1
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24:858-877. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
2
|
Noble SL, Mules TC, Le Gros G, Inns S. The immunoregulatory potential of eosinophil subsets. Immunol Cell Biol 2024; 102:775-786. [PMID: 39269337 DOI: 10.1111/imcb.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Eosinophils have traditionally been viewed as pathological effector cells primarily involved in antiparasitic and allergic immune reactions; however, it is becoming increasingly apparent that eosinophils are multifaceted leukocytes that contribute to a variety of roles in both health and disease. Recent research shows that eosinophils play important immunoregulatory roles across various tissue sites including the gastrointestinal tract, adipose tissue, lung, liver, heart, muscles, thymus and bone marrow. With recent advances in our knowledge and appreciation of eosinophil immunoregulatory functions at these tissue sites, as well as emerging research demonstrating the existence of distinct subsets of eosinophils, a review of this topic is timely. Although some questions remain regarding eosinophil function and heterogeneity, this review summarizes the contemporary understanding of the immunoregulatory roles of eosinophils across various tissues and discusses the latest research on eosinophil heterogeneity and subsets.
Collapse
Affiliation(s)
- Sophia-Louise Noble
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | - Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| |
Collapse
|
3
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
4
|
Ye C, Zhang L, Tang L, Duan Y, Liu J, Zhou H. Host genetic backgrounds: the key to determining parasite-host adaptation. Front Cell Infect Microbiol 2023; 13:1228206. [PMID: 37637465 PMCID: PMC10449477 DOI: 10.3389/fcimb.2023.1228206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Parasitic diseases pose a significant threat to global public health, particularly in developing countries. Host genetic factors play a crucial role in determining susceptibility and resistance to infection. Recent advances in molecular and biological technologies have enabled significant breakthroughs in understanding the impact of host genes on parasite adaptation. In this comprehensive review, we analyze the host genetic factors that influence parasite adaptation, including hormones, nitric oxide, immune cells, cytokine gene polymorphisms, parasite-specific receptors, and metabolites. We also establish an interactive network to better illustrate the complex relationship between host genetic factors and parasite-host adaptation. Additionally, we discuss future directions and collaborative research priorities in the parasite-host adaptation field, including investigating the impact of host genes on the microbiome, developing more sophisticated models, identifying and characterizing parasite-specific receptors, utilizing patient-derived sera as diagnostic and therapeutic tools, and developing novel treatments and management strategies targeting specific host genetic factors. This review highlights the need for a comprehensive and systematic approach to investigating the underlying mechanisms of parasite-host adaptation, which requires interdisciplinary collaborations among biologists, geneticists, immunologists, and clinicians. By deepening our understanding of the complex interactions between host genetics and parasite adaptation, we can develop more effective and targeted interventions to prevent and treat parasitic diseases. Overall, this review provides a valuable resource for researchers and clinicians working in the parasitology field and offers insights into the future directions of this critical research area.
Collapse
Affiliation(s)
- Caixia Ye
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lianhua Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Surgery, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lili Tang
- The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, China
| | - Yongjun Duan
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Gu X, Ge Y, Wang Y, Huang C, Yang G, Xie Y, Xu J, He R, Zhong Z, Yang D, He Z, Peng X. Macrophage Migration Inhibitory Factor in Psoroptes ovis: Molecular Characterization and Potential Role in Eosinophil Accumulation of Skin in Rabbit and Its Implication in the Host-Parasite Interaction. Int J Mol Sci 2023; 24:ijms24065985. [PMID: 36983058 PMCID: PMC10059829 DOI: 10.3390/ijms24065985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Psoroptes ovis, a common surface-living mite of domestic and wild animals worldwide, results in huge economic losses and serious welfare issues in the animal industry. P. ovis infestation rapidly causes massive eosinophil infiltration in skin lesions, and increasing research revealed that eosinophils might play an important role in the pathogenesis of P. ovis infestation. Intradermal injection of P. ovis antigen invoked massive eosinophil infiltration, suggesting that this mite should contain some relative molecules involved in eosinophil accumulation in the skin. However, these active molecules have not yet been identified. Herein, we identified macrophage migration inhibitor factor (MIF) in P. ovis (PsoMIF) using bioinformatics and molecular biology methods. Sequence analyses revealed that PsoMIF appeared with high similarity to the topology of monomer and trimer formation with host MIF (RMSD = 0.28 angstroms and 2.826 angstroms, respectively) but with differences in tautomerase and thiol-protein oxidoreductase active sites. Reverse transcription PCR analysis (qRT-PCR) results showed that PsoMIF was expressed throughout all the developmental stages of P. ovis, particularly with the highest expression in female mites. Immunolocalization revealed that MIF protein located in the ovary and oviduct of female mites and also localized throughout the stratum spinosum, stratum granulosum, and even basal layers of the epidermis in skin lesions caused by P. ovis. rPsoMIF significantly upregulated eosinophil-related gene expression both in vitro (PBMC: CCL5, CCL11; HaCaT: IL-3, IL-4, IL-5, CCL5, CCL11) and in vivo (rabbit: IL-5, CCL5, CCL11, P-selectin, ICAM-1). Moreover, rPsoMIF could induce cutaneous eosinophil accumulation in a rabbit model and increased the vascular permeability in a mouse model. Our findings indicated that PsoMIF served as one of the key molecules contributing to skin eosinophil accumulation in P. ovis infection of rabbits.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - You Ge
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cuirui Huang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
6
|
Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment. Int J Mol Sci 2023; 24:ijms24065716. [PMID: 36982789 PMCID: PMC10052006 DOI: 10.3390/ijms24065716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The existence of eosinophils was documented histopathologically in the first half of the 19th century. However, the term “eosinophils” was first used by Paul Ehrlich in 1878. Since their discovery and description, their existence has been associated with asthma, allergies, and antihelminthic immunity. Eosinophils may also be responsible for various possible tissue pathologies in many eosinophil-associated diseases. Since the beginning of the 21st century, the understanding of the nature of this cell population has undergone a fundamental reassessment, and in 2010, J. J. Lee proposed the concept of “LIAR” (Local Immunity And/or Remodeling/Repair), underlining the extensive immunoregulatory functions of eosinophils in the context of health and disease. It soon became apparent that mature eosinophils (in line with previous morphological studies) are not structurally, functionally, or immunologically homogeneous cell populations. On the contrary, these cells form subtypes characterized by their further development, immunophenotype, sensitivity to growth factors, localization, role and fate in tissues, and contribution to the pathogenesis of various diseases, including asthma. The eosinophil subsets were recently characterized as resident (rEos) and inflammatory (iEos) eosinophils. During the last 20 years, the biological therapy of eosinophil diseases, including asthma, has been significantly revolutionized. Treatment management has been improved through the enhancement of treatment effectiveness and a decrease in the adverse events associated with the formerly ultimately used systemic corticosteroids. However, as we observed from real-life data, the global treatment efficacy is still far from optimal. A fundamental condition, “sine qua non”, for correct treatment management is a thorough evaluation of the inflammatory phenotype of the disease. We believe that a better understanding of eosinophils would lead to more precise diagnostics and classification of asthma subtypes, which could further improve treatment outcomes. The currently validated asthma biomarkers (eosinophil count, production of NO in exhaled breath, and IgE synthesis) are insufficient to unveil super-responders among all severe asthma patients and thus give only a blurred picture of the adepts for treatment. We propose an emerging approach consisting of a more precise characterization of pathogenic eosinophils in terms of the definition of their functional status or subset affiliation by flow cytometry. We believe that the effort to find new eosinophil-associated biomarkers and their rational use in treatment algorithms may ameliorate the response rate to biological therapy in patients with severe asthma.
Collapse
|
7
|
Hilvering B, Koenderman L. Quality over quantity; eosinophil activation status will deepen the insight into eosinophilic diseases. Respir Med 2023; 207:107094. [PMID: 36572067 DOI: 10.1016/j.rmed.2022.107094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Eosinophil associated diseases have gained much attention recently because of the introduction of specific eosinophil targeted therapies. These diseases range from acute parasitic infections to chronic inflammatory diseases such as eosinophilic asthma. In eosinophilic asthma an increased eosinophil cell count in peripheral blood is the gold standard for determination of the pheno-/endotype and severity of disease. Despite a broad consensus there is concern on validity of this simple measurement, because the eosinophil compartment is far from homogenous. Multiple tissues harbour non-activated cells under homeostatic conditions and other tissues, normally devoid of eosinophils, become infested with these cells under inflammatory conditions. It will, therefore, be clear that eosinophils become differentially (pre)-activated at different tissue sites in homeostatic and inflammatory conditions. This complexity should be investigated in detail as it is 1) far from clear what the long-term side effects are that are caused by application of eosinophil targeted therapies in a "one size fits all" concept and 2) real-world data of eosinophil targeted therapies in asthma shows a broad variety in the treatment response. This review will focus on complex mechanisms of eosinophil activation in vivo to create a better view on the dynamics of the eosinophil compartment in health and disease both to prevent collateral damage caused by aberrant activation of eosinophils ánd to improve effectiveness of eosinophil targeted treatments.
Collapse
Affiliation(s)
- B Hilvering
- Dept. Pulmonary Medicine, Amsterdam University Medical Center, the Netherlands.
| | - L Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
8
|
Park MK, Kang SA, Cho MK, Yu HS. Trichinella spiralis nurse cell formation is regulated via CCR7 + dendritic cells. Parasite Immunol 2022; 44:e12938. [PMID: 35689825 DOI: 10.1111/pim.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
The chemokine receptor CCR7 is a well-established homing receptor for dendritic cells (DCs) and T-cells. Interaction with the CCL19 and CCL21 ligands promotes priming of immune responses in lymphoid tissues; however, the mechanism underlying CCR7-induced immune responses against helminth parasite infection remains unknown. Thus, we examined the role of CCR7 in generating protective immune responses against intracellular Trichinella spiralis infection. The results showed significantly increased CCR7, CCL19 and CCL21 expression in the muscle tissue compared to that in the intestinal tissue in T. spiralis-infected mice. The CCR7-expressing DC population increased in the mesenteric and peripheral lymph nodes (PLNs) during T. spiralis infection. Notably, the number of CCR7-expressing cells in PLNs increased by more than 30% at 28 days post-infection; however, this increase was significantly inhibited in CCR7-blocked mice treated with CCR7-specific antibodies. T helper 2 (Th2)-and regulatory T (Treg )-related cytokine levels were also reduced by CCR7-specific antibody treatment. CCR7-blocked mice lost their resistance to T. spiralis infection in the muscle phase but not in the intestinal phase. Furthermore, fewer eosinophils around the nurse cells and reduced total and T. spiralis-specific IgE in the serum were observed in CCR7-blocked mice compared to those infected with only T. spiralis. CCR7 blockade led to the T. spiralis infection-induced suppression of Th2- and Treg -related cytokine production in vitro. These results suggest that CCR7 in DCs might play an essential role in host defence mechanisms against T. spiralis infection, particularly in the muscle stage of the infection, by accelerating Th2 and Treg cell responses.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea
| | - Min-Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan-si, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, Republic of Korea
| |
Collapse
|
9
|
Zhang X, Yang Y, Zheng Y, Hu Y, Rao Y, Li J, Zhao P, Li J. The Value of the Antibody Detection in the Diagnosis of Ocular Toxocariasis and the Aqueous Cytokine Profile Associated With the Condition. Front Med (Lausanne) 2022; 9:838800. [PMID: 35419376 PMCID: PMC9000971 DOI: 10.3389/fmed.2022.838800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To evaluate and compare the specificity of Toxocara canis-specific antibody detection in the serum and aqueous samples for the diagnosis of ocular toxocariasis (OT) and explore the cytokine profiles associated with the condition in children. Materials and Methods This is a prospective cohort study. The inclusion criteria were the clinical presentations of OT, which included unilateral vision reduction, typical peripheral or posterior pole granuloma with variable degrees of vitritis, and exclusion of other diagnoses. The titer of antibody against the excretory-secretory antigen of Toxocara canis [T-immunoglobulin G (IgG)] was measured in serum and aqueous samples that were taken from the affected eyes. The diagnosis of OT was made upon positive detection of T-IgG either in the serum or aqueous. The rest with typical clinical presentations as described above but a positive serum or aqueous T-IgG could not be confirmed were diagnosed as suspected OT. Cytokines were measured using multiplexed cytometric bead array system. Results Two hundred and eleven eyes of 211 patients had participated in the study. One hundred and twenty-eight eyes were diagnosed as OT. The median age of the cohort was 7.7 years with a male to female ratio of 2.5:1. Major initial symptoms were decreased vision (74%) and strabismus (22%). The percentages of eyes with peripheral granuloma, posterior granuloma, and endophthalmitis were 40, 18, and 41%, respectively. Vitritis (100%), vitreous strands (64%), retinal fibrotic bands (57%), and retinal detachment (42%) were the most common signs. T-IgG was positive in 66.7% of the aqueous and 57.2% of the serum samples. Forty-four patients were diagnosed T-IgG negative in both serum and aqueous of the affected eyes. Interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, eosinophil chemotactic protein (Eotaxin), MCP-1β, and vascular endothelial growth factor (VEGF) were higher in T-IgG negative eyes when compared to controls and further increased in T-IgG positive eyes. However, only T-IgG positive eyes showed increased IL-5, IL-13, and IL-10. IL-1β, tumor necrosis factor-alpha (TNF-α), IL-12, IL-2, interferon-gamma (IFN-γ), and IL-4 were undetectable in all eyes. Conclusions Pediatric OT is often present with severe retinal complications. Polarized intraocular Th2 response was only found in aqueous T-IgG positive eyes. Our results supported an aqueous sample-based antibody test for the more specific diagnosis of OT.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqian Hu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiakai Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Liu J, Zhou J, Zhao S, Xu X, Li CJ, Li L, Shen T, Hunt PW, Zhang R. Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitol Int 2022; 87:102539. [PMID: 35007764 DOI: 10.1016/j.parint.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiachang Zhou
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Si Zhao
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China; International Medical School, Hebei Foreign Studies University, Shijiazhuang, Hebei 050096, China
| | - Xiangdong Xu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | - Li Li
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Tingbo Shen
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China.
| |
Collapse
|
11
|
Moore EM, Maestas DR, Cherry CC, Garcia JA, Comeau HY, Davenport Huyer L, Kelly SH, Peña AN, Blosser RL, Rosson GD, Elisseeff JH. Biomaterials direct functional B cell response in a material-specific manner. SCIENCE ADVANCES 2021; 7:eabj5830. [PMID: 34851674 PMCID: PMC8635437 DOI: 10.1126/sciadv.abj5830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
Collapse
Affiliation(s)
- Erika M. Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris C. Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan A. Garcia
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah Y. Comeau
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gedge D. Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
13
|
El-Dardiry MA, Abdel-Aal AA, Abdeltawab MSA, El-Sherbini M, Hassan MA, Abdel-Aal AA, Badawi M, Anis SE, Khaled BEA, Al-Antably AS. Effect of mast cell stabilization on angiogenesis in primary and secondary experimental Trichinella spiralis infection. Parasit Vectors 2021; 14:567. [PMID: 34742326 PMCID: PMC8572477 DOI: 10.1186/s13071-021-05075-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mast cells are known to affect the primary and secondary immune responses against parasites, and this effect is partially mediated through the release of pro-angiogenic mediators. The aim of this study was to explore the effect of the mast cell stabilizer (MCS), ketotifen, with and without albendazole, an anti-parasitic prescription medicine, on the inflammatory response against Trichinella spiralis, with the overall aim to investigate its effect on angiogenesis accompanying nurse cell formation. METHODS The effect of ketotifen and albendazole was explored in eight groups of female BALB/c mice. Four groups were sensitized with a small dose of T. spiralis larvae. The drug regimen was then applied to both sensitized (challenged) and non-sensitized mice. The parasite load was assessed by histopathological examination of the small intestine and muscle tissue, and angiogenesis was assessed by immunohistochemistry to determine the expression of vascular endothelial growth factor (VEGF). RESULTS Sensitized mice showed a significantly lower parasite load and a more pronounced inflammatory response than mice receiving a single infective dose of T. spiralis larvae. All treated groups showed a significant reduction in parasite count compared to the control groups (groups IAa and IBa), reaching approximately an 98.8% reduction in adult parasite count in the sensitized group treated with albendazole (groups IIAb and IIBb). MCS significantly decreased the parasite count during both the intestinal or muscular phases, reduced tissue inflammation, and decreased local VEGF expression, both in the non-sensitized and sensitized groups. CONCLUSION Sensitization with a low dose of T. spiralis larvae was found to confer a partial protective immunity against re-infection and to positively affect the study outcomes, thus underlining the importance of vaccination, but after extensive studies. The anti-angiogenic effect of MCS protects against larval encystation during the muscle phase. The anti-angiogenic potential of albendazole suggests that the action of this anti-helminthic during trichinellosis is not confined to structural damage to the parasite cuticle but includes an effect on host immunopathological response.
Collapse
Affiliation(s)
- Marwa A El-Dardiry
- Department of Medical Parasitology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Amany A Abdel-Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt.,Department of Postgraduate Studies & Scientific Research, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Magda S A Abdeltawab
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Marwa A Hassan
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Asmaa A Abdel-Aal
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Manal Badawi
- Department of Pathology, National Research Center, Giza, Egypt
| | - Shady E Anis
- Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Bahaa-Eldin A Khaled
- Department of Anatomy & Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.,Department of Anatomy, Jouf University, Sakaka, Saudi Arabia
| | - Abeer S Al-Antably
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Kinetics of Eosinophils during Development of the Cellular Infiltrate Surrounding the Nurse Cell of Trichinella spiralis in Experimentally Infected Mice. Pathogens 2021; 10:pathogens10111382. [PMID: 34832538 PMCID: PMC8617616 DOI: 10.3390/pathogens10111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022] Open
Abstract
We study the kinetics of eosinophils during the development of the cellular infiltrate surrounding the nurse cell of Trichinella spiralis (T. spiralis) in experimentally infected mice. Male CD1 mice were experimentally infected with 50 viable muscle larvae of the MSUS/MEX/91/CM-91 T. spiralis strain. Tongues and diaphragms were obtained daily from days 13 to 39 post infection. Diaphragms were compressed and subjected to Giemsa stain. Tongues were histologically sectioned and stained with erythrosine B or hematoxylin and eosin. The cellular infiltrate and the nurse cell-larva complex were detected by optical microscopy since day 16 post infection. The size of the larva increased exponentially during the course of the infection. The kinetics of eosinophils showed a multimodal trend, with a bimodal predominance. The maximum peaks were reached on days 21 and 27 post infection. The results of this study demonstrate that eosinophils occur abundantly in two transcendent moments of the T. spiralis life cycle: first, when the stage 1 larva invades the myocyte and second when the nurse cell-larva complex has been fully developed. These results help one to understand the immunobiology of T. spiralis, highlighting the importance of eosinophils in the survival of the larva in skeletal muscle. Further studies are needed to characterize the cell populations that comprise the cellular infiltrate during the development of the mother cell.
Collapse
|
15
|
Magrone T, Magrone M, Jirillo E. Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders. Endocr Metab Immune Disord Drug Targets 2021; 20:1166-1181. [PMID: 32148205 DOI: 10.2174/1871530320666200309094726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Eosinophils are primitive myeloid cells derived from bonemarrow precursors and require the intervention of interleukin (IL)-5 for their survival and persistence in blood and tissues. Under steady-state conditions, they contribute to immune regulation and homeostasis. Under pathological circumstances, eosinophils are involved in host protection against parasites and participate in allergy and inflammation. DISCUSSION Mostly, in asthma, eosinophils provoke airway damage via the release of granule contents and IL-13 with mucus hypersecretion and differentiation of goblet cells. Then, tissue remodeling follows with the secretion of transforming growth factor-β. Eosinophils are able to kill helminth larvae acting as antigen-presenting cells with the involvement of T helper (h)-2 cells and subsequent antibody response. However, they also exert pro-worm activity with the production of suppressive cytokine (IL- 10 and IL-4) and inhibition of nitric oxide. Eosinophils may play a pathogenic role in the course of chronic and autoimmune disease, e.g., inflammatory bowel disease and eosinophilic gastroenteritis, regulating Th2 responses and promoting a profibrotic effect. In atopic dermatitis, eosinophils are commonly detected and may be associated with disease severity. In cutaneous spontaneous urticaria, eosinophils participate in the formation of wheals, tissue remodeling and modifications of vascular permeability. With regard to tumor growth, it seems that IgE can exert anti-neoplastic surveillance via mast cell and eosinophil-mediated cytotoxicity, the so-called allergo-oncology. From a therapeutic point of view, monoclonal antibodies directed against IL-5 or the IL-5 receptors have been shown to be very effective in patients with severe asthma. Finally, as an alternative treatment, polyphenols for their anti-inflammatory and anti-allergic activities seem to be effective in reducing serum IgE and eosinophil count in bronchoalveolar lavage in murine asthma. CONCLUSION Eosinophils are cells endowed with multiple functions and their modulation with monoclonal antibodies and nutraceuticals may be effective in the treatment of chronic disease.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
16
|
Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021; 43:363-381. [PMID: 34165616 DOI: 10.1007/s00281-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Since the earliest descriptions of this enigmatic cell, eosinophils have been implicated in both protective and pathogenic immune responses to helminth infection. Nevertheless, despite substantial data from in vitro studies, human infections, and animal models, their precise role in helminth infection remains incompletely understood. This is due to a number of factors, including the heterogeneity of the many parasites included in the designation "helminth," the complexity and redundancy in the host immune response to helminths, and the pleiotropic functions of eosinophils themselves. This review examines the consequences of helminth-associated eosinophilia in the context of protective immunity, pathogenesis, and immunoregulation.
Collapse
|
17
|
Tingting L, Wenhui L, Nianzhang Z, Zigang Q, Ohiolei JA, Li L, Hongbin Y, Wanzhong J, Baoquan F. Primary characterization of the immune responses in Tibetan pigs infected with Chinese Tibet isolate of Trichinella spiralis. BMC Vet Res 2021; 17:94. [PMID: 33639942 PMCID: PMC7916296 DOI: 10.1186/s12917-021-02806-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Background Trichinellosis, caused by Trichinella spiralis, is a serious foodborne parasitic zoonosis. Tibetan pig is an infrequent, endemic plateau pig species, mainly distributed in Tibet Plateau, China. Because of the free-range system, Tibetan pigs are at risk of infection with Trichinella. The present study aimed to primarily profile the characteristics of T. spiralis infection in Tibetan pigs, including IgG levels, larvae burdens, and cytokines. Results The immune responses to Chinese Tibet T. spiralis isolate infection in Tibetan pigs with different doses were investigated in a tracking duration of 49 days. The muscle larvae per gram (lpg) were evaluated at 105 days post-infection (dpi). The results showed that the mean larval number of T. spiralis in Tibetan pigs increased with infective dose, with average lpg values of 3.5, 50.4 and 115.6 for Tibetan pigs infected with 200, 2,000, and 20,000 muscle larvae (ML) of T. spiralis. The anti-Trichinella IgG increased with inoculum dose and dpi, and peaked at 49 dpi. The kinetics of cytokines in the sera was detected by microarray, including interferon-γ (IFN-γ), interleukin (IL)-1β, IL-8, IL-12, IL-4, IL-6, IL-10, Granulocyte-macrophage Colony Stimulating Factor (GM-CSF), tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1. The Th1/Th2 mixed cytokines were detectable in all samples. Interleukin-12 demonstrated the highest concentration compared to other cytokines and peaked at 42 dpi. Almost all cytokines were maintained at a high level at 42 dpi. Additionally, we also report a Trichinella seropositive rate of 43.9 % (18 out of 41) from field samples of Tibetan pigs. Conclusions The present study showed an increased Th1/Th2 mixed cytokines in Tibetan pigs elicited by T. spiralis. The high seroprevalence of Trichinella infection in field samples of Tibetan pigs further raises serious concern for the prevention and control of trichinellosis in this host for public health safety.
Collapse
Affiliation(s)
- Li Tingting
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Wenhui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Zhang Nianzhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qu Zigang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - John A Ohiolei
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yan Hongbin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jia Wanzhong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu Baoquan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
18
|
Musah-Eroje M, Hoyle RC, Japa O, Hodgkinson JE, Haig DM, Flynn RJ. A host-independent role for Fasciola hepatica transforming growth factor-like molecule in parasite development. Int J Parasitol 2021; 51:481-492. [PMID: 33581140 DOI: 10.1016/j.ijpara.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
The trematode parasite Fasciola hepatica causes chronic infection in hosts, enabled by an immunosuppressed environment. Both host and parasite factors are known to contribute to this suggesting that avoidance of immunopathology is beneficial to both parties. We have previously characterised a parasite transforming growth factor (TGF)-like molecule, FhTLM, that interacts with host macrophages to prevent antibody-dependent cell cytotoxicity (ADCC). FhTLM is one of many described helminth TGF homologues and multiple helminths are now known to utilise host immune responses as developmental cues. To test whether, or how, F. hepatica uses FhTLM to manipulate host immunity, we initially examined its effects on the CD4 T-cell phenotype. Despite inducing IL-10, there was no induction of FoxP3 within the CD4 T-cell compartment. In addition to inducing IL-10, a wide range of chemokines were elicited from both CD4 T-cells and macrophages. However, no growth or survival advantage was conferred on F. hepatica in our co-culture system when CD4 T-cells, macrophages, or eosinophils were tested. Finally, using RNA interference we were able to verify a host-independent role for FhTLM in parasite growth. Despite the similarities of FhTLM with other described helminth TGF homologues, here we demonstrate species-specific divergence.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Boningto, LE12 5RD, UK
| | - Rebecca C Hoyle
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK
| | - Ornampai Japa
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK; Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Thailand
| | - Jane E Hodgkinson
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK
| | - David M Haig
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Boningto, LE12 5RD, UK
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, L3 5RF, UK.
| |
Collapse
|
19
|
Kobpornchai P, Tiffney EA, Adisakwattana P, Flynn RJ. Trichinella spiralis cystatin, TsCstN, modulates STAT4/IL-12 to specifically suppress IFN-γ production. Cell Immunol 2021; 362:104303. [PMID: 33611078 DOI: 10.1016/j.cellimm.2021.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
We have previously identified a cystatin, TsCstN, derived from the L1 stage of Trichinella spiralis and have shown that this protein is internalised in macrophages. Here we sought to address if this macrophage-TsCstN interaction could alter downstream T-cell priming. Using LPS-primed macrophages to stimulate T-cells in a co-culture system with or without TsCstN we assessed the resultant T-cell outcomes. IFN-γ, both protein and mRNA, but not IL-17A was negatively regulated by inclusion of TsCstN during macrophage priming. We identified a cell-cell contact independent change in the levels of IL-12 that led to altered phosphorylated STAT4 levels and translocation. TsCstN also negatively regulated the autonomous response in the myotubule cell line, C2C12. This work identifies a potential pathyway for L1 larvae to evade protective Th1 based immune responses and establish muscle-stage T. spiralis infection.
Collapse
Affiliation(s)
- Porntida Kobpornchai
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF, UK; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ellen-Alana Tiffney
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF, UK
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Robin J Flynn
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF, UK.
| |
Collapse
|
20
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
21
|
The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol 2020; 13:574-583. [PMID: 32157190 DOI: 10.1038/s41385-020-0281-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Eosinophils are granulocytes, typically implicated as end-stage effector cells in type-II immune responses. They are capable of producing a wide array of pre-formed molecules which render them with vast potential to influence a wide variety of processes. Nonetheless, eosinophil research has traditionally focused on their role in anti-helminthic responses and pathophysiological processes in type-II immune disorders, such as allergy and asthma, where eosinophilia is a hallmark phenotype. However, a number of key studies over the past decade have placed this restricted view of eosinophil function into question, presenting additional evidence for eosinophils as critical regulators of various homeostatic processes including immune maintenance, organ development, and tissue regeneration.
Collapse
|
22
|
Coakley G, Volpe B, Bouchery T, Shah K, Butler A, Geldhof P, Hatherill M, Horsnell WGC, Esser-von Bieren J, Harris NL. Immune serum-activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol 2020; 42:e12728. [PMID: 32394439 DOI: 10.1111/pim.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Beatrice Volpe
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Tiffany Bouchery
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark Hatherill
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Julia Esser-von Bieren
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.,Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
23
|
Glutathione-S-transferase omega 1 and nurse cell formation during experimental Trichinella infection. Vet Parasitol 2020; 297:109114. [PMID: 32386865 DOI: 10.1016/j.vetpar.2020.109114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/15/2023]
Abstract
The glutathione-S-transferases omega (GSTO) are multifunctional enzymes involved in cellular defense. During the nurse cell (NC) formation in Trichinella spiralis infection, the structural and regulatory genes of the skeletal muscle cell are downregulated and a new phenotype is acquired which advances parasite growth and survival. Previous studies showed that the GSTO1 is overexpressed in the NC during T. spiralis infection. To clarify the role of GSTO1 during NC formation, we evaluated the production of this enzyme by immunohistochemistry (IHC) in the diaphragms of mice experimentally infected with T. spiralis at 15, 28 and 60 days post infection (dpi); phosphorylation of Akt (p-Akt) and JNK1 (p-JNK1) were also evaluated. Furthermore, we evaluated the in vitro effects of T. spiralis excretory/secretory (ES) products from muscle larvae on specific functions (viability, proliferative response, apoptosis) in two cell lines (HeLa and U937), as well as its ability to induce GSTO1, p-AkT, p-ERK1/2 and p-JNK1. Results showed that GSTO1 was elevated in NC present in the diaphragms of T. spiralis experimentally infected mice at 15 dpi and progressively increased up to 60 dpi. The activation pattern of Akt in NC was similar to that of GSTO1, whereas JNK1 was never phosphorylated. ES induced a dose-dependent proliferative response in U937 cells, at 24 h and 48 h of treatment, but not in HeLa cells. However, after 72 h following treatment, significant cell death was observed in both cell lines at all doses. The apoptotic index (a.i.) was significantly higher than in untreated cells in both cell lines but only at the highest concentration of ES tested. Furthermore, Western Blots revealed that cells treated with ES for 24, 48 and 72 h, exhibited time-dependent overexpression of GSTO1, whereas p-Akt appeared only after 24 h of treatment. The p-ERK-1/2 peaked at 24 h then declined at 48 h and 72 h after treatment; however, it remained significantly higher than in untreated cells. No changes were observed in p-JNK1 at 24 and 48 h after treatment but a sharp increase in p-JNK1 was observed at 72 h. Also in HeLa cells, ES induced a small but significant increase in GSTO1 expression after 24 and 48 h of treatment where p-JNK1 was present only after 72 h of treatment. In conclusion, T. spiralis ES can reproduce in vitro the modifications observed inside the NC during experimental infection in mice.
Collapse
|
24
|
Loffredo LF, Coden ME, Jeong BM, Walker MT, Anekalla KR, Doan TC, Rodriguez R, Browning M, Nam K, Lee JJ, Abdala-Valencia H, Berdnikovs S. Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Sci Rep 2020; 10:4425. [PMID: 32157178 PMCID: PMC7064572 DOI: 10.1038/s41598-020-61420-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 immune cells and eosinophils are transiently present in the lung tissue not only in pathology (allergic disease, parasite expulsion) but also during normal postnatal development. However, the lung developmental processes underlying airway recruitment of eosinophils after birth remain unexplored. We determined that in mice, mature eosinophils are transiently recruited to the lung during postnatal days 3-14, which specifically corresponds to the primary septation/alveolarization phase of lung development. Developmental eosinophils peaked during P10-14 and exhibited Siglec-Fmed/highCD11c-/low phenotypes, similar to allergic asthma models. By interrogating the lung transcriptome and proteome during peak eosinophil recruitment in postnatal development, we identified markers that functionally capture the establishment of the mesenchymal-epithelial interface (Nes, Smo, Wnt5a, Nog) and the deposition of the provisional extracellular matrix (ECM) (Tnc, Postn, Spon2, Thbs2) as a key lung morphogenetic event associating with eosinophils. Tenascin-C (TNC) was identified as one of the key ECM markers in the lung epithelial-mesenchymal interface both at the RNA and protein levels, consistently associating with eosinophils in development and disease in mice and humans. As determined by RNA-seq analysis, naïve murine eosinophils cultured with ECM enriched in TNC significantly induced expression of Siglec-F, CD11c, eosinophil peroxidase, and other markers typical for activated eosinophils in development and allergic inflammatory responses. TNC knockout mice had an altered eosinophil recruitment profile in development. Collectively, our results indicate that lung morphogenetic processes associated with heightened Type 2 immunity are not merely a tissue "background" but specifically guide immune cells both in development and pathology.
Collapse
Affiliation(s)
- Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian M Jeong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew T Walker
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kishore Reddy Anekalla
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ton C Doan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raul Rodriguez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mandy Browning
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kiwon Nam
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
25
|
de Ruiter K, Tahapary DL, Sartono E, Nutman TB, Smit JWA, Koenderman L, Supali T, Yazdanbakhsh M. The Effect of Helminths on Granulocyte Activation: A Cluster-Randomized Placebo-Controlled Trial in Indonesia. J Infect Dis 2020; 219:1474-1482. [PMID: 30452713 DOI: 10.1093/infdis/jiy665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Eosinophils are a prominent cell type in the host response to helminths, and some evidence suggests that neutrophils might also play a role. However, little is known about the activation status of these granulocytes during helminth infection. METHODS We analyzed the expression of eosinophil and neutrophil activation markers in peripheral blood by flow cytometry and measured serum levels of eosinophil granule proteins in 300 subjects residing in an area endemic for soil-transmitted helminths (STH). The data generated are on samples before and after 1 year of 3-monthly albendazole treatment. RESULTS Anthelmintic treatment significantly reduced the prevalence of STH. While eosinophil numbers were significantly higher in STH-infected compared to uninfected subjects and significantly decreased following albendazole treatment, there was no effect exerted by the helminths on either eosinophil nor neutrophil activation. Although at baseline eosinophil granule protein levels were not different between STH-infected and uninfected subjects, treatment significantly reduced the levels of eosinophil-derived neurotoxin (EDN) in those infected at baseline. CONCLUSIONS These results show that besides decreasing eosinophil numbers, anthelmintic treatment does not significantly change the activation status of eosinophils, nor of neutrophils, and the only effect seen was a reduction in circulating levels of EDN. CLINICAL TRIALS REGISTRATION http://www.isrctn.com/ISRCTN75636394.
Collapse
Affiliation(s)
- Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Dicky L Tahapary
- Department of Parasitology, Leiden University Medical Center, The Netherlands.,Department of Internal Medicine, Division of Endocrinology and Metabolism, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Johannes W A Smit
- Department of Internal Medicine, Leiden University Medical Center, The Netherlands.,Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo Koenderman
- Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands.,Department of Respiratory Medicine, University Medical Center Utrecht, The Netherlands
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
26
|
Pignatti P, Visca D, Cherubino F, Zampogna E, Lucini E, Saderi L, Sotgiu G, Spanevello A. Do blood eosinophils strictly reflect airway inflammation in COPD? Comparison with asthmatic patients. Respir Res 2019; 20:145. [PMID: 31291952 PMCID: PMC6617671 DOI: 10.1186/s12931-019-1111-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction Airway eosinophilic inflammation is a characteristic of asthmatic patients and of a sub group of COPD subjects. Blood eosinophils are deemed as a good surrogate marker of sputum eosinophilic inflammation; however, controversial data have been published particularly in COPD. The aim of our study was to compare blood and sputum eosinophils in COPD and asthmatic patients in “real life”. Methods Sputum was induced in stable patients with COPD or asthma with hypertonic saline solution and blood eosinophils were evaluated. Frequency of comorbidities was recorded. Correlations were performed stratifying patients by disease and comorbidities. Results 146 patients, 57 with COPD and 89 with asthma were evaluated. Blood and sputum eosinophils expressed as percentages were correlated in COPD (rho = 0.40; p = 0.004), but the entity of correlation was lower compared with asthmatic subjects (rho = 0.71; p < 0.0001). When blood eosinophils were expressed as counts the correlation was slightly lower than when expressed as percentages in COPD (rho = 0.35; p = 0.01) and in asthmatic patients (rho = 0.68; p < 0.0001). In COPD patients older than 73 years or with blood eosinophils higher than the median value (210.6 eos/μl), or co-diagnosed with hypertension, ischemic heart disease or atrial fibrillation no correlation between blood and sputum eosinophils was found. However, the effect of ischemic heart disease and atrial fibrillation could be driven by hypertension since most of these patients have this comorbidity. Conclusion Blood eosinophils correlated with sputum eosinophils to a lesser degree in COPD than in asthmatic patients. Older age, high blood eosinophils and hypertension affected the correlation between blood and sputum eosinophils, more studies are needed to evaluate the role of other cardiac comobidities.
Collapse
Affiliation(s)
- Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.
| | - Dina Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy and Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| | - Francesca Cherubino
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS , Tradate, Italy
| | - Elisabetta Zampogna
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS , Tradate, Italy
| | - Etienne Lucini
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS , Tradate, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Spanevello
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy and Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| |
Collapse
|
27
|
Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. MATERIALS 2019; 12:ma12122036. [PMID: 31242601 PMCID: PMC6630980 DOI: 10.3390/ma12122036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Peri-implantitis is an inflammatory disease affecting tissues surrounding dental implants. Although it represents a common complication of dental implant treatments, the underlying mechanisms have not yet been fully described. The aim of this study is to identify the role of titanium nanoparticles released form the implants on the chronic inflammation and bone lysis in the surrounding tissue. We analyzed the in vitro effect of titanium (Ti) particle exposure on mesenchymal stem cells (MSCs) and fibroblasts (FU), evaluating cell proliferation by MTT test and the generation of reactive oxygen species (ROS). Subsequently, in vivo analysis of peri-implant Ti particle distribution, histological, and molecular analyses were performed. Ti particles led to a time-dependent decrease in cell viability and increase in ROS production in both MSCs and FU. Tissue analyses revealed presence of oxidative stress, high extracellular and intracellular Ti levels and imbalanced bone turnover. High expression of ZFP467 and the presence of adipose-like tissue suggested dysregulation of the MSC population; alterations in vessel morphology were identified. The results suggest that Ti particles may induce the production of high ROS levels, recruiting abnormal quantity of neutrophils able to produce high level of metalloproteinase. This induces the degradation of collagen fibers. These events may influence MSC commitment, with an imbalance of bone regeneration.
Collapse
|
28
|
Coakley G, Wright MD, Borger JG. Schistosoma mansoni-Derived Lipids in Extracellular Vesicles: Potential Agonists for Eosinophillic Tissue Repair. Front Immunol 2019; 10:1010. [PMID: 31134080 PMCID: PMC6514238 DOI: 10.3389/fimmu.2019.01010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica G Borger
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Patton JB, Bennuru S, Eberhard ML, Hess JA, Torigian A, Lustigman S, Nutman TB, Abraham D. Development of Onchocerca volvulus in humanized NSG mice and detection of parasite biomarkers in urine and serum. PLoS Negl Trop Dis 2018; 12:e0006977. [PMID: 30540742 PMCID: PMC6306240 DOI: 10.1371/journal.pntd.0006977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The study of Onchocerca volvulus has been limited by its host range, with only humans and non-human primates shown to be susceptible to the full life cycle infection. Small animal models that support the development of adult parasites have not been identified. METHODOLOGY/PRINCIPAL FINDINGS We hypothesized that highly immunodeficient NSG mice would support the survival and maturation of O. volvulus and alteration of the host microenvironment through the addition of various human cells and tissues would further enhance the level of parasite maturation. NSG mice were humanized with: (1) umbilical cord derived CD34+ stem cells, (2) fetal derived liver, thymus and CD34+ stem cells or (3) primary human skeletal muscle cells. NSG and humanized NSG mice were infected with 100 O. volvulus infective larvae (L3) for 4 to 12 weeks. When necropsies of infected animals were performed, it was observed that parasites survived and developed throughout the infection time course. In each of the different humanized mouse models, worms matured from L3 to advanced fourth stage larvae, with both male and female organ development. In addition, worms increased in length by up to 4-fold. Serum and urine, collected from humanized mice for identification of potential biomarkers of infection, allowed for the identification of 10 O. volvulus-derived proteins found specifically in either the urine or the serum of the humanized O. volvulus-infected NSG mice. CONCLUSIONS/SIGNIFICANCE The newly identified mouse models for onchocerciasis will enable the development of O. volvulus specific biomarkers, screening for new therapeutic approaches and potentially studying the human immune response to infection with O. volvulus.
Collapse
Affiliation(s)
- John B. Patton
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mark L. Eberhard
- Division of Parasitic Diseases and Malaria, CDC, Atlanta, Georgia, United States of America
| | - Jessica A. Hess
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - April Torigian
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Inclan-Rico JM, Siracusa MC. First Responders: Innate Immunity to Helminths. Trends Parasitol 2018; 34:861-880. [PMID: 30177466 PMCID: PMC6168350 DOI: 10.1016/j.pt.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Helminth infections represent a significant public health concern resulting in devastating morbidity and economic consequences across the globe. Helminths migrate through mucosal sites causing tissue damage and the induction of type 2 immune responses. Antihelminth protection relies on the mobilization and activation of multiple immune cells, including type 2 innate lymphocytes (ILC2s), basophils, mast cells, macrophages, and hematopoietic stem/progenitor cells. Further, epithelial cells and neurons have been recognized as important regulators of type 2 immunity. Collectively, these pathways stimulate host-protective responses necessary for worm expulsion and the healing of affected tissues. In this review we focus on the innate immune pathways that regulate immunity to helminth parasites and describe how better understanding of these pathways may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
31
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Turner JD, Pionnier N, Furlong-Silva J, Sjoberg H, Cross S, Halliday A, Guimaraes AF, Cook DAN, Steven A, Van Rooijen N, Allen JE, Jenkins SJ, Taylor MJ. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathog 2018; 14:e1006949. [PMID: 29547639 PMCID: PMC5874077 DOI: 10.1371/journal.ppat.1006949] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/28/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection. Helminths parasitize approximately one quarter of the global population. Medically-important helminths, including filariae responsible for elephantiasis and river blindness, are targeted for elimination as a public health problem. Currently there are no vaccines or immunotherapeutics available for filarial worms or other human helminth pathogens. Here we define a cellular mechanism whereby the interlukin-4 dependent activation of tissue macrophages are essential to sustain the recruitment of larvicidal eosinophil granulocytes, leading to immunity against filarial infection at a sterile tissue site of parasitism. This work delineates the relative non-redundant functional roles of both myeloid cell types in ‘type-2’ immunity to helminth infection. The study represents a mechanistic advance in our understanding of how immunity operates against metazoan macroparasites invading sterile tissues and may be used in the rational design of new therapeutics to limit helminth disease.
Collapse
Affiliation(s)
- Joseph D. Turner
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Nicolas Pionnier
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julio Furlong-Silva
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen Cross
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alice Halliday
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana F. Guimaraes
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Darren A. N. Cook
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nico Van Rooijen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | - Judith E. Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Stephen J. Jenkins
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Taylor
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
33
|
Eosinophils from Physiology to Disease: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9095275. [PMID: 29619379 PMCID: PMC5829361 DOI: 10.1155/2018/9095275] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
Abstract
Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a "golden age" of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances.
Collapse
|
34
|
Muñoz-Carrillo JL, Muñoz-López JL, Muñoz-Escobedo JJ, Maldonado-Tapia C, Gutiérrez-Coronado O, Contreras-Cordero JF, Moreno-García MA. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:587-599. [PMID: 29320813 PMCID: PMC5776891 DOI: 10.3347/kjp.2017.55.6.587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México.,Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | | | | | - Claudia Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Los Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | - María Alejandra Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| |
Collapse
|
35
|
Abstract
Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.
Collapse
Affiliation(s)
- Peter F Weller
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
36
|
Harris NL, Loke P. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection. Immunity 2017; 47:1024-1036. [DOI: 10.1016/j.immuni.2017.11.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
|
37
|
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017; 139:1752-1761. [PMID: 28583447 DOI: 10.1016/j.jaci.2017.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Epithelial barriers of the skin, gastrointestinal tract, and airway serve common critical functions, such as maintaining a physical barrier against environmental insults and allergens and providing a tissue interface balancing the communication between the internal and external environments. We now understand that in patients with allergic disease, regardless of tissue location, the homeostatic balance of the epithelial barrier is skewed toward loss of differentiation, reduced junctional integrity, and impaired innate defense. Importantly, epithelial dysfunction characterized by these traits appears to pre-date atopy and development of allergic disease. Despite our growing appreciation of the centrality of barrier dysfunction in initiation of allergic disease, many important questions remain to be answered regarding mechanisms disrupting normal barrier function. Although our external environment (proteases, allergens, and injury) is classically thought of as a principal contributor to barrier disruption associated with allergic sensitization, there is a need to better understand contributions of the internal environment (hormones, diet, and circadian clock). Systemic drivers of disease, such as alterations of the endocrine system, metabolism, and aberrant control of developmental signaling, are emerging as new players in driving epithelial dysfunction and allergic predisposition at various barrier sites. Identifying such central mediators of epithelial dysfunction using both systems biology tools and causality-driven laboratory experimentation will be essential in building new strategic interventions to prevent or reverse the process of barrier loss in allergic patients.
Collapse
Affiliation(s)
- Robert P Schleimer
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
38
|
Muñoz-Carrillo JL, Contreras-Cordero JF, Muñoz-López JL, Maldonado-Tapia CH, Muñoz-Escobedo JJ, Moreno-García MA. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. L. Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | - J. F. Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | | | - C. H. Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - J. J. Muñoz-Escobedo
- Academic Unit of Odontology; Autonomous University of Zacatecas; Zacatecas México
| | - M. A. Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| |
Collapse
|
39
|
Muñoz-Carrillo JL, Muñoz-Escobedo JJ, Maldonado-Tapia CH, Chávez-Ruvalcaba F, Moreno-García MA. Resiniferatoxin lowers TNF-α, NO and PGE2in the intestinal phase and the parasite burden in the muscular phase ofTrichinella spiralisinfection. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- J. L. Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - J. J. Muñoz-Escobedo
- Academic Unit of Odontology; Autonomous University of Zacatecas; Zacatecas México
| | - C. H. Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - F. Chávez-Ruvalcaba
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - M. A. Moreno-García
- Laboratory of Cell Biology and Microbiology; Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| |
Collapse
|
40
|
Huang L, Appleton JA. Eosinophils in Helminth Infection: Defenders and Dupes. Trends Parasitol 2016; 32:798-807. [PMID: 27262918 PMCID: PMC5048491 DOI: 10.1016/j.pt.2016.05.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/29/2022]
Abstract
Eosinophilia is a central feature of the host response to helminth infection. Larval stages of parasitic worms are killed in vitro by eosinophils in the presence of specific antibodies or complement. These findings established host defense as the paradigm for eosinophil function. Recently, studies in eosinophil-ablated mouse strains have revealed an expanded repertoire of immunoregulatory functions for this cell. Other reports document crucial roles for eosinophils in tissue homeostasis and metabolism, processes that are central to the establishment and maintenance of parasitic worms in their hosts. In this review, we summarize current understanding of the significance of eosinophils at the host-parasite interface, highlighting their distinct functions during primary and secondary exposure.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Judith A Appleton
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
41
|
Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RMA, Lee JJ, Rosenberg HF. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol 2016; 101:321-328. [PMID: 27531929 DOI: 10.1189/jlb.3a0416-166r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c-SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1- eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX-/- and MBP-1-/-) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+ Although indistinguishable from the more-numerous SiglecF+Gr1- eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle Ma
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura S Kraemer
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reem M A Hakeem
- Molecular Signal Transduction Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; and
| | | | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
42
|
Naradikian MS, Myles A, Beiting DP, Roberts KJ, Dawson L, Herati RS, Bengsch B, Linderman SL, Stelekati E, Spolski R, Wherry EJ, Hunter C, Hensley SE, Leonard WJ, Cancro MP. Cutting Edge: IL-4, IL-21, and IFN-γ Interact To Govern T-bet and CD11c Expression in TLR-Activated B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1023-8. [PMID: 27430719 DOI: 10.4049/jimmunol.1600522] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 01/19/2023]
Abstract
T-bet and CD11c expression in B cells is linked with IgG2c isotype switching, virus-specific immune responses, and humoral autoimmunity. However, the activation requisites and regulatory cues governing T-bet and CD11c expression in B cells remain poorly defined. In this article, we reveal a relationship among TLR engagement, IL-4, IL-21, and IFN-γ that regulates T-bet expression in B cells. We find that IL-21 or IFN-γ directly promote T-bet expression in the context of TLR engagement. Further, IL-4 antagonizes T-bet induction. Finally, IL-21, but not IFN-γ, promotes CD11c expression independent of T-bet. Using influenza virus and Heligmosomoides polygyrus infections, we show that these interactions function in vivo to determine whether T-bet(+) and CD11c(+) B cells are formed. These findings suggest that T-bet(+) B cells seen in health and disease share the common initiating features of TLR-driven activation within this circumscribed cytokine milieu.
Collapse
Affiliation(s)
- Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel P Beiting
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenneth J Roberts
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucas Dawson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ramin Sedaghat Herati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bertram Bengsch
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanne L Linderman
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Wistar Institute, Philadelphia, PA 19104; and
| | - Erietta Stelekati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Hunter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott E Hensley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Wistar Institute, Philadelphia, PA 19104; and
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
43
|
Zhou G, Stevenson MM, Geary TG, Xia J. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections. PLoS Negl Trop Dis 2016; 10:e0004624. [PMID: 27058578 PMCID: PMC4826001 DOI: 10.1371/journal.pntd.0004624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. Many studies have been conducted to understand the immune modulatory effects in helminth infections. To determine whether there is a common transcriptomic signature characteristic of the helminth effect, we performed a comprehensive meta-analysis of publicly available gene expression datasets. The results revealed a distinct pattern of gene expression that is consistent across multiple helminth species and host tissue types, with upregulated genes dominated by those involved in immune regulation, Th2 immunity and inflammatory responses.
Collapse
Affiliation(s)
- Guangyan Zhou
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Mary M. Stevenson
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|