1
|
Calixto A, Moen KE, Moreno SNJ. The contribution of the Golgi and the endoplasmic reticulum to calcium and pH homeostasis in Toxoplasma gondii. J Biol Chem 2025; 301:108372. [PMID: 40043955 DOI: 10.1016/j.jbc.2025.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
The cytosolic Ca2+ concentration of all cells is highly regulated demanding the coordinated operation of Ca2+ pumps, channels, exchangers, and binding proteins. In the protozoan parasite Toxoplasma gondii, calcium homeostasis, essential for signaling, governs critical virulence traits. However, the identity of most molecular players involved in signaling and homeostasis in T. gondii is unknown or poorly characterized. In this work, we studied a putative calcium proton exchanger, TgGT1_319550 (TgCAXL1), which belongs to a family of Ca2+/proton exchangers that localize to the Golgi apparatus. We localized TgCAXL1 to the Golgi and the endoplasmic reticulum (ER) of T. gondii and validated its role as a Ca2+/proton exchanger by yeast complementation. Characterization of a knock-out mutant for TgCAXL1 (Δcaxl) underscored the role of TgCAXL1 in Ca2+ storage by the ER and acidic stores, most likely the Golgi. Most interestingly, TgCAXL1 function is linked to the Ca2+ pumping activity of the Sarcoendoplasmic Reticulum Ca2+-ATPase (TgSERCA). TgCAXL1 functions in cytosolic pH regulation and recovery from acidic stress. Our data showed for the first time the role of the Golgi in storing and modulating Ca2+ signaling in T. gondii and the potential link between pH regulation and TgSERCA activity, which is essential for filling intracellular stores with Ca2+.
Collapse
Affiliation(s)
- Abigail Calixto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Katherine E Moen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
2
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Chen M, Koszti SG, Bonavoglia A, Maco B, von Rohr O, Peng HJ, Soldati-Favre D, Kloehn J. Dissecting apicoplast functions through continuous cultivation of Toxoplasma gondii devoid of the organelle. Nat Commun 2025; 16:2095. [PMID: 40025025 PMCID: PMC11873192 DOI: 10.1038/s41467-025-57302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
The apicoplast, a relic plastid organelle derived from secondary endosymbiosis, is crucial for many medically relevant Apicomplexa. While it no longer performs photosynthesis, the organelle retains several essential metabolic pathways. In this study, we examine the four primary metabolic pathways in the Toxoplasma gondii apicoplast, along with an accessory pathway, and identify conditions that can bypass these. Contrary to the prevailing view that the apicoplast is indispensable for T. gondii, we demonstrate that bypassing all pathways renders the apicoplast non-essential. We further show that T. gondii lacking an apicoplast (T. gondii-Apico) can be maintained indefinitely in culture, establishing a unique model to study the functions of this organelle. Through comprehensive metabolomic, transcriptomic, and proteomic analyses of T. gondii-Apico we uncover significant adaptation mechanisms following loss of the organelle and identify numerous putative apicoplast proteins revealed by their decreased abundance in T. gondii-Apico. Moreover, T. gondii-Apico parasites exhibit reduced sensitivity to apicoplast targeting compounds, providing a valuable tool for discovering new drugs acting on the organelle. The capability to culture T. gondii without its plastid offers new avenues for exploring apicoplast biology and developing novel therapeutic strategies against apicomplexan parasites.
Collapse
Affiliation(s)
- Min Chen
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Szilamér Gyula Koszti
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Alessandro Bonavoglia
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health; Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| |
Collapse
|
4
|
Hu L, Guan C, Zhao Y, Chai R, Zhang W, Bai R. Identification of the enzyme activity of human Demodex aspartic protease and its function to hydrolyse host macromolecules and skin cell proteins. Int J Biol Macromol 2024; 283:137291. [PMID: 39510475 DOI: 10.1016/j.ijbiomac.2024.137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Aspartic protease (ASP), a common proteolytic enzyme, plays an important role in the pathogenesis of numerous parasites. However, its role in Demodex remains unclear. Herein, we studied the expression, purification, enzymatic activity detection, and hydrolysis function of human Demodex ASP. The findings showed that recombinant ASP (rASP) possessed aspartic protease activity, which reached optimum levels at pH 2.5-3.0 and 35 °C. Furthermore, the activity of Demodex folliculorum rASP (Df.ASP) was considerably higher than that of Demodex brevis rASP (Db.rASP). Df.rASP also exhibited a more potent hydrolytic ability than Db.rASP. Df.rASP hydrolysed IgG, IgM, and fibronectin, whereas Db.rASP only slightly hydrolysed IgG. Mass spectrometry analysis revealed that Df.rASP exerted hydrolytic effects on 38 HaCaT proteins, more than the 23 proteins hydrolysed by Db.rASP. Sequence alignment and structure modelling of the substrate binding cleft identified three distinct amino acids between Df.ASP and Db.ASP, which should be the molecular basis for their difference in enzymatic activity and hydrolytic function. These results imply that Df.rASP may play a more critical role in the pathogenesis of human Demodex, and molecular data will provide a scientific basis for future analyses of their molecular pathogenesis.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chenglin Guan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yae Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Rong Chai
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wanyu Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Zheng XN, Li TT, Elsheikha HM, Wang M, Sun LX, Wu XJ, Fu BQ, Zhu XQ, Wang JL. GRA47 is important for the morphology and permeability of the parasitophorous vacuole in Toxoplasma gondii. Int J Parasitol 2024; 54:583-596. [PMID: 38936501 DOI: 10.1016/j.ijpara.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China.
| |
Collapse
|
6
|
McConville R, Krol JMM, Steel RWJ, O’Neill MT, Davey BK, Hodder AN, Nebl T, Cowman AF, Kneteman N, Boddey JA. Flp/ FRT-mediated disruption of ptex150 and exp2 in Plasmodium falciparum sporozoites inhibits liver-stage development. Proc Natl Acad Sci U S A 2024; 121:e2403442121. [PMID: 38968107 PMCID: PMC11252984 DOI: 10.1073/pnas.2403442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Collapse
Affiliation(s)
- Robyn McConville
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jelte M. M. Krol
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Ryan W. J. Steel
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Matthew T. O’Neill
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Bethany K. Davey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony N. Hodder
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Thomas Nebl
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Alan F. Cowman
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Norman Kneteman
- Departments of Surgery, University of Alberta, Edmonton, ABT6G 2E1, Canada
| | - Justin A. Boddey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
7
|
Chakraborty S, Deshmukh A, Kesari P, Bhaumik P. Toxoplasma gondii aspartic protease 5: structural basis of substrate binding and inhibition mechanism. J Biomol Struct Dyn 2024:1-16. [PMID: 38424737 DOI: 10.1080/07391102.2024.2322625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii, a worldwide prevalent parasite is responsible for causing toxoplasmosis in almost all warm-blooded animals, including humans. Golgi-resident T. gondii aspartic protease 5 (TgASP5) plays an essential role in the maturation and export of the effector proteins those modulate the host immune system to establish a successful infection. Hence, inhibiting this enzyme can be a possible therapeutic strategy against toxoplasmosis. This is the first report of the detailed structural investigations of the TgASP5 mature enzyme using molecular modeling and an all-atom simulation approach which provide in-depth knowledge of the active site architecture of TgASP5. The analysis of the binding mode of the TEXEL (Toxoplasma EXport Element) substrate to TgASP5 highlighted the importance of the active site residues. Ser505, Ala776 and Tyr689 in the S2 binding pocket are responsible for the specificity towards Arg at the P2 position of TEXEL substrate. The molecular basis of inhibition by the only known inhibitor RRLStatine has been identified, and our results show that it blocks the active site by forming a hydrogen bond with a catalytic aspartate. Besides that, known aspartic protease inhibitors were screened against TgASP5 using docking, MD simulations and MM-PBSA binding energy calculations. The top-ranked inhibitors (SC6, ZY1, QBH) showed higher binding energy than RRLStatine. Understanding the structural basis of substrate recognition and the binding mode of these inhibitors will help to develop potent mechanistic inhibitors against TgASP5. This study will also provide insights into the structural features of pepsin-like aspartic proteases from other apicomplexan parasites for developing antiparasitic agents.
Collapse
Affiliation(s)
- Satadru Chakraborty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuradha Deshmukh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pooja Kesari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Fierro MA, Muheljic A, Sha J, Wohlschlegel J, Beck JR. PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins. mSphere 2024; 9:e0039323. [PMID: 38334391 PMCID: PMC10900883 DOI: 10.1128/msphere.00393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric Plasmodium export element (PEXEL)/host-targeting motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here, we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood stage. While the N termini of exported proteins containing the PEXEL and immediately downstream ~10 residues are sufficient to mediate translocation into the RBC, the equivalent UIS2 N terminus does not promote the export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position, which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RIL↓DE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N terminus mediates export, not PEXEL processing per se. Prompted by this observation, we further show that PEXEL sequences in the N termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export.IMPORTANCEHost erythrocyte remodeling by malaria parasite-exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum, most exported proteins undergo proteolytic maturation via recognition of the pentameric Plasmodium export element (PEXEL)/host-targeting motif by the aspartic protease Plasmepsin V, which exposes a mature N terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate that PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing, reinforcing that features of the mature N terminus, and not PEXEL cleavage, identify cargo for export. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, lowa, USA
| | - Ajla Muheljic
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, California, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, lowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Rinkenberger N, Rosenberg A, Radke JB, Bhushan J, Tomita T, Weiss LM, Sibley LD. Susceptibility of Toxoplasma gondii to autophagy in human cells relies on multiple interacting parasite loci. mBio 2024; 15:e0259523. [PMID: 38095418 PMCID: PMC10790690 DOI: 10.1128/mbio.02595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2024] Open
Abstract
IMPORTANCE Autophagy is a process used by cells to recycle organelles and macromolecules and to eliminate intracellular pathogens. Previous studies have shown that some stains of Toxoplasma gondii are resistant to autophagy-dependent growth restriction, while others are highly susceptible. Although it is known that autophagy-mediated control requires activation by interferon gamma, the basis for why parasite strains differ in their susceptibility is unknown. Our findings indicate that susceptibility involves at least five unlinked parasite genes on different chromosomes, including several secretory proteins targeted to the parasite-containing vacuole and exposed to the host cell cytosol. Our findings reveal that susceptibility to autophagy-mediated growth restriction relies on differential recognition of parasite proteins exposed at the host-pathogen interface, thus identifying a new mechanism for cell-autonomous control of intracellular pathogens.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Joshua B. Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jaya Bhushan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
10
|
Seizova S, Ferrel A, Boothroyd J, Tonkin CJ. Toxoplasma protein export and effector function. Nat Microbiol 2024; 9:17-28. [PMID: 38172621 DOI: 10.1038/s41564-023-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite with a considerable host range that must invade the cells of warm-blooded hosts to survive and replicate. The challenges and opportunities that such a strategy represent have been met by the evolution of effectors that are delivered into host cells, counter host defences and co-opt host cell functions for their own purposes. These effectors are delivered in two waves using distinct machinery for each. In this Review, we focus on understanding the architecture of these protein-export systems and how their protein cargo is recognized and selected. We discuss the recent findings on the role that host manipulation has in latent Toxoplasma infections. We also discuss how these recent findings compare to protein export in the related Plasmodium spp. (the causative agent of malaria) and how this can inform our understanding of host manipulation in the larger Apicomplexa phylum and its evolution.
Collapse
Affiliation(s)
- Simona Seizova
- School of Life Sciences, The University of Dundee, Dundee, UK
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - John Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Arafa FM, Mogahed NMFH, Eltarahony MM, Diab RG. Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathog Glob Health 2023; 117:639-654. [PMID: 36871204 PMCID: PMC10498805 DOI: 10.1080/20477724.2023.2186079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Toxoplasmosis is an opportunistic infection caused by the coccidian Toxoplasma gondii which represents a food and water contaminant. The available chemotherapeutic agents for toxoplasmosis are limited and the choice is difficult when considering the side effects. Selenium is an essential trace element. It is naturally found in dietary sources, especially seafood, and cereals. Selenium and selenocompounds showed anti-parasitic effects through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. The present study evaluated the potential efficacy of environmentally benign selenium nanoparticles (SeNPs) against acute toxoplasmosis in a mouse model. SeNPs were fabricated by nanobiofactory Streptomyces fulvissimus and characterized by different analytical techniques including, UV-spectrophotometry, transmission electron microscopy, EDX, and XRD. Swiss albino mice were infected with Toxoplasma RH strain in a dose of 3500 tachyzoites in 100 μl saline to induce acute toxoplasmosis. Mice were divided into five groups. Group I: non-infected, non-treated, group II: infected, non-treated, group III: non-infected, treated with SeNPs, group IV: infected, treated with co-trimoxazole (sulfamethoxazole/trimethoprim) and group V: infected, treated with SeNPs. There was a significant increase in survival time in the SeNPs-treated group and minimum parasite count was observed compared to untreated mice in hepatic and splenic impression smears. Scanning electron microscopy showed tachyzoites deformity with multiple depressions and protrusions, while transmission electron microscopy showed excessive vacuolization and lysis of the cytoplasm, especially in the area around the nucleus and the apical complex, together with irregular cell boundary and poorly demarcated cell organelles. The present study demonstrated that the biologically synthesized SeNPs can be a potential natural anti-Toxoplasma agent in vivo.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine M. F. H. Mogahed
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M. Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research centers District, Alexandria, Egypt
| | - Radwa G. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Stuer N, Van Damme P, Goormachtig S, Van Dingenen J. Seeking the interspecies crosswalk for filamentous microbe effectors. TRENDS IN PLANT SCIENCE 2023; 28:1045-1059. [PMID: 37062674 DOI: 10.1016/j.tplants.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.
Collapse
Affiliation(s)
- Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| |
Collapse
|
13
|
Fierro MA, Muheljic A, Sha J, Wohlschlegel JA, Beck JR. PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548774. [PMID: 37503245 PMCID: PMC10369990 DOI: 10.1101/2023.07.12.548774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting Motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N-terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood-stage. While the N-termini of exported proteins containing the PEXEL and immediately downstream ∼10 residues is sufficient to mediate translocation into the RBC, the equivalent UIS2 N-terminus does not promote export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RILτDE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N-terminus mediates export, not PEXEL processing per se . Prompted by this observation, we further show that PEXEL sequences in the N-termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export. Importance Host erythrocyte remodeling by malaria parasite exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum , most exported proteins undergo proteolytic maturation via recognition of the pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting motif by the aspartic protease Plasmepsin V (PMV) which exposes a mature N-terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing by PMV, reinforcing that features of the mature N-terminus, and not PEXEL cleavage, identify cargo for export cargo. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.
Collapse
|
14
|
Paredes-Santos TC, Bitew MA, Swale C, Rodriguez F, Krishnamurthy S, Wang Y, Maru P, Sangaré LO, Saeij JPJ. Genome-wide CRISPR screen identifies genes synthetically lethal with GRA17, a nutrient channel encoding gene in Toxoplasma. PLoS Pathog 2023; 19:e1011543. [PMID: 37498952 PMCID: PMC10409377 DOI: 10.1371/journal.ppat.1011543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Toxoplasma gondii is a parasite that replicates within a specialized compartment called the parasitophorous vacuole (PV), which is surrounded by the PV membrane (PVM). To obtain essential nutrients, Toxoplasma must transport molecules across the PVM, a process mediated by the secreted parasite proteins GRA17 and GRA23. These proteins form pores in the PVM through which small molecules can diffuse in and out of the PV. GRA17 and GRA23 are synthetically lethal, suggesting that at least one pore type is essential for parasite survival. In the 'nutrient sensitized' Δgra17 strain it is likely that other Toxoplasma genes become essential, because they mediate nutrient acquisition from the host or are involved in the trafficking of GRA23 to the PVM. To identify these genes, a genome-wide loss-of-function screen was performed in wild-type and Δgra17 parasites, which identified multiple genes that were synthetically sick/lethal with GRA17. Several of these genes were involved in the correct localization of GRAs, including GRA17/GRA23, to the PVM. One of the top hits, GRA72, was predicted to form a pore on the PVM, and its deletion led to the formation of enlarged "bubble vacuoles" with reduced PVM small molecule permeability, similar to what was previously observed for Δgra17 parasites. Furthermore, Δgra72 parasites had reduced in vitro growth and virulence in mice. These findings suggest that in the absence of GRA17, other genes become essential, likely because they play a role in the proper localization of GRA23 (and other GRAs) or because they determine host-derived nutrient acquisition at the PVM.
Collapse
Affiliation(s)
- Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Felipe Rodriguez
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
15
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
16
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Toxoplasma IWS1 Determines Fitness in Interferon-γ-Activated Host Cells and Mice by Indirectly Regulating ROP18 mRNA Expression. mBio 2023; 14:e0325622. [PMID: 36715543 PMCID: PMC9973038 DOI: 10.1128/mbio.03256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Toxoplasma gondii secretes various virulence effector molecules into host cells to disrupt host interferon-γ (IFN-γ)-dependent immunity. Among these effectors, ROP18 directly phosphorylates and inactivates IFN-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), leading to the subversion of IFN-inducible GTPase-induced cell-autonomous immunity. The modes of action of ROP18 have been studied extensively; however, little is known about the molecular mechanisms by which ROP18 is produced in the parasite itself. Here, we report the role of T. gondii transcription factor IWS1 in ROP18 mRNA expression in the parasite. Compared with wild-type virulent type I T. gondii, IWS1-deficient parasites showed dramatically increased loading of IRGs and GBPs onto the parasitophorous vacuole membrane (PVM). Moreover, IWS1-deficient parasites displayed decreased virulence in wild-type mice but retained normal virulence in mice lacking the IFN-γ receptor. Furthermore, IWS1-deficient parasites showed severely decreased ROP18 mRNA expression; however, tagged IWS1 did not directly bind with genomic regions of the ROP18 locus. Ectopic expression of ROP18 in IWS1-deficient parasites restored the decreased loading of effectors onto the PVM and in vivo virulence in wild-type mice. Taken together, these data demonstrate that T. gondii IWS1 indirectly regulates ROP18 mRNA expression to determine fitness in IFN-γ-activated host cells and mice. IMPORTANCE The parasite Toxoplasma gondii has a counterdefense system against interferon-γ (IFN-γ)-dependent host immunity which relies on the secretion of parasite effector proteins. ROP18 is one of the effector, which is released into host cells to inactivate IFN-γ-dependent anti-Toxoplasma host proteins. The mechanism by which Toxoplasma ROP18 subverts host immunity has been extensively analyzed, but how Toxoplasma produces this virulence factor remains unclear. Here, we show that Toxoplasma transcription factor IWS1 is important for ROP18 mRNA expression in the parasite. Loss of IWS1 from virulent Toxoplasma leads to dramatically decreased ROP18 mRNA expression, resulting in profoundly decreased virulence due to greater activity of IFN-γ-dependent host immune responses. Thus, Toxoplasma prepares the critical virulence factor ROP18 via an IWS1-dependent system to negate IFN-γ-dependent antiparasitic immunity and thus survive in the host.
Collapse
|
18
|
Functional Characterization of 15 Novel Dense Granule Proteins in Toxoplasma gondii Using the CRISPR-Cas9 System. Microbiol Spectr 2023; 11:e0307822. [PMID: 36515555 PMCID: PMC9927372 DOI: 10.1128/spectrum.03078-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The analysis of the subcellular localization and function of dense granule proteins (GRAs) is of central importance for the understanding of host-parasite interaction and pathogenesis of Toxoplasma gondii infection. Here, we identified 15 novel GRAs and used C-terminal endogenous gene tagging to determine their localization at the intravacuolar network (IVN), parasitophorous vacuole (PV), or PV membrane (PVM) in the tachyzoites and at the periphery of the bradyzoites-containing cysts. The functions of the 15 gra genes were examined in type I RH strain and 5 of these gra genes were also evaluated in the cyst-forming type II Pru strain. The 15 novel gra genes were successfully disrupted by using CRISPR-Cas9 mediated homologous recombination and the results showed that 13 gra genes were not individually essential for T. gondii replication in vitro or virulence in mice during acute and chronic infection. Intriguingly, deletion of TGME49_266410 and TGME49_315910 in both RH and Pru strains decreased the parasite replication in vitro and attenuated its virulence, and also reduced the cyst-forming ability of the Pru strain in mice during chronic infection. Comparison of the transcriptomic profiles of the 15 gra genes suggests that they may play roles in other life cycle stages and genotypes of T. gondii. Taken together, our findings improve the understanding of T. gondii pathogenesis and demonstrate the involvement of two novel GRAs, TGME49_266410 and TGME49_315910, in the parasite replication and virulence. IMPORTANCE Dense granule proteins (GRAs) play important roles in Toxoplasma gondii pathogenicity. However, the functions of many putative GRAs have not been elucidated. Here, we found that 15 novel GRAs are secreted into intravacuolar network (IVN), parasitophorous vacuole (PV), or PV membrane (PVM) in tachyzoites and are located at the periphery of the bradyzoite-containing cysts. TGME49_266410 and TGME49_315910 were crucial to the growth of RH and Pru strains in vitro. Deletion of TGME49_266410 and TGME49_315910 attenuated the parasite virulence in mice. However, disruption of other 13 gra genes did not have a significant impact on the proliferation and pathogenicity of T. gondii in vitro or in vivo. The marked effects of the two novel GRAs (TGME49_266410 and TGME49_315910) on the in vitro growth and virulence of T. gondii are notable and warrant further elucidation of the temporal and spatial dynamics of translocation of these two novel GRAs and how do they interfere with host cell functions.
Collapse
|
19
|
Dogga SK, Lunghi M, Maco B, Li J, Claudi B, Marq JB, Chicherova N, Kockmann T, Bumann D, Hehl AB, Soldati-Favre D, Hammoudi PM. Importance of aspartyl protease 5 in the establishment of the intracellular niche during acute and chronic infection of Toxoplasma gondii. Mol Microbiol 2022; 118:601-622. [PMID: 36210525 DOI: 10.1111/mmi.14987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jiagui Li
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Natalia Chicherova
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
21
|
Walsh D, Katris NJ, Sheiner L, Botté CY. Toxoplasma metabolic flexibility in different growth conditions. Trends Parasitol 2022; 38:775-790. [PMID: 35718642 PMCID: PMC10506913 DOI: 10.1016/j.pt.2022.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Apicomplexan parasites have complex metabolic networks that coordinate acquisition of metabolites by de novo synthesis and by scavenging from the host. Toxoplasma gondii has a wide host range and may rely on the flexibility of this metabolic network. Currently, the literature categorizes genes as essential or dispensable according to their dispensability for parasite survival under nutrient-replete in vitro conditions. However, recent studies revealed correlations between medium composition and gene essentiality. Therefore, nutrient availability in the host environment likely determines the requirement of metabolic pathways, which may redefine priorities for drug target identification in a clinical setting. Here we review the recent work characterizing some of the major Toxoplasma metabolic pathways and their functional adaptation to host nutrient content.
Collapse
Affiliation(s)
- Daniel Walsh
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Nicholas J Katris
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| |
Collapse
|
22
|
Nyonda MA, Boyer JB, Belmudes L, Krishnan A, Pino P, Couté Y, Brochet M, Meinnel T, Soldati-Favre D, Giglione C. N-Acetylation of secreted proteins is widespread in Apicomplexa and independent of acetyl-CoA ER-transporter AT1. J Cell Sci 2022; 135:275539. [PMID: 35621049 DOI: 10.1242/jcs.259811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Acetyl-CoA participates in post-translational modification of proteins, central carbon and lipid metabolism in several cell compartments. In mammals, the acetyl-CoA transporter 1 (AT1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with dedicated acetyltransferases including NAT8. However, the implication of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. We identify homologues of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei. Proteome-wide analyses revealed widespread N-terminal acetylation marks of secreted proteins in both parasites. Such acetylation profile of N-terminally processed proteins was never observed so far in any other organisms. AT1 deletion resulted in a considerable reduction of parasite fitness. In P. berghei, AT1 is important for growth of asexual blood stages and production of female gametocytes and male gametocytogenesis impaling its requirement for transmission. In the absence of AT1, the lysine and N-terminal acetylation sites remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Paco Pino
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,ExcellGene SA, CH1870 Monthey, Switzerland
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Seizova S, Ruparel U, Garnham AL, Bader SM, Uboldi AD, Coffey MJ, Whitehead LW, Rogers KL, Tonkin CJ. Transcriptional modification of host cells harboring Toxoplasma gondii bradyzoites prevents IFN gamma-mediated cell death. Cell Host Microbe 2021; 30:232-247.e6. [PMID: 34921775 DOI: 10.1016/j.chom.2021.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.
Collapse
Affiliation(s)
- Simona Seizova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ushma Ruparel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael J Coffey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Poseida Therapeutics, San Diego, CA, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Dumaine JE, Sateriale A, Gibson AR, Reddy AG, Gullicksrud JA, Hunter EN, Clark JT, Striepen B. The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell. eLife 2021; 10:e70451. [PMID: 34866573 PMCID: PMC8687662 DOI: 10.7554/elife.70451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
The parasite Cryptosporidium is responsible for diarrheal disease in young children causing death, malnutrition, and growth delay. Cryptosporidium invades enterocytes where it develops in a unique intracellular niche. Infected cells exhibit profound changes in morphology, physiology, and transcriptional activity. How the parasite effects these changes is poorly understood. We explored the localization of highly polymorphic proteins and found members of the Cryptosporidium parvum MEDLE protein family to be translocated into the cytosol of infected cells. All intracellular life stages engage in this export, which occurs after completion of invasion. Mutational studies defined an N-terminal host-targeting motif and demonstrated proteolytic processing at a specific leucine residue. Direct expression of MEDLE2 in mammalian cells triggered an ER stress response, which was also observed during infection. Taken together, our studies reveal the presence of a Cryptosporidium secretion system capable of delivering parasite proteins into the infected enterocyte.
Collapse
Affiliation(s)
- Jennifer E Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita G Reddy
- Franklin College of Arts and Science, University of GeorgiaAthensUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph T Clark
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
25
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
27
|
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted Effectors Modulating Immune Responses to Toxoplasma gondii. Life (Basel) 2021; 11:988. [PMID: 34575137 PMCID: PMC8467511 DOI: 10.3390/life11090988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Lamisha M. Shah
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Andrews Y. Afrifa
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Abou-El-Naga IF, Gomaa MM, ElAchy SN. Effect of HIV aspartyl protease inhibitors on experimental infection with a cystogenic Me49 strain of Toxoplasma gondii. Pathog Glob Health 2021; 116:107-118. [PMID: 34420500 DOI: 10.1080/20477724.2021.1967628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease of major significant perspectives in public health and veterinary medicine. So far, the available drugs control only the active infection, once the parasite encysts in the tissues, they lose their efficacy. Cytokines; IFN-γ and IL-10, play a critical role in the modulation of toxoplasmic encephalitis and neuro-inflammation in chronic toxoplasmosis. Antiretroviral protease inhibitors applied in the treatment of acquired immunodeficiency syndrome, revealed activity against multiple parasites. Aluvia (lopinavir/ritonavir) (L/R); an aspartyl protease inhibitor, had efficiently treated T. gondii RH strain infection. We investigated the potential activity of L/R against experimental T. gondii infection with a cystogenic Me49 strain in mice, considering the role of IFN-γ and IL-10 in the neuropathology versus pyrimethamine-sulfadiazine combination therapy. Three aluvia regimens were applied; starting on the day of infection (acute phase), 2-week PI (early chronic phase) and eight weeks PI (late chronic phase). L/R reduced the brain-tissue cyst burden significantly in all treatment regimens. It impaired the parasite infectivity markedly in the late chronic phase. Ultrastructural changes were detected in Toxoplasma cyst membrane and wall, bradyzoite membrane and nuclear envelope. The signs of bradyzoite paraptosis and cytoplasmic lipid droplets were observed. L/R had significantly reduced the brain-homogenate levels of IFN-γ and IL-10 in its three regimens however, they could not reach the normal level in chronic phases. Cerebral hypercellularity, perivascular inflammatory response, lymphoplasmacytic infiltrates and glial cellular reaction were ameliorated by L/R treatment. Herein, L/R was proved to possess promising preventive and therapeutic perspectives in chronic cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Iman Fathy Abou-El-Naga
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha Mohamed Gomaa
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil ElAchy
- Department Of Pathology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Rosenberg A, Sibley LD. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 2021; 29:1186-1198.e8. [PMID: 34043960 PMCID: PMC8711274 DOI: 10.1016/j.chom.2021.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii translocates effector proteins into its host cell to subvert various host pathways. T. gondii effector TgIST blocks the transcription of interferon-stimulated genes to reduce immune defense. Interferons upregulate numerous genes, including protein kinase R (PKR), which induce necrosome formation to activate mixed-lineage-kinase-domain-like (MLKL) pseudokinase and induce necroptosis. Whether these interferon functions are targeted by Toxoplasma is unknown. Here, we examine secreted effectors that localize to the host cell nucleus and find that the chronic bradyzoite stage secretes effector TgNSM that targets the NCoR/SMRT complex, a repressor for various transcription factors, to inhibit interferon-regulated genes involved in cell death. TgNSM acts with TgIST to block IFN-driven expression of PKR and MLKL, thus preventing host cell necroptotic death and protecting the parasite's intracellular niche. The mechanism of action of TgNSM uncovers a role of NCoR/SMRT in necroptosis, assuring survival of intracellular cysts and chronic infection.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Lentini G, Ben Chaabene R, Vadas O, Ramakrishnan C, Mukherjee B, Mehta V, Lunghi M, Grossmann J, Maco B, Visentin R, Hehl AB, Korkhov VM, Soldati-Favre D. Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion. Nat Commun 2021; 12:3788. [PMID: 34145271 PMCID: PMC8213820 DOI: 10.1038/s41467-021-24083-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Active host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry. Cryo-EM, kinase assays, phosphoproteomics and cellular analyses reveal that RON13 is a secretory pathway kinase of atypical structure that phosphorylates rhoptry proteins including the components of the RON complex. Ultimately, RON13 kinase activity controls host cell invasion by anchoring the moving junction at the parasite-host cell interface.
Collapse
Affiliation(s)
- Gaëlle Lentini
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rouaa Ben Chaabene
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Chandra Ramakrishnan
- grid.7400.30000 0004 1937 0650Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Budhaditya Mukherjee
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland ,grid.429017.90000 0001 0153 2859Present Address: School of Medical Science and Technology, IIT Kharagpur, India
| | - Ved Mehta
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Matteo Lunghi
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jonas Grossmann
- grid.7400.30000 0004 1937 0650Functional Genomic Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland ,grid.419765.80000 0001 2223 3006The Swiss Institute of Bioinformatics, SIB, Lausanne, Switzerland
| | - Bohumil Maco
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rémy Visentin
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Adrian B. Hehl
- grid.7400.30000 0004 1937 0650Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Volodymyr M. Korkhov
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland ,grid.5991.40000 0001 1090 7501Paul Scherrer Institute, Villigen, Switzerland
| | - Dominique Soldati-Favre
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Abstract
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
33
|
Panas MW, Boothroyd JC. Seizing control: How dense granule effector proteins enable Toxoplasma to take charge. Mol Microbiol 2021; 115:466-477. [PMID: 33400323 PMCID: PMC8344355 DOI: 10.1111/mmi.14679] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Control of the host cell is crucial to the Apicomplexan parasite, Toxoplasma gondii, while it grows intracellularly. To achieve this goal, these single-celled eukaryotes export a series of effector proteins from organelles known as "dense granules" that interfere with normal cellular processes and responses to invasion. While some effectors are found attached to the outer surface of the parasitophorous vacuole (PV) in which Toxoplasma tachyzoites reside, others are found in the host cell's cytoplasm and yet others make their way into the host nucleus, where they alter host transcription. Among the processes that are severely altered are innate immune responses, host cell cycle, and association with host organelles. The ways in which these crucial processes are altered through the coordinated action of a large collection of effectors is as elegant as it is complex, and is the central focus of the following review; we also discuss the recent advances in our understanding of how dense granule effector proteins are trafficked out of the PV.
Collapse
Affiliation(s)
- Michael W. Panas
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| | - John C. Boothroyd
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
34
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
35
|
Wang Y, Sangaré LO, Paredes-Santos TC, Hassan MA, Krishnamurthy S, Furuta AM, Markus BM, Lourido S, Saeij JPJ. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat Commun 2020; 11:5258. [PMID: 33067458 PMCID: PMC7567896 DOI: 10.1038/s41467-020-18991-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.
Collapse
Affiliation(s)
- Yifan Wang
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Lamba Omar Sangaré
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Tatiana C. Paredes-Santos
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Musa A. Hassan
- grid.4305.20000 0004 1936 7988College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988The Roslin Institute, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK
| | - Shruthi Krishnamurthy
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Anna M. Furuta
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Benedikt M. Markus
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Lourido
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jeroen P. J. Saeij
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
36
|
Gossner A, Hassan MA. Transcriptional Analyses Identify Genes That Modulate Bovine Macrophage Response to Toxoplasma Infection and Immune Stimulation. Front Cell Infect Microbiol 2020; 10:437. [PMID: 33014886 PMCID: PMC7508302 DOI: 10.3389/fcimb.2020.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular parasite, Toxoplasma gondii, is highly prevalent among livestock species. Although cattle are generally resistant to Toxoplasma strains circulating in Europe and North America, the underlying mechanisms are largely unknown. Here, we report that bovine bone marrow-derived macrophage (BMDM) pre-stimulated with interferon gamma (IFNγ) restricts intracellular Toxoplasma growth independently of nitric oxide. While Toxoplasma promoted the expression of genes associated with alternative macrophage activation and lipid metabolism, IFNγ abrogated parasite-induced transcriptional responses and promoted the expression of genes linked to the classical macrophage activation phenotype. Additionally, several chemokines, including CCL22, that are linked to parasite-induced activation of the Wnt/β-catenin signaling were highly expressed in Toxoplasma-exposed naïve BMDMs. A chemical Wnt/β-catenin signaling pathway antagonist (IWR-1-endo) significantly reduced intracellular parasite burden in naïve BMDMs, suggesting that Toxoplasma activates this pathway to evade bovine macrophage anti-parasitic responses. Congruently, intracellular burden of a mutant Toxoplasma strain (RHΔASP5) that does not secrete dense granule proteins into the host cell, which is an essential requirement for parasite-induced activation of the Wnt/β-catenin pathway, was significantly reduced in naïve BMDMs. However, both the Wnt/β-catenin antagonist and RHASPΔ5 did not abolish parasite burden differences in naïve and IFNγ-stimulated BMDMs. Finally, we observed that parasites infecting IFNγ-stimulated BMDMs largely express genes associated with the slow dividing bradyzoite stage. Overall, this study provides novel insights into bovine macrophage transcriptional response to Toxoplasma. It establishes a foundation for a mechanistic analysis IFNγ-induced bovine anti-Toxoplasma responses and the counteracting Toxoplasma survival strategies.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Musa A Hassan
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Elkerdany ED, Elnassery SM, Arafa FM, Zaki SAF, Mady RF. In vitro effect of a novel protease inhibitor cocktail on Toxoplasma gondii tachyzoites. Exp Parasitol 2020; 219:108010. [PMID: 33007297 DOI: 10.1016/j.exppara.2020.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
Toxoplasmosis is a zoonotic disease and a global food and water-borne infection. The disease is caused by the parasite Toxoplasma gondii, which is a highly successful and remarkable pathogen because of its ability to infect almost any nucleated cell in warm-blooded animals. The present study was done to demonstrate the effect of protease inhibitors cocktail (PIC), which inhibit both cysteine and serine proteases, on in vitro cultured T. gondii tachyzoites on HepG2 cell line. This was achieved by assessing its effect on the invasion of the host cells and the intracellular development of T.gondii tachyzoites through measuring their number and viability after their incubation with PIC. Based on the results of the study, it was evident that the inhibitory action of the PIC was effective when applied to tachyzoites before their cultivation on HepG2 cells. Pre-treatment of T.gondii tachyzoites with PIC resulted in failure of the invasion of most of the tachyzoites and decreased the intracellular multiplication and viability of the tachyzoites that succeeded in the initial invasion process. Ultrastructural studies showed morphological alteration in tachyzoites and disruption in their organelles. This effect was irreversible till the complete lysis of cell monolayer in cultures. It can be concluded that PIC, at in vitro levels, could prevent invasion and intracellular multiplication of Toxoplasma tachyzoites. In addition, it is cost effective compared to individual protease inhibitors. It also had the benefit of combined therapy as it lowered the concentration of each protease inhibitor used in the cocktail. Other in vivo experiments are required to validate the cocktail efficacy against toxoplasmosis. Further studies may be needed to establish the exact mechanism by which the PIC exerts its effect on Toxoplasma tachyzoites behavior and its secretory pathway.
Collapse
Affiliation(s)
- Eman D Elkerdany
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Suzanne M Elnassery
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Sahar Abdel-Fattah Zaki
- Department of Environmental Biotechnology, Genetic Engineering Biotechnology Institute, City of Scientific Research and Technological Applications, Egypt.
| | - Rasha F Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
38
|
Nast R, Choepak T, Lüder CGK. Epigenetic Control of IFN-γ Host Responses During Infection With Toxoplasma gondii. Front Immunol 2020; 11:581241. [PMID: 33072127 PMCID: PMC7544956 DOI: 10.3389/fimmu.2020.581241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023] Open
Abstract
Host defense against the human pathogen Toxoplasma gondii depends on secretion of interferon (IFN)-γ and subsequent activation of monocytic cells to combat intracellular parasites. Previous studies have shown that T. gondii evades IFN-γ-mediated immunity by secreting the effector TgIST into the host cell where it binds to STAT1, strengthens its DNA binding activity and recruits the Mi-2/NuRD complex to STAT1-responsive promoters. Here we investigated the impact of the host chromatin environment on parasite interference with IFN-γ-induced gene expression. Luciferase reporters under control of primary and secondary IFN-γ response promoters were only inhibited by T. gondii when they were stably integrated into the host genome but not when expressed from a plasmid vector. Absence of CpG islands upstream and/or downstream of the transcriptional start site allowed more vigorous up-regulation by IFN-γ as compared to CpG-rich promoters. Remarkably, it also favored parasite interference with IFN-γ-induced gene expression indicating that nucleosome occupancy at IFN-γ-responsive promoters is important. Promoter DNA of IFN-γ-responsive genes remained largely non-methylated in T. gondii-infected cells, and inhibition of DNA methylation did not impact parasite interference with host responses. IFN-γ up-regulated histone marks H4ac, H3K9ac, and H3K4me3 but down-regulated H3S10p at primary and secondary response promoters. Infection with T. gondii abolished histone modification, whereas total nuclear activities of histone acetyl transferases and histone deacetylases were not altered. Taken together, our study reveals a critical impact of the host chromatin landscape at IFN-γ-activated promoters on their inhibition by T. gondii with a comprehensive blockade of histone modifications at parasite-inactivated promoters.
Collapse
Affiliation(s)
- Roswitha Nast
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Tenzin Choepak
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
39
|
Wang Y, Sangaré LO, Paredes-Santos TC, Saeij JPJ. Toxoplasma Mechanisms for Delivery of Proteins and Uptake of Nutrients Across the Host-Pathogen Interface. Annu Rev Microbiol 2020; 74:567-586. [PMID: 32680452 PMCID: PMC9934516 DOI: 10.1146/annurev-micro-011720-122318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many intracellular pathogens, including the protozoan parasite Toxoplasma gondii, live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by Toxoplasma to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA; , , ,
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA; , , ,
| | - Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
40
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kupz A, Pai S, Giacomin PR, Whan JA, Walker RA, Hammoudi PM, Smith NC, Miller CM. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells. Sci Rep 2020; 10:13115. [PMID: 32753607 PMCID: PMC7403597 DOI: 10.1038/s41598-020-70102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.
Collapse
Affiliation(s)
- Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Jennifer A Whan
- Advanced Analytical Centre, James Cook University, Cairns, QLD, 4878, Australia
| | - Robert A Walker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas C Smith
- School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Miller
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.,Discipline of Biomedicine, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
42
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
43
|
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem 2020; 295:8425-8441. [PMID: 32366462 PMCID: PMC7307202 DOI: 10.1074/jbc.rev120.009309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
44
|
Crossing the Vacuolar Rubicon: Structural Insights into Effector Protein Trafficking in Apicomplexan Parasites. Microorganisms 2020; 8:microorganisms8060865. [PMID: 32521667 PMCID: PMC7355975 DOI: 10.3390/microorganisms8060865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Apicomplexans form a large phylum of parasitic protozoa, including the genera Plasmodium, Toxoplasma, and Cryptosporidium, the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively. They cause diseases not only in humans but also in animals, with dramatic consequences in agriculture. Most apicomplexans are vacuole-dwelling and obligate intracellular parasites; as they invade the host cell, they become encased in a parasitophorous vacuole (PV) derived from the host cellular membrane. This creates a parasite-host interface that acts as a protective barrier but also constitutes an obstacle through which the pathogen must import nutrients, eliminate wastes, and eventually break free upon egress. Completion of the parasitic life cycle requires intense remodeling of the infected host cell. Host cell subversion is mediated by a subset of essential effector parasitic proteins and virulence factors actively trafficked across the PV membrane. In the malaria parasite Plasmodium, a unique and highly specialized ATP-driven vacuolar secretion system, the Plasmodium translocon of exported proteins (PTEX), transports effector proteins across the vacuolar membrane. Its core is composed of the three essential proteins EXP2, PTEX150, and HSP101, and is supplemented by the two auxiliary proteins TRX2 and PTEX88. Many but not all secreted malarial effector proteins contain a vacuolar trafficking signal or Plasmodium export element (PEXEL) that requires processing by an endoplasmic reticulum protease, plasmepsin V, for proper export. Because vacuolar parasitic protein export is essential to parasite survival and virulence, this pathway is a promising target for the development of novel antimalarial therapeutics. This review summarizes the current state of structural and mechanistic knowledge on the Plasmodium parasitic vacuolar secretion and effector trafficking pathway, describing its most salient features and discussing the existing differences and commonalities with the vacuolar effector translocation MYR machinery recently described in Toxoplasma and other apicomplexans of significance to medical and veterinary sciences.
Collapse
|
45
|
Tosetti N, Dos Santos Pacheco N, Bertiaux E, Maco B, Bournonville L, Hamel V, Guichard P, Soldati-Favre D. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. eLife 2020; 9:56635. [PMID: 32379047 PMCID: PMC7228768 DOI: 10.7554/elife.56635] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorène Bournonville
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
46
|
Polino AJ, Nasamu AS, Niles JC, Goldberg DE. Assessment of Biological Role and Insight into Druggability of the Plasmodium falciparum Protease Plasmepsin V. ACS Infect Dis 2020; 6:738-746. [PMID: 32069391 PMCID: PMC7155168 DOI: 10.1021/acsinfecdis.9b00460] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Upon infecting a red blood cell (RBC), the malaria parasite Plasmodium falciparum drastically remodels its host by exporting hundreds of proteins into the RBC cytosol. This protein export program is essential for parasite survival. Hence export-related proteins could be potential drug targets. One essential enzyme in this pathway is plasmepsin V (PMV), an aspartic protease that processes export-destined proteins in the parasite endoplasmic reticulum (ER) at the Plasmodium export element (PEXEL) motif. Despite long-standing interest in this enzyme, functional studies have been hindered by the inability of previous technologies to produce a regulatable lethal depletion of PMV. To overcome this technical barrier, we designed a system for stringent post-transcriptional regulation allowing a tightly controlled, tunable knockdown of PMV. Using this system, we found that PMV must be dramatically depleted to affect parasite growth, suggesting the parasite maintains this enzyme in substantial excess. Surprisingly, depletion of PMV arrested parasite growth immediately after RBC invasion, significantly before the death from exported protein deficit that has previously been described. The data suggest that PMV inhibitors can halt parasite growth at two distinct points in the parasite life cycle. However, overcoming the functional excess of PMV in the parasite may require inhibitor concentrations far beyond the enzyme's IC50.
Collapse
Affiliation(s)
- Alexander J Polino
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Armiyaw S Nasamu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
47
|
Cygan AM, Theisen TC, Mendoza AG, Marino ND, Panas MW, Boothroyd JC. Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells. mSphere 2020; 5:e00858-19. [PMID: 32075880 PMCID: PMC7031616 DOI: 10.1128/msphere.00858-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins.IMPORTANCEToxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.
Collapse
Affiliation(s)
- Alicja M Cygan
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Terence C Theisen
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Alma G Mendoza
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Nicole D Marino
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
48
|
Krishnan A, Kloehn J, Lunghi M, Chiappino-Pepe A, Waldman BS, Nicolas D, Varesio E, Hehl A, Lourido S, Hatzimanikatis V, Soldati-Favre D. Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism. Cell Host Microbe 2020; 27:290-306.e11. [PMID: 31991093 DOI: 10.1016/j.chom.2020.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Joachim Kloehn
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | - Damien Nicolas
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences Geneva-Lausanne (EPGL), Geneva 1211, Switzerland; Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, Geneva 1211, Switzerland
| | - Adrian Hehl
- Institute of Parasitology, University of Zürich, Zürich 8057, Switzerland
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
49
|
Boillat M, Hammoudi PM, Dogga SK, Pagès S, Goubran M, Rodriguez I, Soldati-Favre D. Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Rep 2020; 30:320-334.e6. [PMID: 31940479 PMCID: PMC6963786 DOI: 10.1016/j.celrep.2019.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/27/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
In rodents, the decrease of felid aversion induced by Toxoplasma gondii, a phenomenon termed fatal attraction, is interpreted as an adaptive manipulation by the neurotropic protozoan parasite. With the aim of understanding how the parasite induces such specific behavioral modifications, we performed a multiparametric analysis of T. gondii-induced changes on host behavior, physiology, and brain transcriptome as well as parasite cyst load and distribution. Using a set of complementary behavioral tests, we provide strong evidence that T. gondii lowers general anxiety in infected mice, increases explorative behaviors, and surprisingly alters predator aversion without selectivity toward felids. Furthermore, we show a positive correlation between the severity of the behavioral alterations and the cyst load, which indirectly reflects the level of inflammation during brain colonization. Taken together, these findings refute the myth of a selective loss of cat fear in T. gondii-infected mice and point toward widespread immune-related alterations of behaviors.
Collapse
Affiliation(s)
- Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland
| | - Stéphane Pagès
- Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva CMU, 1 rue Michel-Servet 1211 Geneva 4, Switzerland.
| |
Collapse
|
50
|
Boothroyd JC. What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii. Methods Mol Biol 2020; 2071:1-25. [PMID: 31758444 DOI: 10.1007/978-1-4939-9857-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma "ticks" and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed-though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|