1
|
Courtot É, Miclon M, Reaves B, Wolstenholme AJ, Neveu C. Functional validation of the truncated UNC-63 acetylcholine receptor subunit in levamisole resistance. Int J Parasitol 2023:S0020-7519(23)00051-6. [PMID: 36965824 DOI: 10.1016/j.ijpara.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/27/2023]
Abstract
Levamisole is a broad-spectrum anthelmintic which permanently activates cholinergic receptors from nematodes, inducing a spastic paralysis of the worms. Whereas this molecule is widely used to control parasitic nematodes impacting livestock, its efficacy is compromised by the emergence of drug-resistant parasites. In that respect, there is an urgent need to identify and validate molecular markers associated with resistance. Previous transcriptomic analyses revealed truncated cholinergic receptor subunits as potential levamisole resistance markers in the trichostrongylid nematodes Haemonchus contortus, Telodorsagia circumcincta and Trichostrongylus colubriformis. In the present study we used the Xenopus oocyte, as well as the free-living model nematode Caenorhabditis elegans, as heterologous expression systems to functionally investigate truncated isoforms of the levamisole-sensitive acetylcholine receptor (L-AChR) UNC-63 subunit. In the Xenopus oocyte, we report that truncated UNC-63 from C. elegans has a strong dominant negative effect on the expression of the recombinant C. elegans L-AChRs. In addition, we show that when expressed in C. elegans muscle cells, truncated UNC-63 induces a drastic reduction in levamisole susceptibility in transgenic worms, thus providing the first known functional validation for this molecular marker in vivo.
Collapse
Affiliation(s)
- Élise Courtot
- Infectiologie et Santé Publique, INRAE, Université de Tours, UMR 1282, 37380, Nouzilly, France.
| | - Morgane Miclon
- Infectiologie et Santé Publique, INRAE, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Barbara Reaves
- Infectiologie et Santé Publique, INRAE, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Adrian J Wolstenholme
- Infectiologie et Santé Publique, INRAE, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Cédric Neveu
- Infectiologie et Santé Publique, INRAE, Université de Tours, UMR 1282, 37380, Nouzilly, France.
| |
Collapse
|
2
|
Reconstitution of an N-AChR from Brugia malayi an evolved change in acetylcholine receptor accessory protein requirements in filarial parasites. PLoS Pathog 2022; 18:e1010962. [DOI: 10.1371/journal.ppat.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/01/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Neurotransmission is an important target for anthelmintic drugs, where receptor characteristics and response can be examined through reconstitution ex vivo in Xenopus laevis oocytes. The homomeric ACR-16 nicotine sensitive acetylcholine receptors (N-AChRs) of several helminth species have been characterized in this way. Our efforts to reconstitute the N-AChR from the clade III filarial parasite, Brugia malayi using similar conditions, initially produced no detectable response. A robust response to acetylcholine is obtained from the closely related clade III parasite Ascaris suum, suggesting that specific changes have occurred between Ascaris and Brugia. N-AChRs from three species intermediate between A. suum and B. malayi were characterized to provide information on the cause. Maximal response to acetylcholine did not change abruptly, consistent with a discrete event, but rather decreased progressively from A. suum through Dracunculus medinensis, Gonglylonema pulchrum and Thelazia callipaeda. Receptor responses to the characteristic nicotine, and other agonists were generally similar. The decrease in maximal current did correlate with a delayed time to reach larger response. Together, this suggested that the failure to reconstitute the B. malayi N-AChR was one extreme of a progressive decrease and that an issue with synthesis of the receptor in oocytes was responsible. Addition of accessory proteins EMC-6, NRA-2 and NRA-4, in addition to RIC-3, produced a small, but measurable B. malayi N-AChR response. Pharmacological properties of a chimeric B. malayi N-AChR were equivalent to the other species, confirming the receptor response remains unchanged while its production is increasingly dependent on accessory proteins. One possibility is that loss of many subunits for acetylcholine receptors from the filarial nematode genome is linked to new subunit combinations that lead to such a dependence. This novel phylogenetic approach allowed the first characterization of a B. malayi AChR ex vivo and in doing so, provides a framework for the successful characterization of other receptors that have yet to be reconstituted.
Collapse
|
3
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
4
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Lamassiaude N, Courtot E, Corset A, Charvet CL, Neveu C. Pharmacological characterization of novel heteromeric GluCl subtypes from C. elegans and parasitic nematodes. Br J Pharmacol 2021; 179:1264-1279. [PMID: 34623639 PMCID: PMC9306661 DOI: 10.1111/bph.15703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrocyclic lactones (MLs) are the most widely used broad-spectrum anthelmintic drugs for the treatment of parasitic nematodes impacting both human and animal health. MLs are known to act as agonist of the nematode glutamate-gated chloride channels (GluCls). However, for many important nematode species, the GluCls subunit composition and pharmacological properties remain largely unknown. In order to get new insights about the GluCl diversity and MLs mode of action, we identified and pharmacologically characterized receptors made of highly conserved GluCl subunits from the model nematode Caenorhabditis elegans, the human filarial nematode Brugia malayi and the horse parasite Parascaris univalens. EXPERIMENTAL APPROACH AVR-14, GLC-2, GLC3 and GLC-4 are the most conserved GluCl subunits throughout the Nematoda phylum. For each nematode species, we investigated the ability of these subunits to form either homomeric or heteromeric GluCls when expressed in Xenopus laevis oocytes and performed the detailed pharmacological characterization of the functional channels. KEY RESULTS Here, a total of 14 GluCls have been functionally reconstituted and heteromers formation was inferred from pharmacological criteria. Importantly, we report that the GLC-2 subunit plays a pivotal role in the composition of heteromeric GluCls in nematodes. In addition, we describe a novel GluCl subtype, made of the GLC-2/GLC-3 subunit combination, for which a high concentration of the anthelmintics ivermectin and moxidectin reversibly potentiate glutamate-induced response. CONCLUSION AND IMPLICATIONS This study brings new insights into the diversity of GluCl subtypes in nematodes and promote novel drug targets for the development of next generation anthelmintic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Cédric Neveu
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
6
|
Hansen TVA, Grencis RK, Issouf M, Neveu C, Charvet CL. Functional Characterization of the Oxantel-Sensitive Acetylcholine Receptor from Trichuris muris. Pharmaceuticals (Basel) 2021; 14:698. [PMID: 34358124 PMCID: PMC8308736 DOI: 10.3390/ph14070698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022] Open
Abstract
The human whipworm, Trichuris trichiura, is estimated to infect 289.6 million people globally. Control of human trichuriasis is a particular challenge, as most anthelmintics have a limited single-dose efficacy, with the striking exception of the narrow-spectrum anthelmintic, oxantel. We recently identified a novel ACR-16-like subunit from the pig whipworm, T. suis which gave rise to a functional acetylcholine receptor (nAChR) preferentially activated by oxantel. However, there is no ion channel described in the mouse model parasite T. muris so far. Here, we have identified the ACR-16-like and ACR-19 subunits from T. muris, and performed the functional characterization of the receptors in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. We found that the ACR-16-like subunit from T. muris formed a homomeric receptor gated by acetylcholine whereas the ACR-19 failed to create a functional channel. The subsequent pharmacological analysis of the Tmu-ACR-16-like receptor revealed that acetylcholine and oxantel were equally potent. The Tmu-ACR-16-like was more responsive to the toxic agonist epibatidine, but insensitive to pyrantel, in contrast to the Tsu-ACR-16-like receptor. These findings confirm that the ACR-16-like nAChR from Trichuris spp. is a preferential drug target for oxantel, and highlights the pharmacological difference between Trichuris species.
Collapse
Affiliation(s)
- Tina V. A. Hansen
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (M.I.); (C.N.)
| | - Richard K. Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Mohamed Issouf
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (M.I.); (C.N.)
- MayBiotech SARL, 8 Rue de la Gendarmerie, 97620 Bouéni, France
| | - Cédric Neveu
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (M.I.); (C.N.)
| | - Claude L. Charvet
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (M.I.); (C.N.)
| |
Collapse
|
7
|
Trailovic SM, Rajkovic M, Marjanovic DS, Neveu C, Charvet CL. Action of Carvacrol on Parascaris sp. and Antagonistic Effect on Nicotinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:ph14060505. [PMID: 34073197 PMCID: PMC8226574 DOI: 10.3390/ph14060505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Parascaris sp. is the only ascarid parasitic nematode in equids and one of the most threatening infectious organisms in horses. Only a limited number of compounds are available for treatment of horse helminthiasis, and Parascaris sp. worms have developed resistance to the three major anthelmintic families. In order to overcome the appearance of resistance, there is an urgent need for new therapeutic strategies. The active ingredients of herbal essential oils are potentially effective antiparasitic drugs. Carvacrol is one of the principal chemicals of essential oil from Origanum, Thymus, Coridothymus, Thymbra, Satureja and Lippia herbs. However, the antiparasitic mode of action of carvacrol is poorly understood. Here, the objective of the work was to characterize the activity of carvacrol on Parascaris sp. nicotinic acetylcholine receptor (nAChR) function both in vivo with the use of worm neuromuscular flap preparations and in vitro with two-electrode voltage-clamp electrophysiology on nAChRs expressed in Xenopus oocytes. We developed a neuromuscular contraction assay for Parascaris body flaps and obtained acetylcholine concentration-dependent contraction responses. Strikingly, we observed that 300 µM carvacrol fully and irreversibly abolished Parascaris sp. muscle contractions elicited by acetylcholine. Similarly, carvacrol antagonized acetylcholine-induced currents from both the nicotine-sensitive AChR and the morantel-sensitive AChR subtypes. Thus, we show for the first time that body muscle flap preparation is a tractable approach to investigating the pharmacology of Parascaris sp. neuromuscular system. Our results suggest an intriguing mode of action for carvacrol, being a potent antagonist of muscle nAChRs of Parascaris sp. worms, which may account for its antiparasitic potency.
Collapse
Affiliation(s)
- Sasa M. Trailovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
| | - Milan Rajkovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djordje S. Marjanovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
| | - Cédric Neveu
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France;
| | - Claude L. Charvet
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France;
- Correspondence:
| |
Collapse
|
8
|
Marjanović DS, Trailović SM, Milovanović M. Interaction of agonists of a different subtype of the nAChR and carvacrol with GABA in Ascaris suum somatic muscle contractions. J Nematol 2021; 53:e2021-022. [PMID: 33860255 PMCID: PMC8039995 DOI: 10.21307/jofnem-2021-022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/28/2022] Open
Abstract
Resistance of parasitic nematodes to anthelmintic drugs is a growing problem in human and veterinary medicine. The molecular mechanisms by which nematodes become resistant are different, but certainly one of the possible processes involves changing the drug binding site on the specific receptor. The significance of changes in individual subtypes of nicotinic acetylcholine receptors (nAChRs) for the development of resistance has not been clarified in detail. This study investigates the interaction of antinematodal drugs, agonist of different types of nAChRs and carvacrol with gamma aminobutyric acid (GABA) on the contractions of parasitic nematode A. suum. In our study, GABA (3 μM) produced significant increase of contractile EC50 value for pyrantel, and nonsignificant for bephenium and morantel, from 8.44 to 28.11 nM, 0.62 to 0.96 µM, and 3.72 to 5.69 nM, respectively. On the other hand, the maximal contractile effect (Rmax) did not change in the presence of GABA. However, when A. summ muscle flaps were incubated with GABA 3 μM and carvacrol 100 μM, the EC50 value of pyrantel, bephenium, and morantel was increased significantly to 44.62 nM, 1.40 μM, and nonsignificantly to 7.94 nM, respectively. Furthermore, Rmax decreased by 70, 60, and 65%. Presented results indicate that the combined use of GABA receptor agonists and nicotinic receptor antagonists can effectively inhibit the neuromuscular system of nematodes, even when one of the nicotinic receptor subtypes is dysfunctional, due to the potential development of resistance.
Collapse
Affiliation(s)
- Djordje S Marjanović
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000, Belgrade, Serbia
| | - Saša M Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000, Belgrade, Serbia
| | - Mirjana Milovanović
- Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000, Belgrade, Serbia
| |
Collapse
|
9
|
The molecular targets of ivermectin and lotilaner in the human louse Pediculus humanus humanus: New prospects for the treatment of pediculosis. PLoS Pathog 2021; 17:e1008863. [PMID: 33600484 PMCID: PMC7891696 DOI: 10.1371/journal.ppat.1008863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Control of infestation by cosmopolitan lice (Pediculus humanus) is increasingly difficult due to the transmission of parasites resistant to pediculicides. However, since the targets for pediculicides have no been identified in human lice so far, their mechanisms of action remain largely unknown. The macrocyclic lactone ivermectin is active against a broad range of insects including human lice. Isoxazolines are a new chemical class exhibiting a strong insecticidal potential. They preferentially act on the γ-aminobutyric acid (GABA) receptor made of the resistant to dieldrin (RDL) subunit and, to a lesser extent on glutamate-gated chloride channels (GluCls) in some species. Here, we addressed the pediculicidal potential of isoxazolines and deciphered the molecular targets of ivermectin and the ectoparasiticide lotilaner in the human body louse species Pediculus humanus humanus. Using toxicity bioassays, we showed that fipronil, ivermectin and lotilaner are efficient pediculicides on adult lice. The RDL (Phh-RDL) and GluCl (Phh-GluCl) subunits were cloned and characterized by two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. Phh-RDL and Phh-GluCl formed functional homomeric receptors respectively gated by GABA and L-glutamate with EC50 values of 16.0 μM and 9.3 μM. Importantly, ivermectin displayed a super agonist action on Phh-GluCl, whereas Phh-RDL receptors were weakly affected. Reversally, lotilaner strongly inhibited the GABA-evoked currents in Phh-RDL with an IC50 value of 40.7 nM, whereas it had no effect on Phh-GluCl. We report here for the first time the insecticidal activity of isoxazolines on human ectoparasites and reveal the mode of action of ivermectin and lotilaner on GluCl and RDL channels from human lice. These results emphasize an expected extension of the use of the isoxazoline drug class as new pediculicidal agents to tackle resistant-louse infestations in humans. Human cosmopolitan lice are responsible for pediculosis, which represent a significant public health concern. Resistant lice against insecticides and lack of safety of the treatments for human and environment is a growing issue worldwide. Here we investigated the efficacy on lice of the classical macrocyclic lactone drug, ivermectin, and of the isoxazoline drug, lotilaner. This study was done to decipher their mode of action at the molecular and functional levels in order to propose new strategies to control lice infestation. Our bioassay results indicate that ivermectin and lotilaner were potent at killing human adult lice, with lotilaner showing a higher efficacy than ivermectin. Furthermore, we identified and pharmacologically characterized the first glutamate- and GABA-gated chloride channels ever described in human lice yet. Mechanistically, our molecular biology and electrophysiology findings demonstrate that ivermectin acted preferentially at glutamate channels, while lotilaner specifically targeted GABA channels. These results provide new insights in the understanding of the insecticide mode of action and highlight the potential of isoxazolines as a new alternative for the treatment of human lice.
Collapse
|
10
|
Hansen TVA, Cirera S, Neveu C, Courtot E, Charvet CL, Calloe K, Klaerke DA, Martin RJ. The narrow-spectrum anthelmintic oxantel is a potent agonist of a novel acetylcholine receptor subtype in whipworms. PLoS Pathog 2021; 17:e1008982. [PMID: 33544769 PMCID: PMC7891710 DOI: 10.1371/journal.ppat.1008982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/18/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
In the absence of efficient alternative strategies, the control of parasitic nematodes, impacting human and animal health, mainly relies on the use of broad-spectrum anthelmintic compounds. Unfortunately, most of these drugs have a limited single-dose efficacy against infections caused by the whipworm, Trichuris. These infections are of both human and veterinary importance. However, in contrast to a wide range of parasitic nematode species, the narrow-spectrum anthelmintic oxantel has a high efficacy on Trichuris spp. Despite this knowledge, the molecular target(s) of oxantel within Trichuris is still unknown. In the distantly related pig roundworm, Ascaris suum, oxantel has a small, but significant effect on the recombinant homomeric Nicotine-sensitive ionotropic acetylcholine receptor (N-AChR) made up of five ACR-16 subunits. Therefore, we hypothesized that in whipworms, a putative homolog of an ACR-16 subunit, can form a functional oxantel-sensitive receptor. Using the pig whipworm T. suis as a model, we identified and cloned a novel ACR-16-like subunit and successfully expressed the corresponding homomeric channel in Xenopus laevis oocytes. Electrophysiological experiments revealed this receptor to have distinctive pharmacological properties with oxantel acting as a full agonist, hence we refer to the receptor as an O-AChR subtype. Pyrantel activated this novel O-AChR subtype moderately, whereas classic nicotinic agonists surprisingly resulted in only minor responses. We observed that the expression of the ACR-16-like subunit in the free-living nematode Caenorhabditis elegans conferred an increased sensitivity to oxantel of recombinant worms. We demonstrated that the novel Tsu-ACR-16-like receptor is indeed a target for oxantel, although other receptors may be involved. These finding brings new insight into the understanding of the high sensitivity of whipworms to oxantel, and highlights the importance of the discovery of additional distinct receptor subunit types within Trichuris that can be used as screening tools to evaluate the effect of new synthetic or natural anthelmintic compounds.
Collapse
Affiliation(s)
- Tina V. A. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Cédric Neveu
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Dan A. Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
11
|
Kaji MD, Geary TG, Beech RN. A Functional Comparison of Homopentameric Nicotinic Acetylcholine Receptors (ACR-16) Receptors From Necator americanus and Ancylostoma ceylanicum. Front Mol Neurosci 2020; 13:601102. [PMID: 33324163 PMCID: PMC7725692 DOI: 10.3389/fnmol.2020.601102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Effective control of hookworm infections in humans and animals relies on using a small group of anthelmintics. Many of these drugs target cholinergic ligand-gated ion channels, yet the direct activity of anthelmintics has only been studied in a subset of these receptors, primarily in the non-parasitic nematode, Caenorhabditis elegans. Here we report the characterization of a homopentameric ionotropic acetylcholine receptor (AChR), ACR-16, from Necator americanus and Ancylostoma ceylanicum, the first known characterization of human hookworm ion channels. We used two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes to determine the pharmacodynamics of cholinergics and anthelmintics on ACR-16 from both species of hookworm. The A. ceylanicum receptor (Ace-ACR-16) was more sensitive to acetylcholine (EC50 = 20.64 ± 0.32 μM) and nicotine (EC50 = 24.37 ± 2.89 μM) than the N. americanus receptor (Nam-ACR-16) (acetylcholine EC50 = 170.1 ± 19.23 μM; nicotine EC50 = 597.9 ± 59.12 μM), at which nicotine was a weak partial agonist (% maximal acetylcholine response = 30.4 ± 7.4%). Both receptors were inhibited by 500 μM levamisole (Ace-ACR-16 = 65.1 ± 14.3% inhibition, Nam-ACR-16 = 79.5 ± 7.7% inhibition), and responded to pyrantel, but only Ace-ACR-16 responded to oxantel. We used in silico homology modeling to investigate potential structural differences that account for the differences in agonist binding and identified a loop E isoleucine 130 of Nam-ACR-16 as possibly playing a role in oxantel insensitivity. These data indicate that key functional differences exist among ACR-16 receptors from closely related species and suggest mechanisms for differential drug sensitivity.
Collapse
Affiliation(s)
- Mark D. Kaji
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Montreal, QC, Canada
- School of Biological Sciences, Queen’s University-Belfast, Belfast, United Kingdom
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
13
|
Ma G, Gasser RB, Wang T, Korhonen PK, Young ND. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. INFECTION GENETICS AND EVOLUTION 2020; 85:104500. [PMID: 32795511 DOI: 10.1016/j.meegid.2020.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid sequencing, mass spectrometry and computational biology have facilitated the identification, annotation and analysis of genes, transcripts, proteins and metabolites in model nematodes (Caenorhabditis elegans and Pristionchus pacificus) and socioeconomically important parasitic nematodes (Clades I, III, IV and V). Significant progress has been made in genomics and transcriptomics as well as in the proteomics and lipidomics of Haemonchus contortus (the barber's pole worm) - one of the most pathogenic representatives of the order Strongylida. Here, we review salient aspects of genomics, transcriptomics, proteomics, lipidomics, glycomics and functional genomics, and discuss the rise of integrative 'omics of this economically important parasite. Although our knowledge of the molecular biology, genetics and biochemistry of H. contortus and related species has progressed significantly, much remains to be explored, particularly in areas such as drug resistance, unique/unknown genes, host-parasite interactions, parasitism and the pathogenesis of disease, by integrating the use of multiple 'omics methods. This approach should lead to a better understanding of H. contortus and its relatives at a 'systems biology' level, and should assist in developing new interventions against these parasites.
Collapse
Affiliation(s)
- Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Liu M, Panda SK, Luyten W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules 2020; 10:426. [PMID: 32182910 PMCID: PMC7175113 DOI: 10.3390/biom10030426] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal parasitic nematodes infect approximately two billion people worldwide. In the absence of vaccines for human intestinal nematodes, control of infections currently relies mainly on chemotherapy, but resistance is an increasing problem. Thus, there is an urgent need for the discovery and development of new anthelmintic drugs, especially ones with novel mechanisms of action. Medicinal plants hold great promise as a source of effective treatments, including anthelmintic therapy. They have been used traditionally for centuries and are mostly safe (if not, their toxicity is well-known). However, in most medicinal plants the compounds active against nematodes have not been identified thus far. The free-living nematode C. elegans was demonstrated to be an excellent model system for the discovery of new anthelmintics and for characterizing their mechanism of action or resistance. The compounds discussed in this review are of botanical origin and were published since 2002. Most of them need further studies of their toxicity, mechanisms and structure-activity relationship to assess more fully their potential as drugs.
Collapse
|
15
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
16
|
Charvet CL, Guégnard F, Courtot E, Cortet J, Neveu C. Nicotine-sensitive acetylcholine receptors are relevant pharmacological targets for the control of multidrug resistant parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:540-549. [PMID: 30502120 PMCID: PMC6287576 DOI: 10.1016/j.ijpddr.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The control of parasitic nematodes impacting animal health relies on the use of broad spectrum anthelmintics. However, intensive use of these drugs has led to the selection of resistant parasites in livestock industry. In that respect, there is currently an urgent need for novel compounds able to control resistant parasites. Nicotine has also historically been used as a de-wormer but was removed from the market when modern anthelmintics became available. The pharmacological target of nicotine has been identified in nematodes as acetylcholine-gated ion channels. Nicotinic-sensitive acetylcholine receptors (N-AChRs) therefore represent validated pharmacological targets that remain largely under-exploited. In the present study, using an automated larval migration assay (ALMA), we report that nicotinic derivatives efficiently paralyzed a multiple (benzimidazoles/levamisole/pyrantel/ivermectin) resistant field isolate of H. contortus. Using C. elegans as a model we confirmed that N-AChRs are preferential targets for nornicotine and anabasine. Functional expression of the homomeric N-AChR from C. elegans and the distantly related horse parasite Parascaris equorum in Xenopus oocytes highlighted some striking differences in their respective pharmacological properties towards nicotine derivative sensitivity. This work validates the exploitation of the nicotine receptors of parasitic nematodes as targets for the development of resistance-breaking compounds.
Collapse
Affiliation(s)
| | | | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France
| | - Jacques Cortet
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France.
| |
Collapse
|
17
|
Mougin C, Artige E, Marchand F, Mondy S, Ratié C, Sellier N, Castagnone-Sereno P, D'Acier AC, Esmenjaud D, Faivre-Primot C, Granjon L, Hamelet V, Lange F, Pagès S, Rimet F, Ris N, Sallé G. BRC4Env, a network of Biological Resource Centres for research in environmental and agricultural sciences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33849-33857. [PMID: 29675816 PMCID: PMC6245002 DOI: 10.1007/s11356-018-1973-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The Biological Resource Centre for the Environment BRC4Env is a network of Biological Resource Centres (BRCs) and collections whose leading objectives are to improve the visibility of genetic and biological resources maintained by its BRCs and collections and to facilitate their use by a large research community, from agriculture research to life sciences and environmental sciences. Its added value relies on sharing skills, harmonizing practices, triggering projects in comparative biology, and ultimately proposing a single-entry portal to facilitate access to documented samples, taking into account the partnership policies of research institutions as well as the legal frame which varies with the biological nature of resources. BRC4Env currently includes three BRCs: the Centre for Soil Genetic Resources of the platform GenoSol, in partnership with the European Conservatory of Soil Samples; the Egg Parasitoids Collection (EP-Coll); and the collection of ichthyological samples, Colisa. BRC4Env is also associated to several biological collections: microbial consortia (entomopathogenic bacteria, freshwater microalgae…), terrestrial arthropods, nematodes (plant parasitic, entomopathogenic, animal parasitic...), and small mammals. The BRCs and collections of BRC4Env are involved in partnership with academic scientists, as well as private companies, in the fields of medicinal mining, biocontrol, sustainable agriculture, and additional sectors. Moreover, the staff of the BRCs is involved in many training courses for students from French licence degree to Ph.D, engineers, as well as ongoing training.
Collapse
Affiliation(s)
- Christian Mougin
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France.
| | - Emmanuelle Artige
- UMR CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, 34988, Montferrier-sur-Lez, France
| | | | - Samuel Mondy
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | | | - Nadine Sellier
- INRA, Université Côte d'Azur, CNRS, ISA, 06900, Sophia Antipolis, France
| | | | - Armelle Cœur D'Acier
- UMR CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, 34988, Montferrier-sur-Lez, France
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 06900, Sophia Antipolis, France
| | - Céline Faivre-Primot
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Laurent Granjon
- UMR CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, 34988, Montferrier-sur-Lez, France
| | - Valérie Hamelet
- UMR CARRTEL, INRA, Université de Savoie, 74203, Thonon-les-Bains, France
| | - Frederic Lange
- UMR ECOBIOP, INRA, Université Pau & Pays Adour, pôle AFB-INRA Gest'Aqua, 64310, Saint-Pee-sur-Nivelle, France
| | - Sylvie Pagès
- UMR DGIMI, INRA, Université de Montpellier, 34095, Montpellier, France
| | - Frédéric Rimet
- UMR CARRTEL, INRA, Université de Savoie, 74203, Thonon-les-Bains, France
| | - Nicolas Ris
- INRA, Université Côte d'Azur, CNRS, ISA, 06900, Sophia Antipolis, France
| | - Guillaume Sallé
- UMR ISP, INRA, Université François Rabelais, 37380, Nouzilly, France
| |
Collapse
|
18
|
Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B, Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species. PLoS Pathog 2018; 14:e1006996. [PMID: 29719008 PMCID: PMC5931475 DOI: 10.1371/journal.ppat.1006996] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a ‘model hopping’ approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds. Parasitic nematodes have global health and economic impacts. They infect animals, including livestock, humans, and plants including all major food crops. Their control in human and veterinary medicine is reliant on anthelmintic drugs but this is now challenged by resistant worms especially in livestock. Importantly, for anthelmintics such as levamisole and other cholinergic agonists, resistance appears to be less frequent stressing the need to investigate their molecular target in parasitic nematodes. The levamisole receptor was first identified in the free-living model nematode C. elegans but it is now becoming apparent that this is not a good predictor for many parasitic species. In particular we have found that the LEV-8 subunit which is involved in levamisole sensitivity in C. elegans, is not present in many levamisole-sensitive parasitic species. Here we used heterologous expression systems and gene silencing to provide the functional in vivo demonstration that the ACR-8 subunit, which is not an essential component of the levamisole receptor in C. elegans, has a critical role in the levamisole sensitivity of parasitic nematodes. This has important significance for understanding the molecular targets of cholinergic anthelmintics and addresses the increasing challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Anna Crisford
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
| | | | | | - Thomas Duguet
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Vincent O’Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Barbara Reaves
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
19
|
The interactions of anthelmintic drugs with nicotinic receptors in parasitic nematodes. Emerg Top Life Sci 2017; 1:667-673. [PMID: 33525839 DOI: 10.1042/etls20170096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 02/01/2023]
Abstract
Parasitic nematodes express a large number of distinct nicotinic acetylcholine receptors and these in turn are the targets of many classes of anthelmintic drug. This complexity poses many challenges to the field, including sorting the exact subunit composition of each of the receptor subtypes and how much they vary between species. It is clear that the model organism Caenorhabditis elegans does not recapitulate the complexity of nicotinic pharmacology of many parasite species and data using this system may be misleading when applied to them. The number of different receptors may allow nematodes some plasticity which they can exploit to evolve resistance to a specific cholinergic drug; however, this may mean that combinations of cholinergic agents may be effective at sustainably controlling them. Resistance may involve the expression of truncated receptor subunits that affect the expression levels of the receptors via mechanisms that remain to be deciphered.
Collapse
|
20
|
Rajasekharan SK, Lee JH, Ravichandran V, Lee J. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus. Sci Rep 2017; 7:6803. [PMID: 28754990 PMCID: PMC5533787 DOI: 10.1038/s41598-017-07074-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/22/2017] [Indexed: 02/03/2023] Open
Abstract
Bursaphelenchus xylophilus is a quarantined migratory endoparasite known to cause severe economic losses in pine forest ecosystems. The study presents the nematicidal effects of halogenated indoles on B. xylophilus and their action mechanisms. 5-Iodoindole and abamectin (positive control) at low concentration (10 µg/mL) presented similar and high nematicidal activities against B. xylophilus. 5-Iodoindole diminished fecundity, reproductive activities, embryonic and juvenile lethality and locomotor behaviors. Molecular interactions of ligands with invertebrate-specific glutamate gated chloride channel receptor reinforced the notion that 5-iodoindole, like abamectin, rigidly binds to the active sites of the receptor. 5-Iodoindole also induced diverse phenotypic deformities in nematodes including abnormal organ disruption/shrinkage and increased vacuolization. These findings suggest the prospective role of vacuoles in nematode death by methuosis. Importantly, 5-iodoindole was nontoxic to two plants, Brassica oleracea and Raphanus raphanistrum. Henceforth, the study warrants the application of iodoindoles in ecological environments to control the devastating pine destruction by B. xylophilus.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Vinothkannan Ravichandran
- Shandong University-Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, P.R. China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
21
|
Kudelska MM, Holden-Dye L, O'Connor V, Doyle DA. Concentration-dependent effects of acute and chronic neonicotinoid exposure on the behaviour and development of the nematode Caenorhabditis elegans. PEST MANAGEMENT SCIENCE 2017; 73:1345-1351. [PMID: 28261957 DOI: 10.1002/ps.4564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Neonicotinoid insecticides are under review owing to emerging toxicity to non-target species. Interest has focused on biological pollinators while their effects on other organisms that are key contributors to the ecosystem remain largely unknown. To advance this, we have tested the effects of representatives of three major classes of neonicotinoids, thiacloprid, clothianidin and nitenpyram, on the free-living nematode Caenorhabditis elegans (C. elegans), as a representative of the Nematoda, an ecologically important phylum contributing to biomass. RESULTS Concentrations that are several-fold higher than those with effects against target species had limited impact on locomotor function. However, increased potency was observed in a mutant with a hyperpermeable cuticle, which shows that drug access limits the effects of the neonicotinoids in C. elegans. Thiacloprid was most potent (EC50 714 μm). In addition, it selectively delayed larval development in wild-type worms at 1 mm. CONCLUSION C. elegans is less susceptible to neonicotinoids than target species of pest insect. We discuss an approach in which this defined low sensitivity may be exploited by heterologous expression of insect nicotinic acetylcholine receptors from both pest and beneficial insects in transgenic C. elegans with increased cuticle permeability to provide a whole organism assay for species-dependent neonicotinoid effects. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Declan A Doyle
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
22
|
Abongwa M, Martin RJ, Robertson AP. A BRIEF REVIEW ON THE MODE OF ACTION OF ANTINEMATODAL DRUGS. ACTA VET-BEOGRAD 2017; 67:137-152. [PMID: 29416226 DOI: 10.1515/acve-2017-0013] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Anthelmintics are some of the most widely used drugs in veterinary medicine. Here we review the mechanism of action of these compounds on nematode parasites. Included are the older classes of compounds; the benzimidazoles, cholinergic agonists and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, derquantel and tribendimidine. In the absence of vaccines for most parasite species, control of nematode parasites will continue to rely on anthelmintic drugs. As a consequence, vigilance in detecting drug resistance in parasite populations is required. Since resistance development appears almost inevitable, there is a continued and pressing need to fully understand the mode of action of these compounds. It is also necessary to identify new drug targets and drugs for the continued effective control of nematode parasites.
Collapse
Affiliation(s)
- Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine , Iowa State University , Ames , IA 50011 , United States of America
| |
Collapse
|
23
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Functional genomics in Brugia malayi reveal diverse muscle nAChRs and differences between cholinergic anthelmintics. Proc Natl Acad Sci U S A 2017; 114:5539-5544. [PMID: 28487481 PMCID: PMC5448196 DOI: 10.1073/pnas.1619820114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many techniques for studying functional genomics of important target sites of anthelmintics have been restricted to Caenorhabditis elegans because they have failed when applied to animal parasites. To overcome these limitations, we have focused our research on the human nematode parasite Brugia malayi, which causes elephantiasis. Here, we combine single-cell PCR, whole muscle cell patch clamp, motility phenotyping (Worminator), and dsRNA for RNAi for functional genomic studies that have revealed, in vivo, four different muscle nAChRs (M-, L-, P-, and N-). The cholinergic anthelmintics had different selectivities for these receptors. We show that motility and patch-clamp responses to levamisole and pyrantel, but not morantel or nicotine, require the unc-38 and/or unc-29 genes. Derquantel behaved as a competitive antagonist and distinguished M-nAChRs activated by morantel (Kb 13.9 nM), P-nAChRs activated by pyrantel (Kb 126 nM), and L-nAChRs activated by levamisole (Kb 0.96 µM) and bephenium. Derquantel was a noncompetitive antagonist of nicotine, revealing N-type nAChRs. The presence of four diverse nAChRs on muscle is perhaps surprising and not predicted from the C. elegans model. The diverse nAChRs represent distinguishable drug targets with different functions: Knockdown of unc-38+unc-29 (L- and/or P-receptors) inhibited motility but knockdown of acr-16+acr-26 (M- and/or N-receptors) did not.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011
| | | | | | | |
Collapse
|
24
|
Abongwa M, Baber KE, Martin RJ, Robertson AP. The cholinomimetic morantel as an open channel blocker of the Ascaris suum ACR-16 nAChR. INVERTEBRATE NEUROSCIENCE 2016; 16:10. [DOI: 10.1007/s10158-016-0193-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
|
25
|
Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, Doyle SR, Dunn M, Dunning Hotopp JC, Holroyd N, Kikuchi T, Lambert O, Mhashilkar A, Mutowo P, Nursimulu N, Ribeiro JMC, Rogers MB, Stanley E, Swapna LS, Tsai IJ, Unnasch TR, Voronin D, Parkinson J, Nutman TB, Ghedin E, Berriman M, Lustigman S. The genome of Onchocerca volvulus, agent of river blindness. Nat Microbiol 2016; 2:16216. [PMID: 27869790 PMCID: PMC5310847 DOI: 10.1038/nmicrobiol.2016.216] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
Abstract
Human onchocerciasis is a serious neglected tropical disease caused by the filarial nematode Onchocerca volvulus that can lead to blindness and chronic disability. Control of the disease relies largely on mass administration of a single drug, and the development of new drugs and vaccines depends on a better knowledge of parasite biology. Here, we describe the chromosomes of O. volvulus and its Wolbachia endosymbiont. We provide the highest-quality sequence assembly for any parasitic nematode to date, giving a glimpse into the evolution of filarial parasite chromosomes and proteomes. This resource was used to investigate gene families with key functions that could be potentially exploited as targets for future drugs. Using metabolic reconstruction of the nematode and its endosymbiont, we identified enzymes that are likely to be essential for O. volvulus viability. In addition, we have generated a list of proteins that could be targeted by Federal-Drug-Agency-approved but repurposed drugs, providing starting points for anti-onchocerciasis drug development.
Collapse
Affiliation(s)
- James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Bhavana Harsha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Stephen R. Doyle
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Matthew Dunn
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Olivia Lambert
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Amruta Mhashilkar
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Prudence Mutowo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Nirvana Nursimulu
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jose M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Matthew B. Rogers
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Eleanor Stanley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Lakshmipuram S. Swapna
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Isheng J. Tsai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA
| | - Denis Voronin
- New York Blood Center, New York, New York 10065, USA
| | - John Parkinson
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- College of Global Public Health, New York University, New York, New York 10003, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
26
|
Duguet TB, Charvet CL, Forrester SG, Wever CM, Dent JA, Neveu C, Beech RN. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors. PLoS Negl Trop Dis 2016; 10:e0004826. [PMID: 27415016 PMCID: PMC4945070 DOI: 10.1371/journal.pntd.0004826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic nematodes and this work provides a foundation for understanding the broader context of changing anthelmintic drug targets across the parasitic nematodes.
Collapse
Affiliation(s)
- Thomas B. Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Claude L. Charvet
- INRA, UMR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie Santé Publique, Tours, France
| | - Sean G. Forrester
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Claudia M. Wever
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Joseph A. Dent
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Centre for Host-Parasite Interactions, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie Santé Publique, Tours, France
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|