the T4aP machinery. The architecture of the MglA/SgmX/FrzS/SopA protein interaction network for orchestrating T4aP formation allows for combinatorial regulation of T4aP levels at the leading cell pole resulting in discrete levels of T4aP-dependent motility. IMPORTANCE Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in translocation across surfaces, surface adhesion, biofilm formation, and virulence. T4aP-dependent translocation crucially depends on the number of pili. To address how the number of T4aP is regulated, we focused on M. xanthus, which assembles T4aP at the leading cell pole and is a model organism for T4aP biology. Our results support a model whereby the four proteins MglA, SgmX, FrzS, and the newly identified SopA protein establish a highly intricate interaction network for orchestrating T4aP formation at the leading cell pole. This network allows for combinatorial regulation of the number of T4aP resulting in discrete levels of T4aP-dependent motility.
Collapse
Affiliation(s)
- Michel Oklitschek
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Memduha Muratoğlu
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
5
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
6
|
Liao H, Yan X, Wang C, Huang C, Zhang W, Xiao L, Jiang J, Bao Y, Huang T, Zhang H, Guo C, Zhang Y, Pu Y. Cyclic di-GMP as an antitoxin regulates bacterial genome stability and antibiotic persistence in biofilms. eLife 2024; 13:RP99194. [PMID: 39365286 PMCID: PMC11452175 DOI: 10.7554/elife.99194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.
Collapse
Affiliation(s)
- Hebin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Translational Medicine Research Center, North Sichuan Medical CollegeNanchongChina
| | - Xiaodan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chenyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chun Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Jun Jiang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yongjia Bao
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Tao Huang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Hanbo Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Chunming Guo
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Taikang Center for Life and Medical Sciences, Wuhan UniversityWuhanChina
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|
7
|
Li Y, Han S, Wang Y, Qin M, Lu C, Ma Y, Yang W, Liu J, Xia X, Wang H. Autoinducer-2 promotes adherence of Aeromonas veronii through facilitating the expression of MSHA type IV pili genes mediated by c-di-GMP. Appl Environ Microbiol 2023; 89:e0081923. [PMID: 37902393 PMCID: PMC10686060 DOI: 10.1128/aem.00819-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Aeromonas veronii can adhere to host cells through different adherence factors including outer-membrane proteins (OMPs), lipopolysaccharide (LPS), and pili, but its adherence mechanisms are still unclear. Here, we evaluated the effect of autoinducer-2 (AI-2) on adherence of A. veronii and its regulation mechanism. After determination of the promotion effect of AI-2 on adherence, we investigated which adherence factor was regulated by AI-2, and the results show that AI-2 only limits the formation of pili. Among the four distinct pili systems, only the mannose-sensitive hemagglutinin (MSHA) type IV pili genes were significantly downregulated after deficiency of AI-2. MshE, an ATPase belonged to MSHA type IV pilin, was confirmed as c-di-GMP receptor, that can bind with c-di-GMP which is positively regulated by AI-2, and the increase of c-di-GMP can promote the expression of MSHA type IV pili genes and adherence of A. veronii. Therefore, this study confirms that c-di-GMP positively regulated by AI-2 binds with MshE, then increases the expression of MSHA pili genes, finally promoting adherence of A. veronii, suggesting a multilevel positive regulatory adhesion mechanism that is responsible for A. veronii adherence.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Chengjin Lu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Yingke Ma
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wenqing Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jiajia Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. mBio 2023; 14:e0153623. [PMID: 37800901 PMCID: PMC10653909 DOI: 10.1128/mbio.01536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, Vibrio vulnificus. Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in V. vulnificus.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Meng Pu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dan Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Dean Rowe-Magnus
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Smith TJ, Sundarraman D, Melancon E, Desban L, Parthasarathy R, Guillemin K. A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host Microbe 2023; 31:1371-1385.e6. [PMID: 37516109 PMCID: PMC10492631 DOI: 10.1016/j.chom.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
In a healthy gut, microbes are often aggregated with host mucus, yet the molecular basis for this organization and its impact on intestinal health are unclear. Mucus is a viscous physical barrier separating resident microbes from epithelia, but it also provides glycan cues that regulate microbial behaviors. Here, we describe a mucin-sensing pathway in an Aeromonas symbiont of zebrafish, Aer01. In response to the mucin-associated glycan N-acetylglucosamine, a sensor kinase regulates the expression of an aggregation-promoting adhesin we named MbpA. Upon MbpA disruption, Aer01 colonizes to normal levels but is largely planktonic and more pro-inflammatory. Increasing cell surface MbpA rescues these traits. MbpA-like adhesins are common in human-associated bacteria, and the expression of an Akkermansia muciniphila MbpA-like adhesin in MbpA-deficient Aer01 restores lumenal aggregation and reverses its pro-inflammatory character. Our work demonstrates how resident bacteria use mucin glycans to modulate behaviors congruent with host health.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Laura Desban
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
10
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
11
|
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MICROLIFE 2023; 4:uqad015. [PMID: 37223732 PMCID: PMC10118264 DOI: 10.1093/femsml/uqad015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.
Collapse
Affiliation(s)
- Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| | | | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
- Max Planck Unit for the Science of Pathogens, 10115 Berlin, Germany
| |
Collapse
|
12
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
13
|
Xie J, Zhang H, Li Y, Li H, Pan Y, Zhao Y, Xie Q. Transcriptome analysis of the biofilm formation mechanism of Vibrio parahaemolyticus under the sub-inhibitory concentrations of copper and carbenicillin. Front Microbiol 2023; 14:1128166. [PMID: 36937277 PMCID: PMC10018186 DOI: 10.3389/fmicb.2023.1128166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Biofilm formation of Vibrio parahaemolyticus enhanced its tolerance to the environment, but caused many serious problems to food safety and human health. In this paper, the effects of copper and carbenicillin (CARB) stress on the formation of the biofilms of V. parahaemolyticus organisms were studied, and RNA sequencing technology was used to compare the differences in transcriptome profiles of the biofilm-related genes of V. parahaemolyticus organisms under different sub-inhibitory stresses. The results proved that V. parahaemolyticus had a large growth difference under the two stresses, copper and CARB at 1/2 minimal inhibitory concentration (MIC), and it could form a stable biofilm under both stress conditions. The amount of biofilm formed under CARB stress was significantly higher than that of copper stress (p < 0.05). Based on the analysis of transcriptome sequencing results 323, 1,550, and 1,296 significantly differential expressed genes were identified in the three treatment groups namely 1/2 MIC CARB, Cu2+, and Cu2++CARB. Through COG annotation, KEGG metabolic pathway analysis and gene expression analysis related to biofilm formation, the functional pathways of transcriptome changes affecting V. parahaemolyticus were different in the three treatment groups, and the CARB treatment group was significantly different from the other two groups. These differences indicated that the ABC transport system, two-component system and quorum sensing were all involved in the biofilm formation of the V. parahaemolytic by regulating flagellar motility, extracellular polysaccharides and extracellular polymer synthesis. Exploring the effects of different stress conditions on the transcriptome of V. parahaemolyticus could provide a basis for future research on the complex network system that regulates the formation of bacterial biofilms.
Collapse
Affiliation(s)
- Jiaying Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongmin Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinhui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- *Correspondence: Yong Zhao,
| | - Qingchao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Qingchao Xie,
| |
Collapse
|
14
|
Hughes HQ, Christman ND, Dalia TN, Ellison CK, Dalia AB. The PilT retraction ATPase promotes both extension and retraction of the MSHA type IVa pilus in Vibrio cholerae. PLoS Genet 2022; 18:e1010561. [PMID: 36542674 DOI: 10.1371/journal.pgen.1010561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/05/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diverse bacterial species use type IVa pili (T4aP) to interact with their environments. The dynamic extension and retraction of T4aP is critical for their function, but the mechanisms that regulate this dynamic activity remain poorly understood. T4aP are typically extended via the activity of a dedicated extension motor ATPase and retracted via the action of an antagonistic retraction motor ATPase called PilT. These motors are generally functionally independent, and loss of PilT commonly results in T4aP hyperpiliation due to undeterred pilus extension. However, for the mannose-sensitive hemagglutinin (MSHA) T4aP of Vibrio cholerae, the loss of PilT unexpectedly results in a loss of surface piliation. Here, we employ a combination of genetic and cell biological approaches to dissect the underlying mechanism. Our results demonstrate that PilT is necessary for MSHA pilus extension in addition to its well-established role in promoting MSHA pilus retraction. Through a suppressor screen, we also provide genetic evidence that the MshA major pilin impacts pilus extension. Together, these findings contribute to our understanding of the factors that regulate pilus extension and describe a previously uncharacterized function for the PilT motor ATPase.
Collapse
Affiliation(s)
- Hannah Q Hughes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas D Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Courtney K Ellison
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
15
|
Extracellular c-di-GMP Plays a Role in Biofilm Formation and Dispersion of Campylobacter jejuni. Microorganisms 2022; 10:microorganisms10102030. [PMID: 36296307 PMCID: PMC9608569 DOI: 10.3390/microorganisms10102030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-diGMP) is a ubiquitous second messenger involved in the regulation of many signalling systems in bacteria, including motility and biofilm formation. Recently, it has been reported that c-di-GMP was detected in C. jejuni DRH212; however, the presence and the role of c-di-GMP in other C. jejuni strains are unknown. Here, we investigated extracellular c-di-GMP as an environmental signal that potentially triggers biofilm formation in C. jejuni NCTC 11168 using a crystal violet-based assay, motility-based plate assay, RT-PCR and confocal laser scanning microscopy (CLSM). We found that, in presence of extracellular c-di-GMP, the biofilm formation was significantly reduced (>50%) and biofilm dispersion enhanced (up to 60%) with no effect on growth. In addition, the presence of extracellular c-di-GMP promoted chemotactic motility, inhibited the adherence of C. jejuni NCTC 11168-O to Caco-2 cells and upregulated the expression of Cj1198 (luxS, encoding quarum sensing pathway component, autoinducer-2), as well as chemotaxis genes Cj0284c (cheA) and Cj0448c (tlp6). Unexpectedly, the expression of Cj0643 (cbrR), containing a GGDEF-like domain and recently identified as a potential diguanylate cyclase gene, required for the synthesis of c-di-GMP, was not affected. Our findings suggest that extracellular c-di-GMP could be involved in C. jejuni gene regulation, sensing and biofilm dispersion.
Collapse
|
16
|
Prevalence of Type IV Pili-Mediated Twitching Motility in Streptococcus sanguinis Strains and Its Impact on Biofilm Formation and Host Adherence. Appl Environ Microbiol 2022; 88:e0140322. [PMID: 36094177 PMCID: PMC9499025 DOI: 10.1128/aem.01403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) are known to mediate several biological activities, including surface-dependent twitching motility. Although a pil gene cluster for Tfp biosynthesis is found in all sequenced Streptococcus sanguinis strains, Tfp-mediated twitching motility is less commonly detected. Upon examining 81 clinical strains, 39 strains generated twitching zones on blood agar plates (BAP), while 27 strains displayed twitching on Todd-Hewitt (TH) agar. Although BAP appears to be more suitable for the development of twitching zones, 5 strains exhibited twitching motility only on TH agar, indicating that twitching motility is not only strain specific but also sensitive to growth media. Furthermore, different twitching phenotypes were observed in strains expressing comparable levels of pilT, encoding the retraction ATPase, suggesting that the twitching phenotype on agar plates is regulated by multiple factors. By using a PilT-null and a pilin protein-null derivative (CHW02) of twitching-active S. sanguinis CGMH010, we found that Tfp retraction was essential for biofilm stability. Further, biofilm growth was amplified in CHW02 in the absence of shearing force, indicating that S. sanguinis may utilize other ligands for biofilm formation in the absence of Tfp. Similar to SK36, Tfp from CGMH010 were required for colonization of host cells, but PilT only marginally affected adherence and only in the twitching-active strain. Taken together, the results suggest that Tfp participates in host cell adherence and that Tfp retraction facilitates biofilm stability. IMPORTANCE Although the gene clusters encoding Tfp are commonly present in Streptococcus sanguinis, not all strains express surface-dependent twitching motility on agar surfaces. Regardless of whether the Tfp could drive motility, Tfp can serve as a ligand for the colonization of host cells. Though many S. sanguinis strains lack twitching activity, motility can enhance biofilm stability in a twitching-active strain; thus, perhaps motility provides little or no advantage to the survival of bacteria within dental plaque. Rather, Tfp retraction could provide additional advantages for the bacteria to establish infections outside the oral cavity.
Collapse
|
17
|
Gupta R, Yuan J, Lele PP. Bacterial Proprioception: Can a Bacterium Sense Its Movement? Front Microbiol 2022; 13:928408. [PMID: 35875555 PMCID: PMC9302961 DOI: 10.3389/fmicb.2022.928408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of the bacterial flagellum gave rise to motility and repurposing of a signaling network, now termed the chemotaxis network, enabled biasing of cell movements. This made it possible for the bacterium to seek out favorable chemical environments. To enable chemotaxis, the chemotaxis network sensitively detects extracellular chemical stimuli and appropriately modulates flagellar functions. Additionally, the flagellar motor itself is capable of detecting mechanical stimuli and adapts its structure and function in response, likely triggering a transition from planktonic to surface-associated lifestyles. Recent work has shown a link between the flagellar motor's response to mechanical stimuli and the chemotactic output. Here, we elaborate on this link and discuss how it likely helps the cell sense and adapt to changes in its swimming speeds in different environments. We discuss the mechanism whereby the motor precisely tunes its chemotaxis output under different mechanical loads, analogous to proprioception in higher order organisms. We speculate on the roles bacterial proprioception might play in a variety of phenomena including the transition to surface-associated lifestyles such as swarming and biofilms.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
19
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
20
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
21
|
Bense S, Witte J, Preuße M, Koska M, Pezoldt L, Dröge A, Hartmann O, Müsken M, Schulze J, Fiebig T, Bähre H, Felgner S, Pich A, Häussler S. Pseudomonas aeruginosa post-translational responses to elevated c-di-GMP levels. Mol Microbiol 2022; 117:1213-1226. [PMID: 35362616 DOI: 10.1111/mmi.14902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
C-di-GMP signaling can directly influence bacterial behavior by affecting the functionality of c-di-GMP-binding proteins. In addition, c-di-GMP can exert a global effect on gene transcription or translation, e.g., via riboswitches or by binding to transcription factors. In this study, we investigated the effects of changes in intracellular c-di-GMP levels on gene expression and protein production in the opportunistic pathogen Pseudomonas aeruginosa. We induced c-di-GMP production via an ectopically introduced diguanylate cyclase and recorded the transcriptional, translational as well as proteomic profile of the cells. We demonstrate that rising levels of c-di-GMP under growth conditions otherwise characterized by low c-di-GMP levels caused a switch to a non-motile, auto-aggregative P. aeruginosa phenotype. This phenotypic switch became apparent before any c-di-GMP-dependent role on transcription, translation, or protein abundance was observed. Our results suggest that rising global c-di-GMP pools first affects the motility phenotype of P. aeruginosa by altering protein functionality and only then global gene transcription.
Collapse
Affiliation(s)
- Sarina Bense
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Julius Witte
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany.,Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthias Preuße
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michal Koska
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Lorena Pezoldt
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Astrid Dröge
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Hartmann
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany. Infection Research, Hannover, Germany
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Nitric oxide stimulates type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA. Proc Natl Acad Sci U S A 2022; 119:2108349119. [PMID: 35135874 PMCID: PMC8851539 DOI: 10.1073/pnas.2108349119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
All organisms sense and respond to their environments. One way bacteria interact with their surroundings is by dynamically extending and retracting filamentous appendages from their surface called pili. While pili are critical for many functions, such as attachment, motility, and DNA uptake, the factors that regulate their dynamic activity are poorly understood. Here, we describe how an environmental signal induces a signaling pathway to promote the retraction of mannose-sensitive hemagglutinin pili in Vibrio cholerae. The retraction of these pili promotes the detachment of V. cholerae from a surface and may provide a means by which V. cholerae can respond to changes in its environment. Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)–sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.
Collapse
|
23
|
A Novel Locally c-di-GMP-Controlled Exopolysaccharide Synthase Required for Bacteriophage N4 Infection of Escherichia coli. mBio 2021; 12:e0324921. [PMID: 34903052 PMCID: PMC8669469 DOI: 10.1128/mbio.03249-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major target of c-di-GMP signaling is the production of biofilm-associated extracellular polymeric substances (EPS), which in Escherichia coli K-12 include amyloid curli fibers, phosphoethanolamine-modified cellulose, and poly-N-acetylglucosamine. However, the characterized c-di-GMP-binding effector systems are largely outnumbered by the 12 diguanylate cyclases (DGCs) and 13 phosphodiesterases (PDEs), which synthetize and degrade c-di-GMP, respectively. E. coli possesses a single protein with a potentially c-di-GMP-binding MshEN domain, NfrB, which-together with the outer membrane protein NfrA-is known to serve as a receptor system for phage N4. Here, we show that NfrB not only binds c-di-GMP with high affinity but, as a novel c-di-GMP-controlled glycosyltransferase, synthesizes a secreted EPS, which can impede motility and is required as an initial receptor for phage N4 infection. In addition, a systematic screening of the 12 DGCs of E. coli K-12 revealed that specifically DgcJ is required for the infection with phage N4 and interacts directly with NfrB. This is in line with local signaling models, where specific DGCs and/or PDEs form protein complexes with particular c-di-GMP effector/target systems. Our findings thus provide further evidence that intracellular signaling pathways, which all use the same diffusible second messenger, can act in parallel in a highly specific manner. IMPORTANCE Key findings in model organisms led to the concept of "local" signaling, challenging the dogma of a gradually increasing global intracellular c-di-GMP concentration driving the motile-sessile transition in bacteria. In our current model, bacteria dynamically combine both global and local signaling modes, in which specific DGCs and/or PDEs team up with effector/target systems in multiprotein complexes. The present study highlights a novel example of how specificity in c-di-GMP signaling can be achieved by showing NfrB as a novel c-di-GMP binding effector in E. coli, which is controlled in a local manner specifically by DgcJ. We further show that NfrB (which was initially found as a part of a receptor system for phage N4) is involved in the production of a novel exopolysaccharide. Finally, our data shine new light on host interaction of phage N4, which uses this exopolysaccharide as an initial receptor for adsorption.
Collapse
|
24
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol 2021; 203:e0026521. [PMID: 34516283 DOI: 10.1128/jb.00265-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.
Collapse
|
26
|
Shi M, Zheng Y, Wang X, Wang Z, Yang M. Two regulatory factors of Vibrio cholerae activating the mannose-sensitive haemagglutinin pilus expression is important for biofilm formation and colonization in mice. MICROBIOLOGY-SGM 2021; 167. [PMID: 34665117 DOI: 10.1099/mic.0.001098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vibrio cholerae the causative agent of cholera, uses a large number of coordinated transcriptional regulatory events to transition from its environmental reservoir to the host intestine, which is its preferred colonization site. Transcription of the mannose-sensitive haemagglutinin pilus (MSHA), which aids the persistence of V. cholerae in aquatic environments, but causes its clearance by host immune defenses, was found to be regulated by a yet unknown mechanism during the infection cycle of V. cholerae. In this study, genomic expression library screening revealed that two regulators, VC1371 and VcRfaH, are able to positively activate the transcription of MSHA operon. VC1371 is localized and active in the cell membrane. Deletion of vc1371 or VcrfaH genes in V. cholerae resulted in less MshA protein production and less efficiency of biofilm formation compared to that in the wild-type strain. An adult mouse model showed that the mutants with vc1371 or VcrfaH deletion colonized less efficiently than the wild-type; the VcrfaH deletion mutant showed less colonization efficiency in the infant mouse model. The findings strongly suggested that the two regulators, namely VC1371 and VcRfaH, which are involved in the regulation of MSHA expression, play an important role in V. cholerae biofilm formation and colonization in mice.
Collapse
Affiliation(s)
- Mengting Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300, Hangzhou, Zhejiang, PR China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an District, 311300, Hangzhou, Zhejiang, PR China
| | - Yue Zheng
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an District, 311300, Hangzhou, Zhejiang, PR China
| | - Xianghong Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300, Hangzhou, Zhejiang, PR China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an District, 311300, Hangzhou, Zhejiang, PR China
| |
Collapse
|
27
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Regulation of ydiV-induced biological characteristics permits Escherichia coli evasion of the host STING inflammatory response. Vet Microbiol 2021; 261:109207. [PMID: 34419774 DOI: 10.1016/j.vetmic.2021.109207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Mammary gland-derived Escherichia coli (E. coli) is an important pathogen causing dairy cow mastitis. YdiV, with EAL-like domains, inhibits flagellum biogenesis and motility and affects c-di-GMP (eubacterial signaling molecule) concentration changes in bacteria. However, the pathophysiological role of ydiV in host-pathogen cross-talk still needs to be elucidated. In this study, firstly constructed the ydiV mutant (NJ17ΔydiV) and ydiV complementary (cNJ17ΔydiV) E. coli strains to infect mouse mammary epithelial cells (EpH4-Ev) and macrophages (RAW264.7), as well as mouse mammary glands, respectively. Then biological characteristics, adaptor molecules in related signaling pathways, proinflammatory cytokines and the extent of host cell damage was evaluated. Compared with E. coli NJ17 infected mice, the bacterial load in the mammary gland of NJ17ΔydiV was significantly lower and the extent of the damage was alleviated. Notably, the deletion of ydiV significantly aggravated cell damage in RAW264.7 cells and compared with the wild-type strain, NJ17ΔydiV significantly activated the STING/TBK1/IRF3 pathway in macrophages. In EpH4-Ev cells, although STING did not sense E. coli NJ17 invasion, IRF3 was activated by the NJ17ΔydiV strain. Taken together, ydiV deletion significantly affects a variety of biological characteristics and induces severe cell damage, while the STING/TBK1/IRF3 pathway actively participated in pathogen elimination in the host. This study highlights a new role for ydiV in E. coli infection and provides a foundation for further studies to better understand host-bacteria interactions and potential prophylactic strategies for infectious diseases.
Collapse
|
29
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
31
|
Wong GCL, Antani JD, Lele PP, Chen J, Nan B, Kühn MJ, Persat A, Bru JL, Høyland-Kroghsbo NM, Siryaporn A, Conrad JC, Carrara F, Yawata Y, Stocker R, Brun YV, Whitfield GB, Lee CK, de Anda J, Schmidt WC, Golestanian R, O’Toole GA, Floyd KA, Yildiz FH, Yang S, Jin F, Toyofuku M, Eberl L, Nomura N, Zacharoff LA, El-Naggar MY, Yalcin SE, Malvankar NS, Rojas-Andrade MD, Hochbaum AI, Yan J, Stone HA, Wingreen NS, Bassler BL, Wu Y, Xu H, Drescher K, Dunkel J. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys Biol 2021; 18:10.1088/1478-3975/abdc0e. [PMID: 33462162 PMCID: PMC8506656 DOI: 10.1088/1478-3975/abdc0e] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.
Collapse
Affiliation(s)
- Gerard C L Wong
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, United States of America
| | - Beiyan Nan
- Department of Biology, Texas A & M University, College Station, Texas, TX 77845, United States of America
| | - Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
| | | | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Physics & Astronomy, University of California—Irvine, California, CA 92697, United States of America
| | - Jacinta C Conrad
- William A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, TX 77204, United States of America
| | - Francesco Carrara
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yutaka Yawata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves V Brun
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Gregory B Whitfield
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Calvin K Lee
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jaime de Anda
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - William C Schmidt
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - George A O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States of America
| | - Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Shuai Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Mauricio D Rojas-Andrade
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
| | - Allon I Hochbaum
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
- Department of Chemistry, University of California—Irvine, Irvine, California, CA 92697, United States of America
- Department of Chemical and Biomolecular Engineering, University of California—Irvine, Irvine, California, CA 92697, United States of America
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, CT 06511, United States of America
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland MD 20815, United States of America
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307, United States of America
| |
Collapse
|
32
|
A Trigger Phosphodiesterase Modulates the Global c-di-GMP Pool, Motility, and Biofilm Formation in Vibrio parahaemolyticus. J Bacteriol 2021; 203:e0004621. [PMID: 33846117 DOI: 10.1128/jb.00046-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase (PDE) is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called trigger phosphodiesterases, and hence we named the product of VP1881 TpdA, for trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while, its overexpression from an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter showed a positive effect on both swimming and swarming motility and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes, as well as that of the biofilm-related gene cpsA. Our results also revealed that autoactivation of the native PtpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors. IMPORTANCE c-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, and hence not many examples of these type of signaling proteins have been reported in the literature. Here, we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.
Collapse
|
33
|
Alkaline pH Increases Swimming Speed and Facilitates Mucus Penetration for Vibrio cholerae. J Bacteriol 2021; 203:JB.00607-20. [PMID: 33468594 PMCID: PMC8088521 DOI: 10.1128/jb.00607-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
The diarrheal disease cholera is still a burden for populations in developing countries with poor sanitation. To develop effective vaccines and prevention strategies against Vibrio cholerae, we must understand the initial steps of infection leading to the colonization of the small intestine. Intestinal mucus is the first line of defense against intestinal pathogens. It acts as a physical barrier between epithelial tissues and the lumen that enteropathogens must overcome to establish a successful infection. We investigated the motile behavior of two Vibrio cholerae strains (El Tor C6706 and Classical O395) in mucus using single-cell tracking in unprocessed porcine intestinal mucus. We determined that V. cholerae can penetrate mucus using flagellar motility and that alkaline pH increases swimming speed and, consequently, improves mucus penetration. Microrheological measurements indicate that changes in pH between 6 and 8 (the physiological range for the human small intestine) had little effect on the viscoelastic properties of mucus. Finally, we determined that acidic pH promotes surface attachment by activating the mannose-sensitive hemagglutinin (MshA) pilus in V. cholerae El Tor C6706 without a measurable change in the total cellular concentration of the secondary messenger cyclic dimeric GMP (c-di-GMP). Overall, our results support the hypothesis that pH is an important factor affecting the motile behavior of V. cholerae and its ability to penetrate mucus. Therefore, changes in pH along the human small intestine may play a role in determining the preferred site for V. cholerae during infection. IMPORTANCE The diarrheal disease cholera is still a burden for populations in developing countries with poor sanitation. To develop effective vaccines and prevention strategies against Vibrio cholerae, we must understand the initial steps of infection leading to the colonization of the small intestine. To infect the host and deliver the cholera toxin, V. cholerae has to penetrate the mucus layer protecting the intestinal tissues. However, the interaction of V. cholerae with intestinal mucus has not been extensively investigated. In this report, we demonstrated using single-cell tracking that V. cholerae can penetrate intestinal mucus using flagellar motility. In addition, we observed that alkaline pH improves the ability of V. cholerae to penetrate mucus. This finding has important implications for understanding the dynamics of infection, because pH varies significantly along the small intestine, between individuals, and between species. Blocking mucus penetration by interfering with flagellar motility in V. cholerae, reinforcing the mucosa, controlling intestinal pH, or manipulating the intestinal microbiome will offer new strategies to fight cholera.
Collapse
|
34
|
Lebov JF, Bohannan BJM. Msh Pilus Mutations Increase the Ability of a Free-Living Bacterium to Colonize a Piscine Host. Genes (Basel) 2021; 12:genes12020127. [PMID: 33498301 PMCID: PMC7909257 DOI: 10.3390/genes12020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Symbioses between animals and bacteria are ubiquitous. To better understand these relationships, it is essential to unravel how bacteria evolve to colonize hosts. Previously, we serially passaged the free-living bacterium, Shewanella oneidensis, through the digestive tracts of germ-free larval zebrafish (Danio rerio) to uncover the evolutionary changes involved in the initiation of a novel symbiosis with a vertebrate host. After 20 passages, we discovered an adaptive missense mutation in the mshL gene of the msh pilus operon, which improved host colonization, increased swimming motility, and reduced surface adhesion. In the present study, we determined that this mutation was a loss-of-function mutation and found that it improved zebrafish colonization by augmenting S. oneidensis representation in the water column outside larvae through a reduced association with environmental surfaces. Additionally, we found that strains containing the mshL mutation were able to immigrate into host digestive tracts at higher rates per capita. However, mutant and evolved strains exhibited no evidence of a competitive advantage after colonizing hosts. Our results demonstrate that bacterial behaviors outside the host can play a dominant role in facilitating the onset of novel host associations.
Collapse
Affiliation(s)
- Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA;
- Correspondence:
| | - Brendan J. M. Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA;
| |
Collapse
|
35
|
Expression and function of the cdgD gene, encoding a CHASE-PAS-DGC-EAL domain protein, in Azospirillum brasilense. Sci Rep 2021; 11:520. [PMID: 33436847 PMCID: PMC7804937 DOI: 10.1038/s41598-020-80125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.
Collapse
|
36
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
37
|
Yang S, Wu Y, Qu C, Fein JB, He Y, Huang Q, Cai P. Quantitative analysis of the surficial and adhesion properties of the Gram-negative bacterial species Comamonas testosteroni modulated by c-di-GMP. Colloids Surf B Biointerfaces 2020; 198:111497. [PMID: 33296824 DOI: 10.1016/j.colsurfb.2020.111497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a ubiquitous intracellular secondary messenger which governs the transition from a bacterial cell's planktonic state to biofilm formation by stimulating the production of a variety of exopolysaccharide material by the bacterial cell. A range of genes involved in c-di-GMP signaling in the Gram-negative species Comamonas testosteroni have been identified previously, yet the physical-chemical properties of the produced extracellular polymeric substances (EPS) and the bacterial adhesion characteristics regulated by c-di-GMP are not well understood. Here, we modulated the in vivo c-di-GMP levels of Comamonas testosteroni WDL7 through diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) gene editing. The strains and their adhesion properties were characterized by Fourier-transform infrared and two-dimensional correlation spectroscopy analysis (FTIR-2D CoS), contact angle and zeta potential measurements, atomic force microscopy (AFM) and extended-Derjaguin-Landau-Verwey-Overbeek (ExDLVO) analysis. Our results show that high c-di-GMP levels promoted the secretion of long-chain hydrophobic and electroneutral extracellular polysaccharides and proteins. The protein molecules on WDL7/pYedQ2 promoted the bacterial self-aggregation and adhesion onto negatively charged surfaces. In contrast, the reduction of intracellular c-di-GMP concentrations resulted in a nearly 80 % decrease in the adhesion of bacterial cells, although little change in the surface hydrophobicity or surface charge properties were observed for these cells relative to the wild type. These results indicate that the reduced adsorption of WDL7/YhjH that we observed may be caused by the flagellum-accelerated mobility at low c-di-GMP concentrations. Taken together, these results improve our mechanistic understanding of the effects of c-di-GMP in controlling bacterial physical-chemical properties and initial biofilm development.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jeremy B Fein
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN 46556, USA
| | - Yizhuang He
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Biswas S, Chouhan OP, Bandekar D. Diguanylate Cyclases in Vibrio cholerae: Essential Regulators of Lifestyle Switching. Front Cell Infect Microbiol 2020; 10:582947. [PMID: 33194821 PMCID: PMC7642852 DOI: 10.3389/fcimb.2020.582947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Biofilm formation in Vibrio cholerae empowers the bacteria to lead a dual lifestyle and enhances its infectivity. While the formation and dispersal of the biofilm involves multiple components—both proteinaceous and non-proteinaceous, the key to the regulatory control lies with the ubiquitous secondary signaling molecule, cyclic-di-GMP (c-di-GMP). A number of different cellular components may interact with c-di-GMP, but the onus of synthesis of this molecule lies with a class of enzymes known as diguanylate cyclases (DGCs). DGC activity is generally associated with proteins possessing a GGDEF domain, ubiquitously present across all bacterial systems. V. cholerae is also endowed with multiple DGCs and information about some of them have been pouring in over the past decade. This review summarizes the DGCs confirmed till date in V. cholerae, and emphasizes the importance of DGCs and their product, c-di-GMP in the virulence and lifecycle of the bacteria.
Collapse
Affiliation(s)
- Sumit Biswas
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Om Prakash Chouhan
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Divya Bandekar
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| |
Collapse
|
39
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
40
|
The small GTPase MglA together with the TPR domain protein SgmX stimulates type IV pili formation in M. xanthus. Proc Natl Acad Sci U S A 2020; 117:23859-23868. [PMID: 32900945 PMCID: PMC7519303 DOI: 10.1073/pnas.2004722117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacteria move across surfaces using type IV pili (T4P). The piliation pattern varies between species; however, the underlying mechanisms governing these patterns remain largely unknown. Here, we demonstrate that in the rod-shaped Myxococcus xanthus cells, the unipolar formation of T4P at the leading cell pole is the result of stimulation by the small GTPase MglA together with the effector protein SgmX, while MglB, the cognate MglA GTPase activating protein (GAP) that localizes to the lagging cell pole, blocks this stimulation at the lagging pole due to its GAP activity. During reversals, MglA/SgmX and MglB switch polarity, laying the foundation for T4P formation at the new leading cell pole and inhibition of T4P formation at the former leading cell pole. Bacteria can move across surfaces using type IV pili (T4P), which undergo cycles of extension, adhesion, and retraction. The T4P localization pattern varies between species; however, the underlying mechanisms are largely unknown. In the rod-shaped Myxococcus xanthus cells, T4P localize at the leading cell pole. As cells reverse their direction of movement, T4P are disassembled at the old leading pole and then form at the new leading pole. Thus, cells can form T4P at both poles but engage only one pole at a time in T4P formation. Here, we address how this T4P unipolarity is realized. We demonstrate that the small Ras-like GTPase MglA stimulates T4P formation in its GTP-bound state by direct interaction with the tetratricopeptide repeat (TPR) domain-containing protein SgmX. SgmX, in turn, is important for polar localization of the T4P extension ATPase PilB. The cognate MglA GTPase activating protein (GAP) MglB, which localizes mainly to the lagging cell pole, indirectly blocks T4P formation at this pole by stimulating the conversion of MglA-GTP to MglA-GDP. Based on these findings, we propose a model whereby T4P unipolarity is accomplished by stimulation of T4P formation at the leading pole by MglA-GTP and SgmX and indirect inhibition of T4P formation at the lagging pole by MglB due to its MglA GAP activity. During reversals, MglA, SgmX, and MglB switch polarity, thus laying the foundation for T4P formation at the new leading pole and inhibition of T4P formation at the new lagging pole.
Collapse
|
41
|
Khan F, Tabassum N, Anand R, Kim YM. Motility of Vibrio spp.: regulation and controlling strategies. Appl Microbiol Biotechnol 2020; 104:8187-8208. [PMID: 32816086 DOI: 10.1007/s00253-020-10794-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Flagellar motility in bacteria is a highly regulated and complex cellular process that requires high energy investment for movement and host colonization. Motility plays an important role in the lifestyle of Vibrio spp. in the aquatic environment and during host colonization. Flagellar motility in vibrios is associated with several cellular processes, such as movement, colonization, adhesion, biofilm formation, and virulence. The transcription of all flagella-related genes occurs hierarchically and is regulated positively or negatively by several transcription factors and regulatory proteins. The flagellar regulatory hierarchy is well studied in Vibrio cholerae and Vibrio parahaemolyticus. Here, we compared the regulatory cascade and molecules involved in the flagellar motility of V. cholerae and V. parahaemolyticus in detail. The evolutionary relatedness of the master regulator of the polar and lateral flagella in different Vibrio species is also discussed. Although they can form symbiotic associations of some Vibrio species with humans and aquatic organisms can be harmed by several species of Vibrio as a result of surface contact, characterized by flagellar movement. Thus, targeting flagellar motility in pathogenic Vibrio species is considered a promising approach to control Vibrio infections. This approach, along with the strategies for controlling flagellar motility in different species of Vibrio using naturally derived and chemically synthesized compounds, is discussed in this review. KEY POINTS: • Vibrio species are ubiquitous and distributed across the aquatic environments. • The flagellar motility is responsible for the chemotactic movement and initial colonization to the host. • The transition from the motile into the biofilm stage is one of the crucial events in the infection. • Several signaling pathways are involved in the motility and formation of biofilm. • Attenuation of motility by naturally derived or chemically synthesized compounds could be a potential treatment for preventing Vibrio biofilm-associated infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea.
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Raksha Anand
- Department of Life Science, School of Basic Science and Research, Sharda University, 201306, Greater Noida, U.P., India
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
42
|
Phenotypic Parallelism during Experimental Adaptation of a Free-Living Bacterium to the Zebrafish Gut. mBio 2020; 11:mBio.01519-20. [PMID: 32817106 PMCID: PMC7439477 DOI: 10.1128/mbio.01519-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although animals encounter many bacterial species throughout their lives, only a subset colonize vertebrate digestive tracts, and these bacteria can profoundly influence the health and development of their animal hosts. We used experimental evolution to study a free-living bacterium as it adapts to a novel vertebrate host by serially passaging replicate populations of Shewanella oneidensis through the intestines of larval zebrafish (Danio rerio). Our results demonstrate that adaptation to the zebrafish gut is complex, with multiple evolutionary pathways capable of improving colonization, but that motility plays an important role during the onset of host association. Although animals encounter a plethora of bacterial species throughout their lives, only a subset colonize vertebrate digestive tracts, and these bacteria can profoundly influence the health and development of their animal hosts. However, our understanding of how bacteria initiate symbioses with animal hosts remains underexplored, and this process is central to the assembly and function of gut bacterial communities. Therefore, we used experimental evolution to study a free-living bacterium as it adapts to a novel vertebrate host by serially passaging replicate populations of Shewanella oneidensis through the intestines of larval zebrafish (Danio rerio). After approximately 200 bacterial generations, isolates from evolved populations improved their ability to colonize larval zebrafish during competition against their unpassaged ancestor. Genome sequencing revealed unique sets of mutations in the two evolved isolates exhibiting the highest mean competitive fitness. One isolate exhibited increased swimming motility and decreased biofilm formation compared to the ancestor, and we identified a missense mutation in the mannose-sensitive hemagglutinin pilus operon that is sufficient to increase fitness and reproduce these phenotypes. The second isolate exhibited enhanced swimming motility but unchanged biofilm formation, and here the genetic basis for adaptation is less clear. These parallel enhancements in motility and fitness resemble the behavior of a closely related Shewanella strain previously isolated from larval zebrafish and suggest phenotypic convergence with this isolate. Our results demonstrate that adaptation to the zebrafish gut is complex, with multiple evolutionary pathways capable of improving colonization, but that motility plays an important role during the onset of host association.
Collapse
|
43
|
Young TD, Liau WT, Lee CK, Mellody M, Wong GCL, Kasko AM, Weiss PS. Selective Promotion of Adhesion of Shewanella oneidensis on Mannose-Decorated Glycopolymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35767-35781. [PMID: 32672931 DOI: 10.1021/acsami.0c04329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.
Collapse
Affiliation(s)
- Thomas D Young
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Walter T Liau
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin K Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Gerard C L Wong
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Sun S, Pandelia ME. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Biochemistry 2020; 59:2340-2350. [PMID: 32496757 DOI: 10.1021/acs.biochem.0c00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides are signaling molecules that modulate many processes, including immune response and virulence factor production. Their cellular levels in bacteria are fine-tuned by metal-dependent phosphodiesterases, namely, the EAL and HD-GYP proteins, with HD-GYPs belonging to the larger HD domain superfamily. In this study, we first focus on the catalytic properties and the range of metal ions and substrates of the HD-[HD-GYP] subfamily, consisting of two HD domains. We identified SO3491 as a homologue of VCA0681 and the second example of an HD-[HD-GYP]. Both proteins hydrolyze c-di-GMP and 3'3'c-GAMP and coordinate various metal ions, but only Fe and to a lesser extent Co support hydrolysis. The proteins are active only in the diferrous form and not in the one-electron more oxidized FeIIFeIII state. Although the C-terminal HD-GYP domain is essential for activity, the role of the N-terminal HD domain remains unknown. We show that the N-terminal site is important for protein stability, influences the individual apparent kcat and KM (but not kcat/KM), and cannot bind c-di-GMP, thus precluding its involvement in cyclic dinucleotide sensing. We proceeded to perform phylogenetic analyses to examine the distribution and functional relationships of the HD-[HD-GYP]s to the rest of the HD-GYPs. The phylogeny provides a correlation map that draws a link between the evolutionary and functional diversification of HD-GYPs, serving as a template for predicting the chemical nature of the metallocofactor, level of activity, and reaction outcome.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
45
|
Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A, Crair B, Zhu S, Hughes HQ, Chlebek JL, Wu DC, Hwan Park J, Farhat AM, Lomba CJ, Ellison CK, Brun YV, Campos-Gomez J, Dalia AB, Liu J, Biais N, Wong GCL, Yildiz FH. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun 2020; 11:1549. [PMID: 32214098 PMCID: PMC7096442 DOI: 10.1038/s41467-020-15331-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.
Collapse
Affiliation(s)
- Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Calvin K Lee
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Wujing Xian
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Mahmoud Nametalla
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Aneesa Valentine
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Benjamin Crair
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Hannah Q Hughes
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jennifer L Chlebek
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Daniel C Wu
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Ali M Farhat
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Charles J Lomba
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, 355 Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Yves V Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal, Pavillon Roger-Gaudry, 2900, boulevard Édouard-Montpetit, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Javier Campos-Gomez
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1918 University Blvd., MCLM 702, Birmingham, AL, 35233, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Gerard C L Wong
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA.
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
46
|
Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genet 2020; 16:e1008703. [PMID: 32176702 PMCID: PMC7098655 DOI: 10.1371/journal.pgen.1008703] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/26/2020] [Accepted: 03/01/2020] [Indexed: 11/25/2022] Open
Abstract
The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state. A key regulator of Vibrio cholerae physiology is the nucleotide-based, second messenger cyclic dimeric guanosine monophosphate (c-di-GMP). We found that the status of flagellar biosynthesis at different stages of flagellar assembly modulates c-di-GMP signaling in V. cholerae and identified diguanylate cyclases involved in this regulatory process. The effect of motility status on the cellular c-di-GMP level is partly dependent on the flagellar stator and Na+ flux through the flagellum. Finally, we showed that c-di-GMP-dependent positive regulators of biofilm formation are critical for the signaling cascade that connects motility status to biofilm formation. Our results show that in addition to c-di-GMP promoting motile to biofilm lifestyle switch, “motility status” of V. cholerae modulates c-di-GMP signaling and biofilm formation.
Collapse
|
47
|
Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1. mBio 2020; 11:mBio.02644-19. [PMID: 32098815 PMCID: PMC7042694 DOI: 10.1128/mbio.02644-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The initial pivotal phase of bacterial biofilm formation known as reversible attachment, where cells undergo a period of transient surface attachment, is at once universal and poorly understood. What is more, although we know that reversible attachment culminates ultimately in irreversible attachment, it is not clear how reversible attachment progresses phenotypically, as bacterial surface-sensing circuits fundamentally alter cellular behavior. We analyze diverse observed bacterial behavior one family at a time (defined as a full lineage of cells related to one another by division) using a unifying stochastic model and show that our findings lead to insights on the time evolution of reversible attachment and the social cooperative dimension of surface attachment in PAO1 and PA14 strains. What are bacteria doing during “reversible attachment,” the period of transient surface attachment when they initially engage a surface, besides attaching themselves to the surface? Can an attaching cell help any other cell attach? If so, does it help all cells or employ a more selective strategy to help either nearby cells (spatial neighbors) or its progeny (temporal neighbors)? Using community tracking methods at the single-cell resolution, we suggest answers to these questions based on how reversible attachment progresses during surface sensing for Pseudomonas aeruginosa strains PAO1 and PA14. Although PAO1 and PA14 exhibit similar trends of surface cell population increase, they show unanticipated differences when cells are considered at the lineage level and interpreted using the quantitative framework of an exactly solvable stochastic model. Reversible attachment comprises two regimes of behavior, processive and nonprocessive, corresponding to whether cells of the lineage stay on the surface long enough to divide, or not, before detaching. Stark differences between PAO1 and PA14 in the processive regime of reversible attachment suggest the existence of two surface colonization strategies. PAO1 lineages commit quickly to a surface compared to PA14 lineages, with early c-di-GMP-mediated exopolysaccharide (EPS) production that can facilitate the attachment of neighbors. PA14 lineages modulate their motility via cyclic AMP (cAMP) and retain memory of the surface so that their progeny are primed for improved subsequent surface attachment. Based on the findings of previous studies, we propose that the differences between PAO1 and PA14 are potentially rooted in downstream differences between Wsp-based and Pil-Chp-based surface-sensing systems, respectively.
Collapse
|
48
|
Bhasme P, Wei Q, Xu A, Naqvi STA, Wang D, Ma LZ. Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa. Microbiologyopen 2020; 9:e975. [PMID: 32012489 PMCID: PMC7066473 DOI: 10.1002/mbo3.975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Opportunistic pathogen Pseudomonas aeruginosa can cause acute and chronic infections in humans. It is notorious for its resistance to antibiotics due to the formation of biofilms. Cyclic‐di‐GMP is a bacterial second messenger that plays important roles during biofilm development. There are 40 genes in P. aeruginosa predicted to participate in c‐di‐GMP biosynthesis or degradation. It is time‐consuming for the functional characterization of these genes. Here, we cloned 16 genes from P. aeruginosa PAO1 that are predicted to encode diguanylate cyclases (DGCs, responsible for c‐di‐GMP biosynthesis) and constructed their corresponding in‐frame deletion mutants. We evaluated the methods to measure the intracellular c‐di‐GMP concentration by using deletion mutants and PAO1 strains containing a plasmid expressing one of the 16 genes, respectively. Functional outputs of all PAO1‐derived stains were also detected and evaluated, including biofilm formation, production of exopolysaccharide, swimming and swarming motilities. Our data showed that measuring the c‐di‐GMP level only characterized a few DGC by using either pCdrA::gfp as a reporter or LC/MS/MS. Functional output results indicated that overexpression of a DGC gave more pronounced phenotypes than the corresponding deletion mutant and suggested that the swimming motility assay could be a quick way to briefly estimate a predicted DGC for further studies. The overall evaluation suggested 15 out of 16 predicted DGCs were functional DGCs, wherein six were characterized to encode DGCs previously. Altogether, we have provided not only a cloning library of 16 DGC‐encoding genes and their corresponding in‐frame deletion mutants but also paved ways to briefly characterize a predicted DGC.
Collapse
Affiliation(s)
- Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anming Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Syed Tatheer Alam Naqvi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments. The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations.
Collapse
|
50
|
Keller H, Kruse K, Averhoff B, Duchardt-Ferner E, Wöhnert J. NMR resonance assignments for the GSPII-C domain of the PilF ATPase from Thermus thermophilus in complex with c-di-GMP. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:361-366. [PMID: 31372934 DOI: 10.1007/s12104-019-09906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus is one of the most efficient DNA transport systems in terms of DNA uptake rate and promiscuity. The DNA transporter of T. thermophilus plays an important role in interdomain DNA transfer in hot environments. PilF is the traffic ATPase that provides the energy for the assembly of the DNA translocation machinery and the functionally linked type IV pilus system in T. thermophilus. In contrast to other known traffic ATPases, the N-terminal region of PilF harbors three consecutive domains with homology to general secretory pathway II (GSPII) domains. These GSPII-like domains influence pilus assembly, twitching motility and transformation efficiency. A structural homolog of the PilF GSPII-like domains, the N-terminal domain of the traffic ATPase MshE from Vibrio cholerae, was recently crystallized in complex with the bacterial second messenger c-di-GMP. In order to study the consequences of c-di-GMP binding on the three-dimensional architecture of PilF, we initiated structural studies on the PilF GSPII-like domains. Here, we present the 1H, 13C and 15N chemical shift assignments for the isolated PilF GSPII-C domain from T. thermophilus in complex with c-di-GMP. In addition, the structural dynamics of the complex was investigated in an {1H},15N-hetNOE experiment.
Collapse
Affiliation(s)
- Heiko Keller
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Kerstin Kruse
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Beate Averhoff
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|