1
|
Yu P, Ye S, Zhou M, Zhang L, Zhang Z, Sun X, Li S, Hu C. PWWP domain-containing protein Crf4-3 specifically modulates fungal azole susceptibility by regulating sterol C-14 demethylase ERG11. mSphere 2025; 10:e0070324. [PMID: 39670730 PMCID: PMC11774033 DOI: 10.1128/msphere.00703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of erg11 is not yet fully elucidated. In this study, leveraging the identified key promoter region of erg11 that controls its response to azoles in Neurospora crassa, we pinpointed a protein, Crf4-3, which harbors a PWWP domain and exerts a positive regulatory influence on azole resistance, as determined by DNA pulldown assays. The removal of Crf4-3 results in heightened sensitivity to azoles while remaining unaffected by other stressors tested. Additionally, the deletion leads to the abolition of transcriptional responses of genes such as erg11 and erg6 to ketoconazole. Interestingly, the basal expression of erg1, erg11, erg25, and erg3A is also affected by the deletion of crf4-3, indicating its role in sterol homeostasis. Crf4-3 homologs are broadly distributed across the Pezizomycotina fungi. The gene deletion for its homologous protein in Aspergillus fumigatus also significantly improves sensitivity to azoles such as voriconazole, primarily through the attenuation of the transcriptional response of erg11. Our data, for the first time, identified Crf4-3 as a novel regulatory protein in the azole stress response of filamentous fungi, offering fresh insights into the mechanisms of azole resistance.IMPORTANCETranscriptional control of pivotal genes, such as erg11, stands as the primary driver of azole resistance. Although considerable effort has been dedicated to identifying transcription factors involved, our knowledge regarding the use of transcriptional regulation strategies to combat azole resistance is currently limited. In this study, we reveal that a PWWP domain-containing protein Crf4-3, which is conserved in Pezizomycotina fungi, modulates fungal azole sensitivity by transcriptionally regulating sterol biosynthetic genes, including erg11. These results also broaden the understanding of fungal PWWP domain-containing proteins regarding their roles in regulating resistance against azole antifungals. Considering research on small molecules targeting the PWWP domain in humans, Crf4-3 homolog emerges as a promising target for designing fungal-specific drugs to combat azole resistance.
Collapse
Affiliation(s)
- Pengju Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mi Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Group Co., Ltd., Jinan, China
| | | | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Seifert-Gorzycki J, Muñoz D, Lizarraga A, Iriarte L, Coceres V, Strobl-Mazzulla PH, de Miguel N. Targeting histone acetylation to overcome drug resistance in the parasite Trichomonas vaginalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631743. [PMID: 39829914 PMCID: PMC11741363 DOI: 10.1101/2025.01.07.631743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Trichomoniasis, caused by the parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted infection. Current treatment relies exclusively on 5-nitroimidazole drugs, with metronidazole (MTZ) as the primary option. However, the increasing prevalence of MTZ-resistant strains poses a significant challenge, particularly in the current absence of alternative therapies. Several studies have revealed that the development of metronidazole resistance in T. vaginalis is linked to genomic and transcriptional alterations. Given the role of epigenetic regulation in controlling gene expression, we investigated whether targeting histone deacetylase (HDAC) enzymes could influence drug resistance. Treatment of an MTZ-resistant strain (B7268) with the HDAC inhibitor, trichostatin A (TSA), in combination with MTZ enhanced drug sensitivity and induced significant genome-wide transcriptional changes, as revealed by RNA-seq analysis. To identify drug-related genes epigenetically silenced in the resistant strain but highly active in a sensitive strain, we compared the expression levels of the genes affected by TSA and MTZ treatment with their baseline expression profiles in both resistant and sensitive strains. This analysis identified 130 candidate genes differentially expressed in the sensitive strain NYH209, less expressed in the resistant B7268 strain, that exhibited significant expression changes upon TSA and MTZ treatment. Functional validation involved transfecting the B7268 strain with plasmids encoding four individual candidate genes: a thioredoxin reductase (TrxR), a cysteine synthase (CS), and two genes containing Myb domains (Myb5 and Myb6). Overexpression of three of these genes resulted in a marked reduction in MTZ resistance, demonstrating their role in modulating drug sensitivity. Our findings identified three novel genes that modulate drug resistance in T. vaginalis. This study reveals a previously unknown epigenetic mechanism underlying drug resistance and highlights the therapeutic potential of targeting epigenetic factors, such as HDACs, to overcome resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Julieta Seifert-Gorzycki
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Daniela Muñoz
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Lucrecia Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Verónica Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H. Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| |
Collapse
|
3
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
5
|
Lu Y, Luo F, Zhou A, Yi C, Chen H, Li J, Guo Y, Xie Y, Zhang W, Lin D, Yang Y, Wu Z, Zhang Y, Xu S, Hu W. Whole-genome sequencing of the invasive golden apple snail Pomacea canaliculata from Asia reveals rapid expansion and adaptive evolution. Gigascience 2024; 13:giae064. [PMID: 39311763 PMCID: PMC11417965 DOI: 10.1093/gigascience/giae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/08/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Pomacea canaliculata, an invasive species native to South America, is recognized for its broad geographic distribution and adaptability to a variety of ecological conditions. The details concerning the evolution and adaptation of P. canaliculate remain unclear due to a lack of whole-genome resequencing data. We examined 173 P. canaliculata genomes representing 17 geographic populations in East and Southeast Asia. Interestingly, P. canaliculata showed a higher level of genetic diversity than other mollusks, and our analysis suggested that the dispersal of P. canaliculata could have been driven by climate changes and human activities. Notably, we identified a set of genes associated with low temperature adaptation, including Csde1, a cold shock protein coding gene. Further RNA sequencing analysis and reverse transcription quantitative polymerase chain reaction experiments demonstrated the gene's dynamic pattern and biological functions during cold exposure. Moreover, both positive selection and balancing selection are likely to have contributed to the rapid environmental adaptation of P. canaliculata populations. In particular, genes associated with energy metabolism and stress response were undergoing positive selection, while a large number of immune-related genes showed strong signatures of balancing selection. Our study has advanced our understanding of the evolution of P. canaliculata and has provided a valuable resource concerning an invasive species.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - An Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- China Basic Medical College, Guangxi Traditional Chinese Medical University, Nanning 530005, China
| | - Yunhai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Datao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Yunnan 665000, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
6
|
Silao FGS, Jiang T, Bereczky-Veress B, Kühbacher A, Ryman K, Uwamohoro N, Jenull S, Nogueira F, Ward M, Lion T, Urban CF, Rupp S, Kuchler K, Chen C, Peuckert C, Ljungdahl PO. Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathog 2023; 19:e1011677. [PMID: 37917600 PMCID: PMC10621835 DOI: 10.1371/journal.ppat.1011677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Biborka Bereczky-Veress
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Kühbacher
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nathalie Uwamohoro
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Filomena Nogueira
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Thomas Lion
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Constantin F. Urban
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Christiane Peuckert
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
7
|
Lee GH, Min CW, Jang JW, Wang Y, Jeon JS, Gupta R, Kim ST. Analysis of post-translational modification dynamics unveiled novel insights into Rice responses to MSP1. J Proteomics 2023; 287:104970. [PMID: 37467888 DOI: 10.1016/j.jprot.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, β-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.
Collapse
Affiliation(s)
- Gi Hyun Lee
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea.
| |
Collapse
|
8
|
Sharma C, Kadosh D. Post-transcriptional control of antifungal resistance in human fungal pathogens. Crit Rev Microbiol 2023; 49:469-484. [PMID: 35634915 PMCID: PMC9766424 DOI: 10.1080/1040841x.2022.2080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Global estimates suggest that over 300 million individuals of all ages are affected by serious fungal infections every year, culminating in about 1.7 million deaths. The societal and economic burden on the public health sector due to opportunistic fungal pathogens is quite significant, especially among immunocompromised patients. Despite the high clinical significance of these infectious agents, treatment options are limited with only three major classes of antifungal drugs approved for use. Clinical management of fungal diseases is further compromised by the emergence of antifungal resistant strains. Transcriptional and genetic mechanisms that control drug resistance in human fungal pathogens are well-studied and include drug target alteration, upregulation of drug efflux pumps as well as changes in drug affinity and abundance of target proteins. In this review, we highlight several recently discovered novel post-transcriptional mechanisms that control antifungal resistance, which involve regulation at the translational, post-translational, epigenetic, and mRNA stability levels. The discovery of many of these novel mechanisms has opened new avenues for the development of more effective antifungal treatment strategies and new insights, perspectives, and future directions that will facilitate this process are discussed.
Collapse
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
9
|
Alastruey-Izquierdo A, Martín-Galiano AJ. The challenges of the genome-based identification of antifungal resistance in the clinical routine. Front Microbiol 2023; 14:1134755. [PMID: 37152754 PMCID: PMC10157239 DOI: 10.3389/fmicb.2023.1134755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The increasing number of chronic and life-threatening infections caused by antimicrobial resistant fungal isolates is of critical concern. Low DNA sequencing cost may facilitate the identification of the genomic profile leading to resistance, the resistome, to rationally optimize the design of antifungal therapies. However, compared to bacteria, initiatives for resistome detection in eukaryotic pathogens are underdeveloped. Firstly, reported mutations in antifungal targets leading to reduced susceptibility must be extensively collected from the literature to generate comprehensive databases. This information should be complemented with specific laboratory screenings to detect the highest number possible of relevant genetic changes in primary targets and associations between resistance and other genomic markers. Strikingly, some drug resistant strains experience high-level genetic changes such as ploidy variation as much as duplications and reorganizations of specific chromosomes. Such variations involve allelic dominance, gene dosage increments and target expression regime effects that should be explicitly parameterized in antifungal resistome prediction algorithms. Clinical data indicate that predictors need to consider the precise pathogen species and drug levels of detail, instead of just genus and drug class. The concomitant needs for mutation accuracy and assembly quality assurance suggest hybrid sequencing approaches involving third-generation methods will be utilized. Moreover, fatal fast infections, like fungemia and meningitis, will further require both sequencing and analysis facilities are available in-house. Altogether, the complex nature of antifungal resistance demands extensive sequencing, data acquisition and processing, bioinformatic analysis pipelines, and standard protocols to be accomplished prior to genome-based protocols are applied in the clinical setting.
Collapse
Affiliation(s)
- Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
10
|
Singha R, Aggarwal R, Sanyal K. Negative regulation of biofilm development by the CUG-Ser1 clade-specific histone H3 variant is dependent on the canonical histone chaperone CAF-1 complex in Candida albicans. Mol Microbiol 2023; 119:574-585. [PMID: 36855815 DOI: 10.1111/mmi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
11
|
PSMC6 induces immune cell infiltration and inflammatory response to aggravate primary Sjögren's syndrome. J Hum Genet 2023; 68:263-271. [PMID: 36599955 DOI: 10.1038/s10038-022-01107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence suggests that immune cell infiltration is involved in primary Sjögren's syndrome (pSS), while the underlying molecular mechanisms remain elusive. Herein, this study aims to explore the key molecular mechanism in immune cell infiltration in pSS based on Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were obtained, followed by weighted gene co-expression network analysis to acquire the pSS-related module genes. Moreover, pSS-related DEGs and module genes were intersected. Additionally, the correlation between key genes and immune cell infiltration was analyzed by CIBERSORT algorithm. Furthermore, pSS mouse models were established to explore the effects of PSMC6 on immune cell infiltration and inflammatory responses in pSS. A total of 51 DEGs and 334 key module genes were involved in the occurrence of pSS. The immune cell infiltration was correlated with pSS, and PSMC6, highly expressed in pSS samples, may be the key immune gene. In vivo animal experiments demonstrated that PSMC6 was upregulated in pSS, and PSMC6 knockdown could reduce lymphocytic infiltration in salivary glands and lacrimal glands and the levels of related inflammatory factors in the pSS and increase the proportion of Treg cells. Collectively, PSMC6 could induce immune cell infiltration and inflammatory responses to promote the occurrence of pSS, providing us with a potential therapeutic target for treating pSS.
Collapse
|
12
|
Zhang L, Xiao J, Du M, Lei W, Yang W, Xue X. Post-translational modifications confer amphotericin B resistance in Candida krusei isolated from a neutropenic patient. Front Immunol 2023; 14:1148681. [PMID: 36936926 PMCID: PMC10015421 DOI: 10.3389/fimmu.2023.1148681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Neutropenia is a common complication in the treatment of hematological diseases and the most common predisposing factor for invasion by fungi, such as Candida krusei. Recent studies have shown that C. krusei, a life-threatening pathogen, has developed resistance to amphotericin B (AMB). However, the mechanisms that led to the rapid emergence of this AMB-resistant phenotype are unclear. In this study, we found the sensitivity for AMB could be promoted by inhibiting histone acyltransferase activity and western blot analysis revealed differences in the succinylation levels of C. krusei isolated from immunocompromised patients and of the corresponding AMB-resistant mutant. By comparative succinyl-proteome analysis, we identified a total of 383 differentially expressed succinylated sites in with 344 sites in 134 proteins being upregulated in the AMB-resistant mutant, compared to 39 sites in 23 proteins in the wild-type strain. These differentially succinylated proteins were concentrated in the ribosome and cell wall. The critical pathways associated with these proteins included those involved in glycolysis, gluconeogenesis, the ribosome, and fructose and mannose metabolism. In particular, AMB resistance was found to be associated with enhanced ergosterol synthesis and aberrant amino acid and glucose metabolism. Analysis of whole-cell proteomes, confirmed by parallel reaction monitoring, showed that the key enzyme facilitating lysine acylation was significantly upregulated in the AMB-resistant strain. Our results suggest that lysine succinylation may play an indispensable role in the development of AMB resistance in C. krusei. Our study provides mechanistic insights into the development of drug resistance in fungi and can aid in efforts to stifle the emergence of AMB-resistant pathogenic fungi.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Jinzhou Xiao
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Mingwei Du
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Wenzhi Lei
- Institute of Dermatology, Naval Medical University, Shanghai, China
- *Correspondence: Wenzhi Lei, ; Weiwei Yang, ; Xiaochun Xue,
| | - Weiwei Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- *Correspondence: Wenzhi Lei, ; Weiwei Yang, ; Xiaochun Xue,
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of PLA Navy, Shanghai, China
- *Correspondence: Wenzhi Lei, ; Weiwei Yang, ; Xiaochun Xue,
| |
Collapse
|
13
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
14
|
Epigenetic Regulation of Antifungal Drug Resistance. J Fungi (Basel) 2022; 8:jof8080875. [PMID: 36012862 PMCID: PMC9409733 DOI: 10.3390/jof8080875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
In medical mycology, epigenetic mechanisms are emerging as key regulators of multiple aspects of fungal biology ranging from development, phenotypic and morphological plasticity to antifungal drug resistance. Emerging resistance to the limited therapeutic options for the treatment of invasive fungal infections is a growing concern. Human fungal pathogens develop drug resistance via multiple mechanisms, with recent studies highlighting the role of epigenetic changes involving the acetylation and methylation of histones, remodeling of chromatin and heterochromatin-based gene silencing, in the acquisition of antifungal resistance. A comprehensive understanding of how pathogens acquire drug resistance will aid the development of new antifungal therapies as well as increase the efficacy of current antifungals by blocking common drug-resistance mechanisms. In this article, we describe the epigenetic mechanisms that affect resistance towards widely used systemic antifungal drugs: azoles, echinocandins and polyenes. Additionally, we review the literature on the possible links between DNA mismatch repair, gene silencing and drug-resistance mechanisms.
Collapse
|
15
|
Shivarathri R, Jenull S, Chauhan M, Singh A, Mazumdar R, Chowdhary A, Kuchler K, Chauhan N. Comparative Transcriptomics Reveal Possible Mechanisms of Amphotericin B Resistance in Candida auris. Antimicrob Agents Chemother 2022; 66:e0227621. [PMID: 35652307 PMCID: PMC9211394 DOI: 10.1128/aac.02276-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/11/2022] [Indexed: 12/27/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant human fungal pathogen often refractory to treatment by all classes of antifungal drugs. Amphotericin B (AmB) is a fungicidal drug that, despite its toxic side effects, remains a drug of choice for the treatment of drug-resistant fungal infections, including those caused by C. auris. However, the molecular mechanisms underlying AmB resistance are poorly understood. In this study, we present data that suggests membrane lipid alterations and chromatin modifications are critical processes that may contribute to or cause adaptive AmB resistance in clinical C. auris isolates. To determine the plausible cause of increased AmB resistance, we performed RNA-seq of AmB-resistant and sensitive C. auris isolates. Remarkably, AmB-resistant strains show a pronounced enrichment of genes involved in lipid and ergosterol biosynthesis, adhesion, drug transport as well as chromatin remodeling. The transcriptomics data confirm increased adhesion and reduced lipid membrane permeability of AmB-resistant strains compared to the sensitive isolates. The AmB-resistant strains also display hyper-resistance to cell wall perturbing agents, including Congo red, calcofluor white and caffeine. Additionally, we noticed an increased phosphorylation of Mkc1 cell integrity MAP kinase upon AmB treatment. Collectively, these data identify differences in the transcriptional landscapes of AmB-resistant versus AmB-sensitive isolates and provide a framework for the mechanistic understanding of AmB resistance in C. auris.
Collapse
Affiliation(s)
- Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rounik Mazumdar
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
16
|
A J Domain Protein Functions as a Histone Chaperone to Maintain Genome Integrity and the Response to DNA Damage in a Human Fungal Pathogen. mBio 2021; 12:e0327321. [PMID: 34933457 PMCID: PMC8689522 DOI: 10.1128/mbio.03273-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a dnj4Δ deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents. The transcriptional response to DNA damage was also impaired in the dnj4Δ mutant. Genes related to DNA damage and iron homeostasis were upregulated in the wild-type strain in response to hydroxyurea treatment; however, their upregulation was either absent from or reduced in the dnj4Δ mutant. Accordingly, excess iron rescued the mutant’s growth in response to DNA-damaging agents. Iron homeostasis is crucial for virulence in C. neoformans; however, Dnj4 was found to be dispensable for disease in a mouse model of cryptococcosis. Finally, we confirmed a conserved role for Dnj4 as a histone chaperone by expressing it in Saccharomyces cerevisiae and showing that it disrupted endogenous histone chaperoning. Altogether, this study highlights the importance of a JDP cochaperone in maintaining genome integrity in C. neoformans.
Collapse
|
17
|
Razzaq I, Berg MD, Jiang Y, Genereaux J, Uthayakumar D, Kim GH, Agyare-Tabbi M, Halder V, Brandl CJ, Lajoie P, Shapiro RS. The SAGA and NuA4 component Tra1 regulates Candida albicans drug resistance and pathogenesis. Genetics 2021; 219:iyab131. [PMID: 34849885 PMCID: PMC8633099 DOI: 10.1093/genetics/iyab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.
Collapse
Affiliation(s)
- Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
18
|
Jenull S, Mair T, Tscherner M, Penninger P, Zwolanek F, Silao FGS, de San Vicente KM, Riedelberger M, Bandari NC, Shivarathri R, Petryshyn A, Chauhan N, Zacchi LF, -Landmann SL, Ljungdahl PO, Kuchler K. The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Rep 2021; 36:109406. [PMID: 34289370 PMCID: PMC8493472 DOI: 10.1016/j.celrep.2021.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Theresia Mair
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Michael Tscherner
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Florian Zwolanek
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Fitz-Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Michael Riedelberger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Naga C Bandari
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lucia F Zacchi
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Salomé LeibundGut -Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance. Antimicrob Agents Chemother 2021; 65:AAC.02415-20. [PMID: 33722894 DOI: 10.1128/aac.02415-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.
Collapse
|
20
|
Jenull S, Tscherner M, Kashko N, Shivarathri R, Stoiber A, Chauhan M, Petryshyn A, Chauhan N, Kuchler K. Transcriptome Signatures Predict Phenotypic Variations of Candida auris. Front Cell Infect Microbiol 2021; 11:662563. [PMID: 33937102 PMCID: PMC8079977 DOI: 10.3389/fcimb.2021.662563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Health care facilities are facing serious threats by the recently emerging human fungal pathogen Candida auris owing to its pronounced antifungal multidrug resistance and poor diagnostic tools. Distinct C. auris clades evolved seemingly simultaneously at independent geographical locations and display both genetic and phenotypic diversity. Although comparative genomics and phenotypic profiling studies are increasing, we still lack mechanistic knowledge about the C. auris species diversification and clinical heterogeneity. Since gene expression variability impacts phenotypic plasticity, we aimed to characterize transcriptomic signatures of C. auris patient isolates with distinct antifungal susceptibility profiles in this study. First, we employed an antifungal susceptibility screening of clinical C. auris isolates to identify divergent intra-clade responses to antifungal treatments. Interestingly, comparative transcriptional profiling reveals large gene expression differences between clade I isolates and one clade II strain, irrespective of their antifungal susceptibilities. However, comparisons at the clade levels demonstrate that minor changes in gene expression suffice to drive divergent drug responses. Finally, we functionally validate transcriptional signatures reflecting phenotypic divergence of clinical isolates. Thus, our results suggest that large-scale transcriptional profiling allows for predicting phenotypic diversities of patient isolates, which may help choosing suitable antifungal therapies of multidrug-resistant C. auris.
Collapse
Affiliation(s)
- Sabrina Jenull
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Michael Tscherner
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Nataliya Kashko
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Anton Stoiber
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Andriy Petryshyn
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Karl Kuchler
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
22
|
Shivarathri R, Jenull S, Stoiber A, Chauhan M, Mazumdar R, Singh A, Nogueira F, Kuchler K, Chowdhary A, Chauhan N. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere 2020; 5:e00973-20. [PMID: 33055262 PMCID: PMC7565899 DOI: 10.1128/msphere.00973-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sabrina Jenull
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Rounik Mazumdar
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Filomena Nogueira
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
- CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia-Labordiagnostik GmbH, Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
23
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Jenull S, Tscherner M, Mair T, Kuchler K. ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans. J Fungi (Basel) 2020; 6:E182. [PMID: 32967096 PMCID: PMC7559329 DOI: 10.3390/jof6030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens often encounter fungicidal stress upon host invasion, but they can swiftly adapt by transcriptional reprogramming that enables pathogen survival. Fungal immune evasion is tightly connected to chromatin regulation. Hence, fungal chromatin modifiers pose alternative treatment options to combat fungal infections. Here, we present an assay for transposase-accessible chromatin using sequencing (ATAC-seq) protocol adapted for the opportunistic pathogen Candida albicans to gain further insight into the interplay of chromatin accessibility and gene expression mounted during fungal adaptation to oxidative stress. The ATAC-seq workflow not only facilitates the robust detection of genomic regions with accessible chromatin but also allows for the precise modeling of nucleosome positions in C. albicans. Importantly, the data reveal genes with altered chromatin accessibility in upstream regulatory regions, which correlate with transcriptional regulation during oxidative stress. Interestingly, many genes show increased chromatin accessibility without change in gene expression upon stress exposure. Such chromatin signatures could predict yet unknown regulatory factors under highly dynamic transcriptional control. Additionally, de novo motif analysis in genomic regions with increased chromatin accessibility upon H2O2 treatment shows significant enrichment for Cap1 binding sites, a major factor of oxidative stress responses in C. albicans. Taken together, the ATAC-seq workflow enables the identification of chromatin signatures and highlights the dynamics of regulatory mechanisms mediating environmental adaptation of C. albicans.
Collapse
Affiliation(s)
| | | | | | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria; (S.J.); (M.T.); (T.M.)
| |
Collapse
|
25
|
Chromatin Structure and Drug Resistance in Candida spp. J Fungi (Basel) 2020; 6:jof6030121. [PMID: 32751495 PMCID: PMC7559719 DOI: 10.3390/jof6030121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.
Collapse
|
26
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
27
|
Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection. Cell Host Microbe 2020; 27:454-466.e8. [PMID: 32075740 DOI: 10.1016/j.chom.2020.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure to restrict fungal access to iron pools. As a result, C. glabrata acquires iron via the Sit1/Ftr1 iron transporter system, facilitating fungal intracellular replication and immune evasion. Thus, IFNs-I are central regulators of iron homeostasis, which can impact infection, and restricting iron bioavailability may offer therapeutic strategies to combat invasive fungal infections.
Collapse
|
28
|
Chang Z, Yadav V, Lee SC, Heitman J. Epigenetic mechanisms of drug resistance in fungi. Fungal Genet Biol 2019; 132:103253. [PMID: 31325489 DOI: 10.1016/j.fgb.2019.103253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Abstract
The emergence of drug-resistant fungi poses a continuously increasing threat to human health. Despite advances in preventive care and diagnostics, resistant fungi continue to cause significant mortality, especially in immunocompromised patients. Therapeutic resources are further limited by current usage of only four major classes of antifungal drugs. Resistance against these drugs has already been observed in pathogenic fungi requiring the development of much needed newer antifungal drugs. Epigenetic changes such as DNA or chromatin modifications alter gene expression levels in response to certain stimuli, including interaction with the host in the case of fungal pathogens. These changes can confer resistance to drugs by altering the expression of target genes or genes encoding drug efflux pumps. Multiple pathogens share many of these epigenetic pathways; thus, targeting epigenetic pathways might also identify drug target candidates for the development of broad-spectrum antifungal drugs. In this review, we discuss the importance of epigenetic pathways in mediating drug resistance in fungi as well as in the development of anti-fungal drugs.
Collapse
Affiliation(s)
- Zanetta Chang
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Tscherner M, Kuchler K. A Histone Acetyltransferase Inhibitor with Antifungal Activity against CTG clade Candida Species. Microorganisms 2019; 7:E201. [PMID: 31311209 PMCID: PMC6680905 DOI: 10.3390/microorganisms7070201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
Candida species represent one of the most frequent causes of hospital-acquired infections in immunocompromised patient cohorts. Due to a very limited set of antifungals available and an increasing prevalence of drug resistance, the discovery of novel antifungal targets is essential. Targeting chromatin modifiers as potential antifungal targets has gained attention recently, mainly due to their role in regulating virulence in Candida species. Here, we describe a novel activity for the histone acetyltransferase inhibitor Cyclopentylidene-[4-(4-chlorophenyl)thiazol-2-yl)hydrazone (CPTH2) as a specific inhibitor of CTG clade Candida species. Furthermore, we show that CPTH2 has fungicidal activity and protects macrophages from Candida-mediated death. Thus, this work could provide a starting point for the development of novel antifungals specific to CTG clade Candida species.
Collapse
Affiliation(s)
- Michael Tscherner
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria.
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria.
| |
Collapse
|
30
|
Shivarathri R, Tscherner M, Zwolanek F, Singh NK, Chauhan N, Kuchler K. The Fungal Histone Acetyl Transferase Gcn5 Controls Virulence of the Human Pathogen Candida albicans through Multiple Pathways. Sci Rep 2019; 9:9445. [PMID: 31263212 PMCID: PMC6603162 DOI: 10.1038/s41598-019-45817-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C. albicans. Our data show that genetic removal of GCN5 abrogates fungal virulence in mice, suggesting strongly diminished fungal fitness in vivo. This may at least in part arise from increased susceptibility to killing by macrophages, as well as by other phagocytes such as neutrophils or monocytes. Loss of GCN5 also causes hypersensitivity to the fungicidal drug caspofungin. Caspofungin hypersusceptibility requires the master regulator Efg1, working in concert with Gcn5. Moreover, Gcn5 regulates multiple independent pathways, including adhesion, cell wall-mediated MAP kinase signaling, hypersensitivity to host-derived oxidative stress, and regulation of the Fks1 glucan synthase, all of which play critical roles in virulence and antifungal susceptibility. Hence, Gcn5 regulates fungal virulence through multiple mechanisms, suggesting that specific inhibition of Gcn5 could offer new therapeutic strategies to combat invasive fungal infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Florian Zwolanek
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | | | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria.
| |
Collapse
|
31
|
Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 2019; 52:27-34. [PMID: 31129557 DOI: 10.1016/j.mib.2019.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Candida albicans, a major human fungal pathogen, can cause a wide variety of both mucosal and systemic infections, particularly in immunocompromised individuals. Multiple lines of evidence suggest a strong association between virulence and the ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous cells in response to host environmental cues. Most previous studies on mechanisms important for controlling the C. albicans morphological transition have focused on signaling pathways and sequence-specific transcription factors. However, in recent years a variety of novel mechanisms have been reported, including those involving global transcriptional regulation and translational control. A large-scale functional genomics screen has also revealed new roles in filamentation for certain key biosynthesis pathways. This review article will highlight several of these exciting recent discoveries and discuss how they are relevant to the development of novel antifungal strategies. Ultimately, components of mechanisms that control C. albicans morphogenesis and pathogenicity could potentially serve as viable antifungal targets.
Collapse
|
32
|
Wu Y, Wu M, Wang Y, Chen Y, Gao J, Ying C. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans. FEMS Yeast Res 2019; 18:5040230. [PMID: 29931064 DOI: 10.1093/femsyr/foy057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a major fungal opportunistic pathogen for humans. In the treatment of C. albicans, azole drugs target the sterol 14α-demethylase (CYP51) encoded by ERG11 gene. Most studies have focused on the fact that the ERG11 mutant results in drug resistance, but its mechanism of action as a drug target has not been described yet. Our results showed that deletion of ERG11 reduced filamentous and invasive growth, and impaired hyphal elongation in sensing serum. Lack of ERG11 increased susceptibility to H2O2 and was defective in clearing reactive oxygen species. ERG11 may affect oxidative stress adaptation by specifically downregulating CAT1 expression. In addition, C. albicans cells lacking ERG11 were more efficiently killed by macrophages and became avirulent in vivo. This study is the first to indicate that ERG11 plays an essential role in hyphal elongation, oxidative stress adaptation and virulence in C. albicans. We speculated that azole drugs not only inhibit the growth of C. albicans, but also assist the host immune system in clearing the fungal organism. The new understanding of mechanisms of action of antifungal drugs should facilitate the development of treatment strategies for resistant fungal infections.
Collapse
Affiliation(s)
- YongQin Wu
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - MengYing Wu
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - YuanYuan Wang
- Unit of Pathogenic Fungal Infection and Host Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - YiSheng Chen
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Jing Gao
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - ChunMei Ying
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| |
Collapse
|
33
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
34
|
Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp. Microb Pathog 2019; 130:219-225. [PMID: 30878621 DOI: 10.1016/j.micpath.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Trichosporon spp. have been increasingly recognized as an important pathogen of invasive and disseminated infections in immunocompromised patients. These species are prone to form biofilms in medical devices such as catheters and prosthesis, which are associated with antifungal resistance and therapeutic failure. Therefore, new antifungals with a broader anti-biofilm activity need to be discovered. In the present study we evaluate the inhibitory potential of sodium butyrate (NaBut) - a histone deacetylase inhibitor that can alter chromatin conformation - against planktonic and sessile cells of T. asahii and T. inkin. Minimum inhibitory concentration (MIC) of NaBut against planktonic cells was evaluated by microdilution and morphological changes were analyzed by optical microscopy on malt agar supplemented with NaBut. Biofilms were evaluated during adhesion, development and after maturation for metabolic activity and biomass, as well as regarding ultrastructure by scanning electron microscopy and confocal laser scanning microscopy. NaBut inhibited the growth of planktonic cells by 50% at 60 mM or 120 mM (p < 0.05) and also reduced filamentation of Trichosporon spp. NaBut reduced adhesion of Trichosporon cells by 45% (10xMIC) on average (p < 0.05). During biofilm development, NatBut (10xMIC) reduced metabolic activity and biomass up to 63% and 81%, respectively (p < 0.05). Mature biofilms were affected by NaBut (10xMIC), showing reduction of metabolic activity and biomass of approximately 48% and 77%, respectively (p < 0.05). Ultrastructure analysis showed that NaBut (MIC and 10xMIC) was able to disassemble mature biofilms. The present study describes the antifungal and anti-biofilm potential of NaBut against these opportunist emerging fungi.
Collapse
|
35
|
Yin Z, Chen C, Yang J, Feng W, Liu X, Zuo R, Wang J, Yang L, Zhong K, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy 2019; 15:1234-1257. [PMID: 30776962 DOI: 10.1080/15548627.2019.1580104] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy/autophagy is critical for normal appressorium formation and pathogenicity of the rice blast fungus Magnaporthe oryzae, but the molecular base of autophagy linked to pathogenicity remains elusive in this or other pathogenic fungi. We found that MoHat1, a histone acetyltransferase (HAT) homolog, had a role in the regulation of autophagy through the acetylation of autophagy related proteins MoAtg3 and MoAtg9. We also found that MoHat1 was subject to regulation by the protein kinase MoGsk1 that modulated the translocation of MoHat1 from the nucleus to the cytoplasm with the assistance of MoSsb1, a protein chaperone. The alternation of intracellular location affected MoHat1 in the modification of cytosolic autophagy proteins that maintained normal autophagy. Furthermore, we provided evidence linking acetylation of MoAtg3 and MoAtg9 by MoHat1 to functional appressorium development and pathogenicity. Together with the first report of MoAtg9 being subject to acetylation regulation by MoHat1, our studies depicted how MoHat1 regulated autophagy in conjunction with MoGsk1 and how normal autophagy was linked to appressorium formation and function and pathogenicity of M. oryzae. Abbreviations: A/Ala: alanine; AP: autophagosome; Atg genes/proteins: autophagy-related genes/proteins; BiFC: bimolecular fluorescence complementation; co-IP: co-immunoprecipitation; DAPI: 4', 6-diamidino-2-phenylindole; D/Asp: aspartic acid; GFP: green fluorescent protein; GSK3: glycogen synthase kinase 3; HAT: histone acetyltransferase; Hsp70: heat-shock protein 70; IH: invasive hyphae; K/Lys: lysine; MMS: methyl methanesulfonate; Mo: Magnaporthe oryzae; PAS: phagophore assembly site; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; R/Arg: arginine; S/Ser: serine; T/Thr: threonine; TOR: target of rapamycin; WT: wild type; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Ziyi Yin
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Chen Chen
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Jie Yang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Wanzhen Feng
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Xinyu Liu
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Rongfang Zuo
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Jingzhen Wang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Lina Yang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Kaili Zhong
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Chuyun Gao
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Haifeng Zhang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Xiaobo Zheng
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Ping Wang
- c Departments of Pediatrics, and Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Zhengguang Zhang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| |
Collapse
|
36
|
Tscherner M, Giessen TW, Markey L, Kumamoto CA, Silver PA. A Synthetic System That Senses Candida albicans and Inhibits Virulence Factors. ACS Synth Biol 2019; 8:434-444. [PMID: 30608638 DOI: 10.1021/acssynbio.8b00457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to a limited set of antifungals available and problems in early diagnosis, invasive fungal infections caused by Candida species are among the most common hospital-acquired infections with staggering mortality rates. Here, we describe an engineered system able to sense and respond to the fungal pathogen Candida albicans, the most common cause of candidemia. In doing so, we identified hydroxyphenylacetic acid (HPA) as a novel molecule secreted by C. albicans. Furthermore, we engineered E. coli to be able to sense HPA produced by C. albicans. Finally, we constructed a sense-and-respond system by coupling the C. albicans sensor to the production of an inhibitor of hypha formation, thereby reducing filamentation, virulence factor expression, and fungal-induced epithelial damage. This system could be used as a basis for the development of novel prophylactic approaches to prevent fungal infections.
Collapse
Affiliation(s)
- Michael Tscherner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Tobias W. Giessen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Laura Markey
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, United States
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation. mSystems 2018; 3:mSystems00270-18. [PMID: 30505942 PMCID: PMC6247014 DOI: 10.1128/msystems.00270-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen. The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.
Collapse
|
38
|
Bartelli TF, Bruno DCF, Briones MRS. Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity? Front Genet 2018; 9:166. [PMID: 29896215 PMCID: PMC5986885 DOI: 10.3389/fgene.2018.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
The commensal yeast Candida albicans is an opportunistic pathogen. In order to successfully colonize or infect the human body, the fungus must adapt to the host’s environmental conditions, such as low oxygen tension (hypoxia), temperature (37°C), and the different carbon sources available. Previous studies demonstrated the adaptive importance of C. albicans genetic variability for its pathogenicity, although the contributions of epigenetic and the influence of environmental factors are not fully understood. Mitochondria play important roles in fungal energetic metabolism, regulation of nuclear epigenetic mechanisms and pathogenicity. However, the specific impact of inter-strain mitochondrial genome variability and mitochondrial epigenetics in pathogenicity is unclear. Here, we draw attention to this relevant organelle and its potential role in C. albicans pathogenicity and provide preliminary evidence, for the first time, for methylation of the yeast mitochondrial genome. Our results indicate that environmental conditions, such as continuous exposure for 12 weeks to hypoxia and 37°C, decrease the mitochondrial genome methylation in strains SC5314 and L757. However, the methylation decrease is quantitatively different in specific genome positions when strains SC5314 and L757 are compared. We hypothesize that this phenomenon can be promising for future research to understand how physical factors of the host affect the C. albicans mitochondrial genome and its possible impact on adaptation and pathogenicity.
Collapse
Affiliation(s)
- Thais F Bartelli
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Genomics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Danielle C F Bruno
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo R S Briones
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Health Informatics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
40
|
Gómez-Casanova N, Bellido A, Espinosa-Texis A, Cueva R, Ciudad T, Larriba G. Candida tropicalis Isolates from Mexican Republic Exhibit High Susceptibility to Bleomycin and Variable Susceptibility to Hydrogen Peroxide. Microb Drug Resist 2017; 24:1031-1039. [PMID: 29267134 DOI: 10.1089/mdr.2017.0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Candida sp. are found as part of the commensal flora in humans but can cause invasive candidiasis in patients with severe underlying disease, especially cancer patients. These patients are frequently subjected to nonsurgical anticancer treatments such as ionizing radiation and anticancer drugs, which kill proliferating human cells by damaging DNA but also affect the microbiota of the patient. C. tropicalis, an emerging fungal pathogen, is associated with high mortality rates of cancer patients especially in tropical regions. In this study, we have investigated the in vitro susceptibility of 38 C. tropicalis clinical isolates from several Mexican hospitals to chronic treatments with several DNA damaging agents, including oxidizing compounds and anticancer drugs. C. tropicalis isolates displayed a high variability in their susceptibility to hydrogen peroxide (H2O2) while showing a high susceptibility to bleomycin (BLM), an anticancer drug that causes double-strand breaks in DNA. This contrasted with the moderate-to-high resistance exhibited by several C. albicans laboratory strains. At least for the C. tropicalis reference strain MYA3404, this susceptibility was hardly modified by the presence of serum. Our results open the possibility of using susceptibility to BLM to differentiate between C. tropicalis and C. albicans; however, analysis of a larger number of isolates is required. The use of BLM for prevention of C. tropicalis infections in neutropenic patients with cancer should be also evaluated. Finally, the variable susceptibility to H2O2 might be due to allelic variation of the histone acetyl-transferase complex which modulates the induction kinetics of H2O2-induced genes in C. tropicalis.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- 1 Departamento de Ciencias Biomédicas, F. de Ciencias, Universidad de Extremadura , Badajoz, Spain
| | - Alberto Bellido
- 1 Departamento de Ciencias Biomédicas, F. de Ciencias, Universidad de Extremadura , Badajoz, Spain
| | - Alejandra Espinosa-Texis
- 2 Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Laboratorio de Micología, Puebla, México
| | - Rosario Cueva
- 1 Departamento de Ciencias Biomédicas, F. de Ciencias, Universidad de Extremadura , Badajoz, Spain
| | - Toni Ciudad
- 1 Departamento de Ciencias Biomédicas, F. de Ciencias, Universidad de Extremadura , Badajoz, Spain
| | - Germán Larriba
- 1 Departamento de Ciencias Biomédicas, F. de Ciencias, Universidad de Extremadura , Badajoz, Spain
| |
Collapse
|
41
|
Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 2017; 293:4636-4643. [PMID: 29259135 DOI: 10.1074/jbc.tm117.000182] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.
Collapse
Affiliation(s)
- Natalie G Robinett
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
42
|
Jenull S, Tscherner M, Gulati M, Nobile CJ, Chauhan N, Kuchler K. The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Sci Rep 2017; 7:8308. [PMID: 28814742 PMCID: PMC5559454 DOI: 10.1038/s41598-017-08239-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023] Open
Abstract
Morphological plasticity such as the yeast-to-hyphae transition is a key virulence factor of the human fungal pathogen Candida albicans. Hyphal formation is controlled by a multilayer regulatory network composed of environmental sensing, signaling, transcriptional modulators as well as chromatin modifications. Here, we demonstrate a novel role for the replication-independent HIR histone chaperone complex in fungal morphogenesis. HIR operates as a crucial modulator of hyphal development, since genetic ablation of the HIR complex subunit Hir1 decreases sensitivity to morphogenetic stimuli. Strikingly, HIR1-deficient cells display altered transcriptional amplitudes upon hyphal initiation, suggesting that Hir1 affects transcription by establishing transcriptional thresholds required for driving morphogenetic cell-fate decisions. Furthermore, ectopic expression of the transcription factor Ume6, which facilitates hyphal maintenance, rescues filamentation defects of hir1Δ/Δ cells, suggesting that Hir1 impacts the early phase of hyphal initiation. Hence, chromatin chaperone-mediated fine-tuning of transcription is crucial for driving morphogenetic conversions in the fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Neeraj Chauhan
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria.
| |
Collapse
|
43
|
Zhang S, Liang M, Naqvi NI, Lin C, Qian W, Zhang LH, Deng YZ. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy 2017; 13:1318-1330. [PMID: 28594263 PMCID: PMC5584857 DOI: 10.1080/15548627.2017.1327103] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.
Collapse
Affiliation(s)
- Shulin Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Meiling Liang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Naweed I Naqvi
- c Temasek Life Sciences Laboratory, and Department of Biological Sciences , National University of Singapore , Singapore
| | - Chaoxiang Lin
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Wanqiang Qian
- d The New Countryside Development Institute of South China Agricultural University , Guangzhou , China
| | - Lian-Hui Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Yi Zhen Deng
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| |
Collapse
|
44
|
|
45
|
Garnaud C, Champleboux M, Maubon D, Cornet M, Govin J. Histone Deacetylases and Their Inhibition in Candida Species. Front Microbiol 2016; 7:1238. [PMID: 27547205 PMCID: PMC4974301 DOI: 10.3389/fmicb.2016.01238] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022] Open
Abstract
Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs) remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation, and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs toward Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.
Collapse
Affiliation(s)
- Cécile Garnaud
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Morgane Champleboux
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1038, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Biosciences and Biotechnology Institute of Grenoble - Large Scale Biology Laboratory Grenoble, France
| | - Danièle Maubon
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Muriel Cornet
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Jérôme Govin
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1038, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Biosciences and Biotechnology Institute of Grenoble - Large Scale Biology Laboratory Grenoble, France
| |
Collapse
|