1
|
Martinez E, Berg N, Rodriguez C, Daube G, Taminiau B. Influence of microbiota on the growth and gene expression of Clostridioides difficile in an in vitro coculture model. Microbiologyopen 2024; 13:e70001. [PMID: 39404502 PMCID: PMC11633334 DOI: 10.1002/mbo3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming, Gram-positive pathogenic bacterium. This study aimed to analyze the effect of two samples of healthy fecal microbiota on C. difficile gene expression and growth using an in vitro coculture model. The inner compartment was cocultured with spores of the C. difficile polymerase chain reaction (PCR)-ribotype 078, while the outer compartment contained fecal samples from donors to mimic the microbiota (FD1 and FD2). A fecal-free plate served as a control (CT). RNA-Seq and quantitative PCR confirmation were performed on the inner compartment sample. Similarities in gene expression were observed in the presence of the microbiota. After 12 h, the expression of genes associated with germination, sporulation, toxin production, and growth was downregulated in the presence of the microbiota. At 24 h, in an iron-deficient environment, C. difficile activated several genes to counteract iron deficiency. The expression of genes associated with germination and sporulation was upregulated at 24 h compared with 12 h in the presence of microbiota from donor 1 (FD1). This study confirmed previous findings that C. difficile can use ethanolamine as a primary nutrient source. To further investigate this interaction, future studies will use a simplified coculture model with an artificial bacterial consortium instead of fecal samples.
Collapse
Affiliation(s)
- Elisa Martinez
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Noémie Berg
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Cristina Rodriguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Unidadde Gestión Clínica de Aparato DigestivoHospital Universitario Virgen de laVictoriaMálagaSpain
| | - Georges Daube
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| | - Bernard Taminiau
- Department of Food Sciences, Food MicrobiologyFundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of LiegeLiegeBelgium
| |
Collapse
|
2
|
Bernabè G, Castagliuolo I, Porzionato A, Casarotto G, Monte RD, Carpi A, Brun P. Insoluble polysaccharides produced in plant cell cultures protect from Clostridioides difficile colitis. Microbiol Res 2024; 286:127812. [PMID: 38954992 DOI: 10.1016/j.micres.2024.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Clostridioides difficile infection (CDI) poses a significant health threat due to high recurrence rates. Antimicrobial agents are commonly used to manage CDI-related diarrhoea; however, by aggravating intestinal dysbiosis, antibiotics enable C. difficile spores germination and production of toxins, the main virulence factors. Therefore, the binding of exotoxins using adsorbents represents an attractive alternative medication for the prevention and treatment of relapses. In this study, we provided evidence that the natural insoluble polysaccharides, named ABR119, extracted by plant cell cultures, effectively trap C. difficile toxins. In our experiments, ABR119 exhibited no cytotoxicity in vitro and was safely administered in vivo. In the animal model of C. difficile-associated colitis, ABR119 (50 mg/kg body weight) significantly reduced the colonic myeloperoxidase activity and severity of inflammation, preventing body weight loss. These effects were not evident when we treated animals with wheat bran polysaccharides. We did not detect bacterial killing effects of ABR119 against C. difficile nor against bacterial species of the normal gut microbiota. Moreover, ABR119 did not interfere in vitro with the antimicrobial activities of most clinically used antibiotics. In summary, ABR119 holds promise for treating and preventing C. difficile colitis by trapping the bacterial toxins, warranting further studies to assess the ABR119 potential in human infections caused by C. difficile.
Collapse
Affiliation(s)
- Giulia Bernabè
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy
| | - Ignazio Castagliuolo
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy; Microbiology Unit of Padua University Hospital, via N. Giustiniani, 2, Padova 35128, Italy
| | - Andrea Porzionato
- University of Padova, Department of Neurosciences, via A. Gabelli, 65, Padova 35121, Italy
| | - Gino Casarotto
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Renzo Dal Monte
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Andrea Carpi
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Paola Brun
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy.
| |
Collapse
|
3
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
4
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Hontecillas R. Oral Omilancor Treatment Ameliorates Clostridioides difficile Infection During IBD Through Novel Immunoregulatory Mechanisms Mediated by LANCL2 Activation. Inflamm Bowel Dis 2024; 30:103-113. [PMID: 37436905 DOI: 10.1093/ibd/izad124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is an opportunistic infection of the gastrointestinal tract, commonly associated with antibiotic administration, that afflicts almost 500 000 people yearly only in the United States. CDI incidence and recurrence is increased in inflammatory bowel disease (IBD) patients. Omilancor is an oral, once daily, first-in-class, gut-restricted, immunoregulatory therapeutic in clinical development for the treatment of IBD. METHODS Acute and recurrent murine models of CDI and the dextran sulfate sodium-induced concomitant model of IBD and CDI were utilized to determine the therapeutic efficacy of oral omilancor. To evaluate the protective effects against C. difficile toxins, in vitro studies with T84 cells were also conducted. 16S sequencing was employed to characterize microbiome composition. RESULTS Activation of the LANCL2 pathway by oral omilancor and its downstream host immunoregulatory changes decreased disease severity and inflammation in the acute and recurrence models of CDI and the concomitant model of IBD/CDI. Immunologically, omilancor treatment increased mucosal regulatory T cell and decreased pathogenic T helper 17 cell responses. These immunological changes resulted in increased abundance and diversity of tolerogenic gut commensal bacterial strains in omilancor-treated mice. Oral omilancor also resulted in accelerated C. difficile clearance in an antimicrobial-free manner. Furthermore, omilancor provided protection from toxin damage, while preventing the metabolic burst observed in intoxicated epithelial cells. CONCLUSIONS These data support the development of omilancor as a novel host-targeted, antimicrobial-free immunoregulatory therapeutic for the treatment of IBD patients with C. difficile-associated disease and pathology with the potential to address the unmet clinical needs of ulcerative colitis and Crohn's disease patients with concomitant CDI.
Collapse
|
5
|
Muroya D, Nadayoshi S, Yamada K, Kai Y, Masuda N, Nishida T, Shimokobe M, Hisaka T. Effects of Hyperbaric Oxygen Therapy for Clostridioides difficile-associated Colitis: A Retrospective Study. J Anus Rectum Colon 2023; 7:264-272. [PMID: 37900689 PMCID: PMC10600261 DOI: 10.23922/jarc.2023-033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 10/31/2023] Open
Abstract
Objectives Clostridioides difficile (CD) is an anaerobic spore-forming Gram-positive rod that is a major cause of antibiotic-associated diarrhea. Hyperbaric oxygen therapy (HBO) is a well-established treatment for Clostridium perfringens, but there are no reports that have examined the efficacy of HBO against CD, which is also an anaerobic bacterium. Methods In this study, we retrospectively examined whether HBO therapy affects the prognosis following CD infections (CDI). This study included 92 inpatients diagnosed with CDI at our hospital between January 2013 and December 2022. Of these, 16 patients received HBO therapy. The indications for HBO therapy were stroke in five patients, ileus in four patients, cancer in two patients, acute peripheral circulatory disturbance in two patients, and others in three patients. The mean observation period was 5.4 years. Results In the univariate analysis, there was no significant difference in severity, mortality, hospitalization, or overall survival between patients who did and did not receive HBO therapy. However, the HBO group had a significantly lower recurrence rate (0% vs. 22.4%, p=0.0363) and a shorter symptomatic period (6.2 vs. 13.6 days, p=0.0217). Conclusions HBO may have beneficial effect on CDI by shortening the symptomatic period and preventing recurrence.
Collapse
Affiliation(s)
- Daisuke Muroya
- Department of Surgery, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Shinya Nadayoshi
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Koito Yamada
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Yutaro Kai
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Naoki Masuda
- Department of Surgery, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Takamichi Nishida
- Department of Internal Medicine, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Masayuki Shimokobe
- Department of Internal Medicine, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
6
|
Olson B, Ship N, Butera ML, Warm K, Oen R, Howard J. Clostridioides difficile infection in a skilled nursing facility (SNF): cost savings of an automated, standardized probiotic antimicrobial stewardship programme (ASP) policy. JAC Antimicrob Resist 2023; 5:dlad102. [PMID: 37680882 PMCID: PMC10481250 DOI: 10.1093/jacamr/dlad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Background With multiple comorbidities and frequent exposures to antibiotics, patients in skilled nursing facilities (SNFs) are much more vulnerable to healthcare-acquired infections. We conducted a quality-improvement, retrospective analysis of all patients with Clostridioides difficile infection (CDI) from 2009 to 2021 at an SNF. Probiotics were initially added to a bundle of antimicrobial stewardship programme (ASP) CDI prevention strategies. Formulations and durations of probiotics were standardized for both oral and enteral administration. To reach all eligible patients, an ASP probiotic policy provided probiotics with every antibiotic course. Objectives To assess the value of providing probiotic therapy to SNF patients at risk for CDI. Patients and methods Patients receiving oral or enteral feeding with antibiotics ordered were eligible to receive probiotics. The incremental cost of CDI prevention, treatment and related care were calculated and compared for each phase of probiotic policy change and feeding type. ASP records for the oral probiotic and level of treatment were used in modelling the cost-effectiveness. Results From quality improvement initiatives aimed at preventing facility-onset (FO) CDI, to ASP policies, probiotic formulations and delegation of ordering authority, the days of acute care treatment required was significantly reduced over the different phases of implementation [152 to 48, OR = 0.22 (0.16-0.31) to 4, OR = 0.08 (0.03-0.23)] after reducing total CDI from 5.8 to 0.3 cases per 10 000 patient-days. The annual cost of oral probiotics increased from $6019 to $14 652 but the modelled net annual savings for the facility was $72 544-$154 085. Conclusions With optimization, the use of probiotics for CDI prevention at an SNF was safe, efficacious and cost-effective.
Collapse
Affiliation(s)
- Bridget Olson
- Department of Pharmacy, Sharp Coronado Hospital & Villa Long Term Care, Sharp HealthCare, 250 Prospect Place, Coronado, CA 92118, USA
| | - Noam Ship
- Research and Development, Bio-K Plus International Inc., 495 Armand-Frappier Boulevard, Laval, Quebec H7V4B3, Canada
| | - Michael L Butera
- Medical Staff, Sharp Coronado Hospital & Villa Long Term Care, Sharp HealthCare, 250 Prospect Place, Coronado, CA 92118, USA
| | - Kenneth Warm
- Medical Staff, Sharp Coronado Hospital & Villa Long Term Care, Sharp HealthCare, 250 Prospect Place, Coronado, CA 92118, USA
| | - Roger Oen
- Medical Staff, Sharp Coronado Hospital & Villa Long Term Care, Sharp HealthCare, 250 Prospect Place, Coronado, CA 92118, USA
| | - John Howard
- Department of Pharmacy, Sharp Coronado Hospital & Villa Long Term Care, Sharp HealthCare, 250 Prospect Place, Coronado, CA 92118, USA
| |
Collapse
|
7
|
Saenz C, Fang Q, Gnanasekaran T, Trammell SAJ, Buijink JA, Pisano P, Wierer M, Moens F, Lengger B, Brejnrod A, Arumugam M. Clostridium scindens secretome suppresses virulence gene expression of Clostridioides difficile in a bile acid-independent manner. Microbiol Spectr 2023; 11:e0393322. [PMID: 37750706 PMCID: PMC10581174 DOI: 10.1128/spectrum.03933-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.
Collapse
Affiliation(s)
- Carmen Saenz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qing Fang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesse Arnold Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Pisano
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Asker Brejnrod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Bidell MR, Hobbs ALV, Lodise TP. Gut microbiome health and dysbiosis: A clinical primer. Pharmacotherapy 2022; 42:849-857. [PMID: 36168753 PMCID: PMC9827978 DOI: 10.1002/phar.2731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 01/12/2023]
Abstract
The gut microbiome has been referred to as the "forgotten organ." Although much about the gut microbiome remains incompletely understood, data on its clinical importance is emerging at rapid speed. Many practicing clinicians may be unaware of the essential role that the microbiome plays in both health and disease. This review aims to improve clinical understanding of the gut microbiome by discussing key terminology and foundational concepts. The role of a healthy microbiome in normal host function is described, as well as the consequences of a disrupted microbiome (i.e., dysbiosis). Management strategies to restore the gut microbiome from a disrupted to a healthy state are also briefly discussed. Lastly, we review emerging areas for therapeutic potential and opportunity to bring determinants of microbiome health from the bench to bedside.
Collapse
|
9
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere 2022; 7:e0013222. [PMID: 35638354 PMCID: PMC9241537 DOI: 10.1128/msphere.00132-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a “division of labor” between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCEClostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a “division of labor” between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.
Collapse
|
11
|
Ariyoshi T, Hagihara M, Takahashi M, Mikamo H. Effect of Clostridium butyricum on Gastrointestinal Infections. Biomedicines 2022; 10:483. [PMID: 35203691 PMCID: PMC8962260 DOI: 10.3390/biomedicines10020483] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Clostridium butyricum is a human commensal bacterium with beneficial effects including butyrate production, spore formation, increasing levels of beneficial bacteria, and inhibition of pathogenic bacteria. Owing to its preventive and ameliorative effects on gastrointestinal infections, C. butyricum MIYAIRI 588 (CBM 588) has been used as a probiotic in clinical and veterinary medicine for decades. This review summarizes the effects of C. butyricum, including CBM 588, on bacterial gastrointestinal infections. Further, the characteristics of the causative bacteria, examples of clinical and veterinary use, and mechanisms exploited in basic research are presented. C. butyricum is widely effective against Clostoridioides difficile, the causative pathogen of nosocomial infections; Helicobacter pylori, the causative pathogen of gastric cancer; and antibiotic-resistant Escherichia coli. Accordingly, its mechanism is gradually being elucidated. As C. butyricum is effective against gastrointestinal infections caused by antibiotics-induced dysbiosis, it can inhibit the transmission of antibiotic-resistant genes and maintain homeostasis of the gut microbiome. Altogether, C. butyricum is expected to be one of the antimicrobial-resistance (AMR) countermeasures for the One-health approach.
Collapse
Affiliation(s)
- Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Miyarisan Pharmaceutical Co., Ltd., Saitama City 331-0804, Saitama, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Miyarisan Pharmaceutical Co., Ltd., Saitama City 331-0804, Saitama, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
12
|
Mooranian A, Zamani N, Kovacevic B, Ionescu CM, Luna G, Mikov M, Goločorbin-Kon S, Stojanovic G, Kojic S, Al-Salami H. Pharmacological Effects of Secondary Bile Acid Microparticles in Diabetic Murine Model. Curr Diabetes Rev 2022; 18:e062620183199. [PMID: 32589561 DOI: 10.2174/1573399816666200626213735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
AIM Examine bile acids effects in Type 2 diabetes. BACKGROUND In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent antiinflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. OBJECTIVE Hence, this study aimed to examine applications of novel UDCA microparticles in diabetes. METHODS Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. RESULTS UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. CONCLUSION Bile acids modulated the bile profile without affecting blood glucose levels.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad,Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| |
Collapse
|
13
|
An aniline-substituted bile salt analog protects both mice and hamsters from multiple Clostridioides difficile strains. Antimicrob Agents Chemother 2021; 66:e0143521. [PMID: 34780262 DOI: 10.1128/aac.01435-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI. Furthermore, CDI relapse from hypervirulent strains can reach up to 25%. Thus, standard treatments are rendered less effective, making new methods of prevention and treatment more critical. Previously, the bile salt analog CamSA was shown to inhibit spore germination in vitro and protect mice and hamsters from C. difficile strain 630. Here, we show that CamSA was less active at preventing spore germination of other C. difficile ribotypes, including the hypervirulent strain R20291. Strain-specific in vitro germination activity of CamSA correlated with its ability to prevent CDI in mice. Additional bile salt analogs were screened for in vitro germination inhibition activity against strain R20291, and the most active compounds were tested against other strains. An aniline-substituted bile salt analog, (CaPA), was found to be a better anti-germinant than CamSA against eight different C. difficile strains. In addition, CaPA was capable of reducing, delaying, or preventing murine CDI signs in all strains tested. CaPA-treated mice showed no obvious toxicity and showed minor effects on their gut microbiome. CaPA's efficacy was further confirmed by its ability to prevent CDI in hamsters infected with strain 630. These data suggest that C. difficile spores respond to germination inhibitors in a strain-dependent manner. However, careful screening can identify anti-germinants with broad CDI prophylaxis activity.
Collapse
|
14
|
Wexler AG, Guiberson ER, Beavers WN, Shupe JA, Washington MK, Lacy DB, Caprioli RM, Spraggins JM, Skaar EP. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Rep 2021; 36:109683. [PMID: 34496241 PMCID: PMC8445666 DOI: 10.1016/j.celrep.2021.109683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is the leading cause of nosocomial intestinal infections in the United States. Ingested C. difficile spores encounter host bile acids and other cues that are necessary for germinating into toxin-producing vegetative cells. While gut microbiota disruption (often by antibiotics) is a prerequisite for C. difficile infection (CDI), the mechanisms C. difficile employs for colonization remain unclear. Here, we pioneered the application of imaging mass spectrometry to study how enteric infection changes gut metabolites. We find that CDI induces an influx of bile acids into the gut within 24 h of the host ingesting spores. In response, the host reduces bile acid biosynthesis gene expression. These bile acids drive C. difficile outgrowth, as mice receiving the bile acid sequestrant cholestyramine display delayed colonization and reduced germination. Our findings indicate that C. difficile may facilitate germination upon infection and suggest that altering flux through bile acid pathways can modulate C. difficile outgrowth in CDI-prone patients.
Collapse
Affiliation(s)
- Aaron G Wexler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
16
|
Furlon JM, Mitchell SJ, Bailey-Kellogg C, Griswold KE. Bioinformatics-driven discovery of novel Clostridioides difficile lysins and experimental comparison with highly active benchmarks. Biotechnol Bioeng 2021; 118:2482-2492. [PMID: 33748952 PMCID: PMC10049856 DOI: 10.1002/bit.27759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 11/11/2022]
Abstract
Clostridioides difficile is the single most deadly bacterial pathogen in the United States, and its global prevalence and outsized health impacts underscore the need for more effective therapeutic options. Towards this goal, a novel group of modified peptidoglycan hydrolases with significant in vitro bactericidal activity have emerged as potential candidates for treating C. difficile infections (CDI). To date, discovery and development efforts directed at these CDI-specific lysins have been limited, and in particular there has been no systematic comparison of known or newly discovered lysin candidates. Here, we detail bioinformatics-driven discovery of six new anti-C. difficile lysins belonging to the amidase-3 family of enzymes, and we describe experimental comparison of their respective catalytic domains (CATs) with highly active CATs from the literature. Our quantitative analyses include metrics for expression level, inherent antibacterial activity, breadth of strain selectivity, killing of germinating spores, and structural and functional measures of thermal stability. Importantly, prior studies have not examined stability as a performance metric, and our results show that the panel of eight enzymes possess widely variable thermal denaturation temperatures and resistance to heat inactivation, including some enzymes that exhibit marginal stability at body temperature. Ultimately, no single enzyme dominated with respect to all performance measures, suggesting the need for a balanced assessment of lysin properties during efforts to find, engineer, and develop candidates with true clinical potential.
Collapse
Affiliation(s)
- Jacob M Furlon
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, USA
| | | | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, USA.,Lyticon LLC, Lebanon, New Hampshire, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, USA.,Lyticon LLC, Lebanon, New Hampshire, USA
| |
Collapse
|
17
|
Chiu PJ, Rathod J, Hong YP, Tsai PJ, Hung YP, Ko WC, Chen JW, Paredes-Sabja D, Huang IH. Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe 2021; 70:102381. [PMID: 34082120 DOI: 10.1016/j.anaerobe.2021.102381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is a gram-positive, spore-forming anaerobic bacterium, and the leading cause of antibiotic-associated diarrhea worldwide. During C. difficile infection, spores germinate in the presence of bile acids into vegetative cells that subsequently colonize the large intestine and produce toxins. In this study, we demonstrated that C. difficile spores can universally adhere to, and be phagocytosed by, murine macrophages. Only spores from toxigenic strains were able to significantly stimulate the production of inflammatory cytokines by macrophages and subsequently induce significant cytotoxicity. Spores from the isogenic TcdA and TcdB double mutant induced significantly lower inflammatory cytokines and cytotoxicity in macrophages, and these activities were restored by pre-exposure of the spores to either toxins. These findings suggest that during sporulation, spores might be coated with C. difficile toxins from the environment, which could affect C. difficile pathogenesis in vivo.
Collapse
Affiliation(s)
- Po-Jung Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Hong
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA.
| |
Collapse
|
18
|
Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev 2021; 44:763-781. [PMID: 32821932 PMCID: PMC7685781 DOI: 10.1093/femsre/fuaa030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal health status is vital for the development of the offspring of humans, including physiological health and psychological functions. The complex and diverse microbial ecosystem residing within humans contributes critically to these intergenerational impacts. Perinatal factors, including maternal nutrition, antibiotic use and maternal stress, alter the maternal gut microbiota during pregnancy, which can be transmitted to the offspring. In addition, gestational age at birth and mode of delivery are indicated frequently to modulate the acquisition and development of gut microbiota in early life. The early-life gut microbiota engages in a range of host biological processes, particularly immunity, cognitive neurodevelopment and metabolism. The perturbed early-life gut microbiota increases the risk for disease in early and later life, highlighting the importance of understanding relationships of perinatal factors with early-life microbial composition and functions. In this review, we present an overview of the crucial perinatal factors and summarise updated knowledge of early-life microbiota, as well as how the perinatal factors shape gut microbiota in short and long terms. We further discuss the clinical consequences of perturbations of early-life gut microbiota and potential therapeutic interventions with probiotics/live biotherapeutics.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - Muireann Egan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - Patrick Boyaval
- DuPont Nutrition & Biosciences, Danisco France SAS - DuPont, 22, rue Brunel, F- 75017 Paris, France
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland, P12 YT20
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| |
Collapse
|
19
|
Winston JA, Rivera A, Cai J, Patterson AD, Theriot CM. Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLoS One 2021; 16:e0246161. [PMID: 33600468 PMCID: PMC7891722 DOI: 10.1371/journal.pone.0246161] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Ursodeoxycholic acid (commercially available as ursodiol) is a naturally occurring bile acid that is used to treat a variety of hepatic and gastrointestinal diseases. Ursodiol can modulate bile acid pools, which have the potential to alter the gut microbiota community structure. In turn, the gut microbial community can modulate bile acid pools, thus highlighting the interconnectedness of the gut microbiota-bile acid-host axis. Despite these interactions, it remains unclear if and how exogenously administered ursodiol shapes the gut microbial community structure and bile acid pool in conventional mice. This study aims to characterize how ursodiol alters the gastrointestinal ecosystem in conventional mice. C57BL/6J wildtype mice were given one of three doses of ursodiol (50, 150, or 450 mg/kg/day) by oral gavage for 21 days. Alterations in the gut microbiota and bile acids were examined including stool, ileal, and cecal content. Bile acids were also measured in serum. Significant weight loss was seen in mice treated with the low and high dose of ursodiol. Alterations in the microbial community structure and bile acid pool were seen in ileal and cecal content compared to pretreatment, and longitudinally in feces following the 21-day ursodiol treatment. In both ileal and cecal content, members of the Lachnospiraceae Family significantly contributed to the changes observed. This study is the first to provide a comprehensive view of how exogenously administered ursodiol shapes the healthy gastrointestinal ecosystem in conventional mice. Further studies to investigate how these changes in turn modify the host physiologic response are important.
Collapse
Affiliation(s)
- Jenessa A. Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Alissa Rivera
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
20
|
Yip C, Okada NC, Howerton A, Amei A, Abel-Santos E. Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochem Pharmacol 2021; 183:114314. [PMID: 33152344 PMCID: PMC7770080 DOI: 10.1016/j.bcp.2020.114314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Clostridioides difficile infections (CDI) are the leading cause of nosocomial antibiotic-associated diarrhea. C. difficile produces dormant spores that serve as infectious agents. Bile salts in the gastrointestinal tract signal spores to germinate into toxin-producing cells. As spore germination is required for CDI onset, anti-germination compounds may serve as prophylactics. CamSA, a synthetic bile salt, was previously shown to inhibit C. difficile spore germination in vitro and in vivo. Unexpectedly, a single dose of CamSA was sufficient to offer multi-day protection from CDI in mice without any observable toxicity. To study this intriguing protection pattern, we examined the pharmacokinetic parameters of CamSA. CamSA was stable to the gut of antibiotic-treated mice but was extensively degraded by the microbiota of non-antibiotic-treated animals. Our data also suggest that CamSA's systemic absorption is minimal since it is retained primarily in the intestinal lumen and liver. CamSA shows weak interactions with CYP3A4, a P450 hepatic isozyme involved in drug metabolism and bile salt modification. Like other bile salts, CamSA seems to undergo enterohepatic circulation. We hypothesize that the cycling of CamSA between the liver and intestines serves as a slow-release mechanism that allows CamSA to be retained in the gastrointestinal tract for days. This model explains how a single CamSA dose can prevent murine CDI even though spores are present in the animal's intestine for up to four days post-challenge.
Collapse
Affiliation(s)
- Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Naomi C Okada
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Amber Howerton
- Department of Physical and Life Sciences, Nevada State College, 1300 Nevada State Drive, Henderson, Nevada, 89002, United States
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States.
| |
Collapse
|
21
|
Qian X, Yanagi K, Kane AV, Alden N, Lei M, Snydman DR, Vickers RJ, Lee K, Thorpe CM. Ridinilazole, a narrow spectrum antibiotic for treatment of Clostridioides difficile infection, enhances preservation of microbiota-dependent bile acids. Am J Physiol Gastrointest Liver Physiol 2020; 319:G227-G237. [PMID: 32597706 PMCID: PMC7500266 DOI: 10.1152/ajpgi.00046.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Antibiotic treatment is a standard therapy for Clostridioides difficile infection, but dysbiosis of the gut microbiota due to antibiotic exposure is also a major risk factor for the disease. Following an initial episode of C. difficile infection, a relentless cycle of recurrence can occur, where persistent treatment-related dysbiosis predisposes the patient to subsequent relapse. This study uses a longitudinal study design to compare the effects of a narrow-spectrum (ridinilazole) or broad-spectrum antibiotic (vancomycin) on intestinal bile acid profiles and their associations with gut bacteria over the course of C. difficile infection treatment. At the end of treatment (day 10), subjects receiving vancomycin showed a nearly 100-fold increase in the ratio of conjugated to secondary bile acids in their stool compared with baseline, whereas subjects receiving ridinilazole maintained this ratio near baseline levels. Correlation analysis detected significant positive associations between secondary bile acids and several Bacteroidales and Clostridiales families. These families were depleted in the vancomycin group but preserved at near-baseline abundance in the ridinilazole group. Enterobacteriaceae, which expanded to a greater extent in the vancomycin group, correlated negatively and positively with secondary and conjugated primary bile acids, respectively. Bile acid ratios at the end of treatment were significantly different between those who recurred and those who did not. These results indicate that a narrow-spectrum antibiotic maintains an intestinal bile acid profile associated with a lowered risk of recurrence.NEW & NOTEWORTHY This is the first study to demonstrate in humans the relationships between Clostridioides difficile antibiotic treatment choice and bile acid metabolism both during therapy and after treatment cessation. The results show a microbiota- and metabolome-preserving property of a novel narrow-spectrum agent that correlates with the agent's favorable sustained clinical response rates compared with broad-spectrum antibiotic treatment.
Collapse
Affiliation(s)
- Xi Qian
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | | | - Nicholas Alden
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Ming Lei
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - David R Snydman
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts
- Tufts Medical Center, Boston, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Cheleste M Thorpe
- Tufts Medical Center, Boston, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
22
|
Marion S, Desharnais L, Studer N, Dong Y, Notter MD, Poudel S, Menin L, Janowczyk A, Hettich RL, Hapfelmeier S, Bernier-Latmani R. Biogeography of microbial bile acid transformations along the murine gut. J Lipid Res 2020; 61:1450-1463. [PMID: 32661017 DOI: 10.1194/jlr.ra120001021] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.
Collapse
Affiliation(s)
- Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lyne Desharnais
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Studer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew Janowczyk
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination. Biochem J 2020; 477:1459-1478. [PMID: 32242623 PMCID: PMC7200643 DOI: 10.1042/bcj20190875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.
Collapse
|
24
|
Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol 2020; 11:24. [PMID: 32099648 PMCID: PMC7031906 DOI: 10.1186/s40104-019-0402-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium species, as a predominant cluster of commensal bacteria in our gut, exert lots of salutary effects on our intestinal homeostasis. Up to now, Clostridium species have been reported to attenuate inflammation and allergic diseases effectively owing to their distinctive biological activities. Their cellular components and metabolites, like butyrate, secondary bile acids and indolepropionic acid, play a probiotic role primarily through energizing intestinal epithelial cells, strengthening intestinal barrier and interacting with immune system. In turn, our diets and physical state of body can shape unique pattern of Clostridium species in gut. In view of their salutary performances, Clostridium species have a huge potential as probiotics. However, there are still some nonnegligible risks and challenges in approaching application of them. Given this, this review summarized the researches involved in benefits and potential risks of Clostridium species to our health, in order to develop Clostridium species as novel probiotics for human health and animal production.
Collapse
Affiliation(s)
- Pingting Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Ke Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| |
Collapse
|
25
|
Abbas A, Zackular JP. Microbe-microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 2020; 53:19-25. [PMID: 32088581 DOI: 10.1016/j.mib.2020.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infections and a major public health burden in the United States. C. difficile infection causes a spectrum of disease from mild diarrhea to severe complications such as pseudomembranous colitis, toxic megacolon and death. This broad range of disease is only partially explained by bacterial genetic factors, host genetics, comorbidities and previous drug exposures. Another important factor is the gut microbiome, the disruption of which results in a loss of colonization resistance to C. difficile. Here, we review how gut microbiota and their metabolites impact C. difficile virulence and influence disease.
Collapse
Affiliation(s)
- Arwa Abbas
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci Rep 2020; 10:1832. [PMID: 32020012 PMCID: PMC7000398 DOI: 10.1038/s41598-020-58858-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
Spore forming bacteria comprise a large part of the human gut microbiota. However, study of the endospores in gut microbiota is limited due to difficulties of culturing and numerous unknown germination factors. In this study we propose a new method for culture-independent characterization of endospores in stool samples. We have enriched DNA of spore-forming bacterial species from stool samples of 40 mother-child pairs from a previously described mother-child cohort. The samples were exposed to a two-step purification process comprising ethanol and ethidium monoazide (EMA) treatment to first kill vegetative cells and to subsequently eliminate their DNA from the samples. The composition of the ethanol-EMA resistant DNA was characterized by 16S rRNA marker gene sequencing. Operational taxonomic units (OTUs) belonging to the Clostridia class (OTU1: Romboutsia, OTU5: Peptostreptococcaceae and OTU14: Clostridium senso stricto) and one belonging to the Bacillus class (OTU20: Turicibacter) were significantly more abundant in the samples from mothers and children after ethanol-EMA treatment than in those treated with ethanol only. No correlation was observed between ethanol-EMA resistant OTUs detected in children and in their mothers, which indicates that a low level of spore-forming species are shared between mothers and their children. Anaerobic ethanol-resistant bacteria were isolated from all mothers and all children over 1 year of age. Generally, in 70% of the ethanol-treated samples used for anaerobic culturing, 16S rRNA gene sequences of bacterial isolates corresponded to OTUs detected in these samples after EMA treatment. We report a new DNA-based method for the characterization of endospores in gut microbiota. Our method has high degree of correspondence to the culture-based method, although it requires further optimization. Our results also indicate a high turnover of endospores in the gut during the first two years of life, perhaps with a high environmental impact.
Collapse
|
27
|
The Impact of pH on Clostridioides difficile Sporulation and Physiology. Appl Environ Microbiol 2020; 86:AEM.02706-19. [PMID: 31811041 DOI: 10.1128/aem.02706-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen.IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.
Collapse
|
28
|
Mooranian A, Zamani N, Ionescu CM, Takechi R, Luna G, Mikov M, Goločorbin-Kon S, Kovačević B, Al-Salami H. Oral gavage of nano-encapsulated conjugated acrylic acid-bile acid formulation in type 1 diabetes altered pharmacological profile of bile acids, and improved glycaemia and suppressed inflammation. Pharmacol Rep 2020; 72:368-378. [PMID: 32048259 DOI: 10.1007/s43440-019-00030-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/01/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid, metabolised in the gut, by microbiota. UDCA is currently prescribed for primary biliary cirrhosis, and of recently has shown β-cell protective effects, which suggests potential antidiabetic effects. Thus, this study aimed to design targeted-delivery microcapsules for oral uptake of UDCA and test its effects in type 1 diabetes (T1D). METHODS UDCA microcapsules were produced using alginate-NM30 matrix. Three equal groups of mice (6-7 mice per group) were gavaged daily UDCA powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced by alloxan injection and treatments continued until mice had to be euthanised due to weight loss > 10% or severe symptoms develop. Plasma, tissues, and faeces were collected and analysed for bile acids' concentrations. RESULTS UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. CONCLUSION The findings suggest that UDCA exerted direct protective effects on pancreatic β-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues. Three equal groups of mice were gavaged daily UDCA (ursodeoxycholic acid) powder, empty microcapsules and UDCA microcapsules for 7 days, then T1D was induced and treatments continued until mice had to be euthanised. UDCA microcapsules brought about reduction in elevated blood glucose, reduced inflammation and altered concentrations of the primary bile acid chenodeoxycholic acid and the secondary bile acid lithocholic acid, without affecting survival rate of mice. The findings suggest that UDCA exerted direct protective effects on pancreatic β-cells and this is likely to be associated with alterations of concentrations of primary and secondary bile acids in plasma and tissues.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Corina M Ionescu
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ryu Takechi
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Božica Kovačević
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
29
|
Abstract
Bile acid biotransformation is a collaborative effort by the host and the gut microbiome. Host hepatocytes synthesize primary bile acids from cholesterol. Once these host-derived primary bile acids enter the gastrointestinal tract, the gut microbiota chemically modify them into secondary bile acids. Interest into the gut-bile acid-host axis is expanding in diverse fields including gastroenterology, endocrinology, oncology, and infectious disease. This review aims to 1) describe the physiologic aspects of collaborative bile acid metabolism by the host and gut microbiota; 2) to evaluate how gut microbes influence bile acid pools, and in turn how bile acid pools modulate the gut microbial community structure; 3) to compare species differences in bile acid pools; and lastly, 4) discuss the effects of ursodeoxycholic acid (UDCA) administration, a common therapeutic bile acid, on the gut microbiota-bile acid-host axis.
Collapse
Affiliation(s)
- Jenessa A. Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,CONTACT Casey M. Theriot Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Research Building 406, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
30
|
Abbondio M, Palomba A, Tanca A, Fraumene C, Pagnozzi D, Serra M, Marongiu F, Laconi E, Uzzau S. Fecal Metaproteomic Analysis Reveals Unique Changes of the Gut Microbiome Functions After Consumption of Sourdough Carasau Bread. Front Microbiol 2019; 10:1733. [PMID: 31417524 PMCID: PMC6682701 DOI: 10.3389/fmicb.2019.01733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Sourdough-leavened bread (SB) is acknowledged for its great variety of valuable effects on consumer's metabolism and health, including a low glycemic index and a reduced content of the possible carcinogen acrylamide. Here, we aimed to investigate how these effects influence the gut microbiota composition and functions. Therefore, we subjected rats to a diet supplemented with SB, baker's yeast leavened bread (BB), or unsupplemented diet (chow), and, after 4 weeks of treatment, their gut microbiota was analyzed using a metaproteogenomic approach. As a result, diet supplementation with SB led to a reduction of specific members of the intestinal microbiota previously associated to low protein diets, namely Alistipes and Mucispirillum, or known as intestinal pathobionts, i.e., Mycoplasma. Concerning functions, asparaginases expressed by Bacteroides were observed as more abundant in SB-fed rats, leading to hypothesize that in their colonic microbiota the enzyme substrate, asparagine, was available in higher amounts than in BB- and chow-fed rats. Another group of protein families, expressed by Clostridium, was detected as more abundant in animal fed SB-supplemented diet. Of these, manganese catalase, small acid-soluble proteins (SASP), Ser/Thr kinase PrkA, and V-ATPase proteolipid subunit have been all reported to take part in Clostridium sporulation, strongly suggesting that the diet supplementation with SB might promote environmental conditions inducing metabolic dormancy of Clostridium spp. within the gut microbiota. In conclusion, our data describe the effects of SB consumption on the intestinal microbiota taxonomy and functions in rats. Moreover, our results suggest that a metaproteogenomic approach can provide evidence of the interplay between metabolites deriving from bread digestion and microbial metabolism.
Collapse
Affiliation(s)
- Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| |
Collapse
|
31
|
Rohlfing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, Benito de la Puebla H, Doublié S, Shen A. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet 2019; 15:e1008224. [PMID: 31276487 PMCID: PMC6636752 DOI: 10.1371/journal.pgen.1008224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/17/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.
Collapse
Affiliation(s)
- Amy E. Rohlfing
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian E. Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Emily R. Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - M. Lauren Donnelly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hector Benito de la Puebla
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Marion S, Studer N, Desharnais L, Menin L, Escrig S, Meibom A, Hapfelmeier S, Bernier-Latmani R. In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes 2018; 10:481-503. [PMID: 30589376 PMCID: PMC6748637 DOI: 10.1080/19490976.2018.1549420] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human gut hosts trillions of microorganisms that exert a profound influence on human biology. Gut bacteria communicate with their host by secreting small molecules that can signal to distant organs in the body. Bile acids are one class of these signaling molecules, synthesized by the host and chemically transformed by the gut microbiota. Among bile acid metabolizers, bile acid 7-dehydroxylating bacteria are commensals of particular importance as they carry out the 7-dehydroxylation of liver-derived primary bile acids to 7-dehydroxylated bile acids. The latter represents a major fraction of the secondary bile acid pool. The microbiology of this group of gut microorganisms is understudied and warrants more attention. Here, we detail the bile acid transformations carried out by the 7-dehydroxylating bacterium Clostridium scindens in vitro and in vivo. In vitro, C. scindens exhibits not only 7α-dehydroxylating capabilities but also, the ability to oxidize other hydroxyl groups and reduce ketone groups in primary and secondary bile acids. This study revealed 12-oxolithocholic acid as a major transient product in the 7α-dehydroxylation of cholic acid. Furthermore, the in vivo study included complementing a gnotobiotic mouse line (devoid of the ability to 7-dehydroxylate bile acids) with C. scindens and investigating its colonization dynamics and bile acid transformations. Using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry), we demonstrate that the large intestine constitutes a niche for C. scindens, where it efficiently 7-dehydroxylates cholic acid to deoxycholic acid. Overall, this work reveals a novel transient species during 7-dehydroxylation as well as provides direct evidence for the colonization and growth of 7-dehydroxylating bacteria in the large intestine.
Collapse
Affiliation(s)
- Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Studer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lyne Desharnais
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Center for Advanced Surface Analysis, Université de Lausanne, Lausanne, Switzerland
| | | | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CONTACT Rizlan Bernier-Latmani Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
McFarland LV, Ship N, Auclair J, Millette M. Primary prevention of Clostridium difficile infections with a specific probiotic combining Lactobacillus acidophilus, L. casei, and L. rhamnosus strains: assessing the evidence. J Hosp Infect 2018; 99:443-452. [PMID: 29702133 DOI: 10.1016/j.jhin.2018.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) has become the leading healthcare-associated infection and cause of outbreaks around the world. Although various innovative treatments have been developed, preventive strategies using multi-faceted infection control programmes have not been successful in reducing CDI rates. The major risk factor for CDI is the disruption of the normally protective gastrointestinal microbiota, typically by antibiotic use. Supplementation with specific probiotics has been effective in preventing various negative outcomes, including antibiotic-associated diarrhoea and CDI. However, a consensus of which probiotic strains might prevent CDI has not been reached and meta-analyses report high degrees of heterogeneity when studies of different probiotic products are pooled together. We searched the literature for probiotics with sufficient evidence to assess clinical efficacy for the prevention of CDI and focused on one specific probiotic formulation comprised of three lactobacilli strains (Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, Lactobacillus rhamnosus CLR2, Bio-K+) for its ability to prevent CDI in healthcare settings. A literature search on this probiotic formulation was conducted using electronic databases (PubMed, Google Scholar), abstracts from infectious disease and infection control meetings, and communications from the probiotic company. Supporting evidence was found for its mechanisms of action against CDI and that it has an excellent safety and tolerability profile. Evidence from randomized controlled trials and facility-level interventions that administer Bio-K+ show reduced incidence rates of CDI. This probiotic formulation may have a role in primary prevention of healthcare-associated CDI when administered to patients who receive antibiotics.
Collapse
Affiliation(s)
- L V McFarland
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - N Ship
- Research and Development, Bio-K Plus International Inc., Laval, Quebec, Canada
| | - J Auclair
- Research and Development, Bio-K Plus International Inc., Laval, Quebec, Canada
| | - M Millette
- Research and Development, Bio-K Plus International Inc., Laval, Quebec, Canada
| |
Collapse
|
34
|
Calamari L, Morera P, Bani P, Minuti A, Basiricò L, Vitali A, Bernabucci U. Effect of hot season on blood parameters, fecal fermentative parameters, and occurrence of Clostridium tyrobutyricum spores in feces of lactating dairy cows. J Dairy Sci 2018; 101:4437-4447. [PMID: 29501337 DOI: 10.3168/jds.2017-13693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022]
Abstract
High temperature influences rumen and gut health, passage rate, and diet digestibility, with effects on fermentative processes. The main aim of the study was to investigate the effect of hot season on hindgut fermentation, the occurrence of Clostridium tyrobutyricum spores in bovine feces, and on their relationship with metabolic conditions in dairy cows producing milk used for Grana Padano cheese. The study was carried out on 7 dairy farms located in the Po Valley (Italy), involving 1,950 Italian Friesian dairy cows. The study was carried out from November 2013 till the end of July 2014. Temperature and relative humidity were recorded daily by weather stations. Constant management conditions were maintained during the experimental period. Feed and diet characteristics, metabolic conditions, and fecal characteristics were recorded in winter (from late November 2013 to the end of January 2014), spring (from April to May 2014), and summer (July 2014) season. In each season, blood samples were collected from 14 multiparous lactating dairy cows per herd to measure biochemical indices related to energy, protein, and mineral metabolism, as well as markers of inflammation and some enzyme activities. Fecal samples were also collected and measurements of moisture, pH and volatile fatty acids (VFA) were performed. The DNA extracted and purified from fecal samples was used to detect Clostridium tyrobutyricum spores in a quantitative real-time PCR assay. The daily mean temperature-humidity index was 40.7 ± 4.6 (range 25 to 55), 61.2 ± 3.7 (range 39 to 77), and 70.8 ± 3.2 (range 54 to 83) in winter, spring, and summer, respectively. Total VFA concentration in feces progressively decreased from winter to summer. The seasonal changes of acetate and propionate followed the same trend of total VFA; conversely, butyrate did not show any difference between seasons, and its molar proportion was greater in summer compared with winter. A greater occurrence of Cl. tyrobutyricum spores in summer compared with the other seasons was observed. The plasma concentrations of glucose, urea, albumin, Ca, Mg, Cl, Zn, and alkaline phosphatase activity were lower in summer compared with winter, whereas the opposite occurred for bilirubin and Na. Our results show that summer season, through direct and indirect effect of heat stress, affected fecal fermentative parameters and hindgut buffering capacity, and was responsible for the increasing occurrence of Cl. tyrobutyricum spores in feces.
Collapse
Affiliation(s)
- L Calamari
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - P Morera
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - P Bani
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - A Minuti
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - L Basiricò
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - A Vitali
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| |
Collapse
|
35
|
Sachsenheimer FE, Yang I, Zimmermann O, Wrede C, Müller LV, Gunka K, Groß U, Suerbaum S. Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. Int J Med Microbiol 2018; 308:364-377. [PMID: 29490877 DOI: 10.1016/j.ijmm.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/22/2018] [Accepted: 02/18/2018] [Indexed: 01/26/2023] Open
Abstract
Infection with the emerging pathogen Clostridioides (Clostridium) difficile might lead to colonization of the gastrointestinal tract of humans and mammals eventually resulting in antibiotic-associated diarrhea, which can be mild to possibly life-threatening. Recurrences after antibiotic treatment have been described in 15-30% of the cases and are either caused by the original (relapse) or by new strains (reinfection). In this study, we describe a patient with ongoing recurrent C. difficile infections over 13 months. During this time, ten C. difficile strains of six different ribotypes could be isolated that were further characterized by phenotypic and genomic analyses including motility and sporulation assays, growth fitness and antibiotic susceptibility as well as whole-genome sequencing. PCR ribotyping of the isolates confirmed that the recurrences were a mixture of relapses and reinfections. One recurrence was due to a mixed infection with three different strains of two different ribotypes. Furthermore, genomes were sequenced and multi-locus sequence typing (MLST) was carried out, which identified the strains as members of sequence types (STs) 10, 11, 14 and 76. Comparison of the genomes of isolates of the same ST originating from recurrent CDI (relapses) indicated little within-patient microevolution and some concurrent within-patient diversity of closely related strains. Isolates of ribotype 126 that are binary toxin positive differed from other ribotypes in various phenotypic aspects including motility, sporulation behavior and cell morphology. Ribotype 126 is genetically related to ribotype 078 that has been associated with increased virulence. Isolates of the ribotype 126 exhibited elongated cells and a chaining phenotype, which was confirmed by membrane staining and scanning electron microscopy. Furthermore, this strain exhibits a sinking behavior in liquid medium in stationary growth phase. Taken together, our observation has proven multiple CDI recurrences that were based on a mixture of relapses and reinfections.
Collapse
Affiliation(s)
- F E Sachsenheimer
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany.
| | - I Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Stadtfelddamm 34, Hannover, Germany
| | - O Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - C Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - L V Müller
- National Consulting Laboratory for Clostridium difficile, Germany
| | - K Gunka
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - U Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, Germany
| | - S Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany; Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Germany
| |
Collapse
|
36
|
Shrestha R, Sorg JA. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 2018; 49:41-47. [PMID: 29221987 PMCID: PMC5844826 DOI: 10.1016/j.anaerobe.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
Bile acids are an important signal for germination of Clostridioides difficile spores; however, the bile acid signal alone is not sufficient. Amino acids, such as glycine, are another signal necessary for germination by C. difficile spores. Prior studies on the amino acid signal required for germination have shown that there is a preference for the amino acid used as a signal for germination. Previously we found that d-alanine can function as a co-germinant for C. difficile spores at 37 °C but not at 25 °C. Here, we tested the ability of other amino acids to act as co-germinants with taurocholate (TA) at 37 °C and found that many amino acids previously categorized as non-co-germinants are co-germinants at 37 °C. Based on the EC50 values calculated for two different strains, we found that C. difficile spores recognize different amino acids with varying efficiencies. Using this data, we ranked the amino acids based on their effect on germination and found that in addition to d-alanine, other D-forms of amino acids are also used by C. difficile spores as co-germinants. Among the different types of amino acids, ones with branched chains such as valine, leucine, and isoleucine are the poorest co-germinants. However, glycine is still the most effective amino acid signal for both strains. Our results suggest that the yet-to-be-identified amino acid germinant receptor is highly promiscuous.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX 77843, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
37
|
Complementary Methodologies To Investigate Human Gut Microbiota in Host Health, Working towards Integrative Systems Biology. J Bacteriol 2018; 200:JB.00376-17. [PMID: 28874411 DOI: 10.1128/jb.00376-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In 1680, Antonie van Leeuwenhoek noted compositional differences in his oral and fecal microbiota, pioneering the study of the diversity of the human microbiome. From Leeuwenhoek's time to successful modern attempts at changing the gut microbial landscape to cure disease, there has been an exponential increase in the recognition of our resident microbes as part of ourselves. Thus, the human host and microbiome have evolved in parallel to configure a balanced system in which microbes survive in homeostasis with our innate and acquired immune systems, unless disease occurs. A growing number of studies have demonstrated a correlation between the presence/absence of microbial taxa and some of their functional molecules (i.e., genes, proteins, and metabolites) with health and disease states. Nevertheless, misleading experimental design on human subjects and the cost and lack of standardized animal models pose challenges to answering the question of whether changes in microbiome composition are cause or consequence of a certain biological state. In this review, we evaluate the state of the art of methodologies that enable the study of the gut microbiome, encouraging a change in broadly used analytic strategies by choosing effector molecules (proteins and metabolites) in combination with coding nucleic acids. We further explore microbial and effector microbial product imbalances that relate to disease and health.
Collapse
|
38
|
Gómez S, Chaves F, Orellana MA. Clinical, epidemiological and microbiological characteristics of relapse and re-infection in Clostridium difficile infection. Anaerobe 2017; 48:147-151. [PMID: 28830842 DOI: 10.1016/j.anaerobe.2017.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 02/08/2023]
Abstract
Recurrent diarrhea is a common complication of Clostridium difficile infection (CDI). Recurrent CDI (r-CDI) may be produced by the persistence of spores (relapse) or by the acquisition of a new strain (reinfection). In this study, we analyze epidemiological, clinical, microbiological and laboratory data from patients with r-CDI, relapse, and reinfection-CDI over 5 years and compared with a control group (non r-CDI). Among 60 patients with r-CDI, 36 patients had stool samples collected from two or more episodes, which were molecularly analyzed. Based on ribotyping, 63.9% of the samples were relapse, and 36.1% reinfection. In a multivariable logistic regression analysis, previous antibiotic exposure was found to be a risk factor for r-CDI (OR: 2.23; 95% CI: 1.0-4.9; p = 0.04). Patients with relapse had previous antibiotic exposure more frequently than did patients with reinfection (p = 0.03), and patients with reinfection suffered more frequently from chronic liver disease (p = 0.02) than did relapse patients. Relapse patients compared with the control group had a higher percentage of previous antibiotic exposure, although the difference was statistically no significant (73.9% vs. 91.3 p = 0.06). No significant differences for the selected variables were observed between the reinfection and control groups, although we observed a higher percentage of patients with chronic liver disease (30.8% vs 13.3%; p = 0.08). All isolates were sensitive to metronidazole and vancomycin. No significant differences in antibiotic susceptibility were found between the different groups. Sporulation and germination frequency of r-CDI were higher than non r-CDI (p = 0.02 and p < 0.01, respectively). Nevertheless, there were statistically not significant differences between the relapse and reinfection groups. Both frequencies were compared between the first and second episode of CDI for the relapse and reinfection groups, but differences were not observed to be statistically significant. In conclusion, our study showed that the recurrence of CDI was associated with antibiotic use and sporulation/germination frequency, regardless of relapse or reinfection. The use of antibiotics would produce a dysbiosis and favor the persistence of the C. difficile spores and relapse. A possible alteration of the intestinal microbiota and the bile salts produced by chronic liver disease could favor reinfection.
Collapse
Affiliation(s)
- Sara Gómez
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Fernando Chaves
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Angeles Orellana
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
39
|
Ferrer M, Raczkowska BA, Martínez-Martínez M, Barbas C, Rojo D. Phenotyping of gut microbiota: Focus on capillary electrophoresis. Electrophoresis 2017; 38:2275-2286. [DOI: 10.1002/elps.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis; Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| | - Beata Anna Raczkowska
- Department of Endocrinology; Diabetology and Internal Medicine, Medical University of Bialystok; Bialystok Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| |
Collapse
|
40
|
Rojo D, Méndez-García C, Raczkowska BA, Bargiela R, Moya A, Ferrer M, Barbas C. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 2017; 41:453-478. [PMID: 28333226 PMCID: PMC5812509 DOI: 10.1093/femsre/fuw046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols.
Collapse
Affiliation(s)
- David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| | | | - Beata Anna Raczkowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), 46020 Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| |
Collapse
|
41
|
Bremer E. Clostridium difficile: A bad bug goes into defensive mode. Environ Microbiol 2017; 19:2523-2528. [PMID: 28447375 DOI: 10.1111/1462-2920.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von Frisch Str. 8, Marburg, D-35043, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, Marburg, D-35043, Germany
| |
Collapse
|
42
|
Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 2016; 41:44-50. [PMID: 27163871 DOI: 10.1016/j.anaerobe.2016.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI.
Collapse
|