1
|
Hu CT, Diaz K, Yang LC, Sharma A, Greenberg HB, Smith JG. Corrected and republished from: "VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection". J Virol 2023; 97:e0096223. [PMID: 37787534 PMCID: PMC10617384 DOI: 10.1128/jvi.00962-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.
Collapse
Affiliation(s)
- Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Linda C. Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Harry B. Greenberg
- Department of Medicine, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
3
|
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Infect Immun 2023; 91:e0036122. [PMID: 36472443 PMCID: PMC9872612 DOI: 10.1128/iai.00361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded β-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two β1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.
Collapse
|
4
|
Parsa R, London M, Rezende de Castro TB, Reis B, Buissant des Amorie J, Smith JG, Mucida D. Newly recruited intraepithelial Ly6A+CCR9+CD4+ T cells protect against enteric viral infection. Immunity 2022; 55:1234-1249.e6. [DOI: 10.1016/j.immuni.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
|
5
|
Hu CT, Diaz K, Yang LC, Sharma A, Greenberg HB, Smith JG. VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection. J Virol 2022; 96:e0205321. [PMID: 35285683 PMCID: PMC9006894 DOI: 10.1128/jvi.02053-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Fecal-oral pathogens encounter constitutively expressed enteric alpha-defensins in the intestine during replication and transmission. Alpha-defensins can be potently antiviral and antibacterial; however, their primary sequences, the number of isoforms, and their activity against specific microorganisms often vary greatly between species, reflecting adaptation to species-specific pathogens. Therefore, alpha-defensins might influence not only microbial evolution and tissue tropism within a host but also species tropism and zoonotic potential. To investigate these concepts, we generated a panel of enteric and myeloid alpha-defensins from humans, rhesus macaques, and mice and tested their activity against group A rotaviruses, an important enteric viral pathogen of humans and animals. Rotaviral adaptation to the rhesus macaque correlated with resistance to rhesus enteric, but not myeloid, alpha-defensins and sensitivity to human alpha-defensins. While mouse rotaviral infection was increased in the presence of mouse enteric alpha-defensins, two prominent genotypes of human rotaviruses were differentially sensitive to human enteric alpha-defensins. Furthermore, the effects of cross-species alpha-defensins on human and mouse rotaviruses did not follow an obvious pattern. Thus, exposure to alpha-defensins may have shaped the evolution of some, but not all, rotaviruses. We then used a genetic approach to identify the viral attachment and penetration protein, VP4, as a determinant of alpha-defensin sensitivity. Our results provide a foundation for future studies of the VP4-dependent mechanism of defensin neutralization, highlight the species-specific activities of alpha-defensins, and focus future efforts on a broader range of rotaviruses that differ in VP4 to uncover the potential for enteric alpha-defensins to influence species tropism. IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that some, but not all, rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.
Collapse
Affiliation(s)
- Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Linda C. Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Harry B. Greenberg
- Department of Medicine and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Bieri M, Hendrickx R, Bauer M, Yu B, Jetzer T, Dreier B, Mittl PRE, Sobek J, Plückthun A, Greber UF, Hemmi S. The RGD-binding integrins αvβ6 and αvβ8 are receptors for mouse adenovirus-1 and -3 infection. PLoS Pathog 2021; 17:e1010083. [PMID: 34910784 PMCID: PMC8673666 DOI: 10.1371/journal.ppat.1010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.
Collapse
Affiliation(s)
- Manuela Bieri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Rodinde Hendrickx
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tania Jetzer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Dallari S, Heaney T, Rosas-Villegas A, Neil JA, Wong SY, Brown JJ, Urbanek K, Herrmann C, Depledge DP, Dermody TS, Cadwell K. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 2021; 29:1014-1029.e8. [PMID: 33894129 PMCID: PMC8192460 DOI: 10.1016/j.chom.2021.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.
Collapse
Affiliation(s)
- Simone Dallari
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Heaney
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Rosas-Villegas
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jessica A Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Serre-Yu Wong
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biology, Trevecca Nazarene University, Nashville, TN, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel P Depledge
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
8
|
Iliev ID, Cadwell K. Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology 2021; 160:1050-1066. [PMID: 33347881 PMCID: PMC7956156 DOI: 10.1053/j.gastro.2020.06.100] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. These microbes interact with the immune system and affect human physiology. Advances in metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal and viral species in the gut. Studies of animal models have found that commensal fungi and viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can also induce reactions that contribute to events associated with inflammatory bowel disease. Changes in our environment associated with modernization and the COVID-19 pandemic have exposed humans to new fungi and viruses, with unknown consequences. We review the lessons learned from studies of animal viruses and fungi commonly detected in the human gut and how these might affect health and intestinal disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University Grossman School of Medicine, New York, New York; Department of Microbiology, New York University Grossman School of Medicine, New York, New York; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, New York.
| |
Collapse
|
9
|
Nikolenko VN, Oganesyan MV, Sankova MV, Bulygin KV, Vovkogon AD, Rizaeva NA, Sinelnikov MY. Paneth cells: Maintaining dynamic microbiome-host homeostasis, protecting against inflammation and cancer. Bioessays 2020; 43:e2000180. [PMID: 33244814 DOI: 10.1002/bies.202000180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
The human intestines are constantly under the influence of numerous pathological factors: enteropathogenic microorganisms, food antigens, physico-chemical stress associated with digestion and bacterial metabolism, therefore it must be provided with a system of protection against adverse impact. Recent studies have shown that Paneth cells play a crucial role in maintaining homeostasis of the small intestines. Paneth cells perform many vital functions aimed at maintaining a homeostatic balance between normal microbiota, infectious pathogens and the human body, regulate the qualitative composition and number of intestinal microorganisms, prevent the introduction of potentially pathogenic species, and protect stem cells from damage. Paneth cells take part in adaptive and protective-inflammatory reactions. Paneth cells maintain dynamic balance between microbial populations, and the macroorganism, preventing the development of intestinal infections and cancer. They play a crucial role in gastrointestinal homeostasis and may be key factors in the etiopathological progression of intestinal diseases.
Collapse
Affiliation(s)
- Vladimir N Nikolenko
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia.,Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Marine V Oganesyan
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Maria V Sankova
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia.,Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Andzhela D Vovkogon
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | - Negoriya A Rizaeva
- Department of Human Anatomy, First Moscow State Medical University named after I.M.Sechenov (Sechenov University), Moscow, Russia
| | | |
Collapse
|
10
|
Chéneau C, Kremer EJ. Adenovirus-Extracellular Protein Interactions and Their Impact on Innate Immune Responses by Human Mononuclear Phagocytes. Viruses 2020; 12:v12121351. [PMID: 33255892 PMCID: PMC7760109 DOI: 10.3390/v12121351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight how, in a syngeneic system, human mononuclear phagocytes respond to environments containing human adenovirus (HAdV) and soluble extracellular proteins that influence their innate immune response. Soluble extracellular proteins, including immunoglobulins, blood clotting factors, proteins of the complement system, and/or antimicrobial peptides (AMPs) can exert direct effects by binding to a virus capsid that modifies interactions with pattern recognition receptors and downstream signaling. In addition, the presence, generation, or secretion of extracellular proteins can indirectly influence the response to HAdVs via the activation and recruitment of cells at the site of infection.
Collapse
|
11
|
Diaz K, Hu CT, Sul Y, Bromme BA, Myers ND, Skorohodova KV, Gounder AP, Smith JG. Defensin-driven viral evolution. PLoS Pathog 2020; 16:e1009018. [PMID: 33232373 PMCID: PMC7723274 DOI: 10.1371/journal.ppat.1009018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023] Open
Abstract
Enteric alpha-defensins are potent effectors of innate immunity that are abundantly expressed in the small intestine. Certain enteric bacteria and viruses are resistant to defensins and even appropriate them to enhance infection despite neutralization of closely related microbes. We therefore hypothesized that defensins impose selective pressure during fecal-oral transmission. Upon passaging a defensin-sensitive serotype of adenovirus in the presence of a human defensin, mutations in the major capsid protein hexon accumulated. In contrast, prior studies identified the vertex proteins as important determinants of defensin antiviral activity. Infection and biochemical assays suggest that a balance between increased cell binding and a downstream block in intracellular trafficking mediated by defensin interactions with all of the major capsid proteins dictates the outcome of infection. These results extensively revise our understanding of the interplay between defensins and non-enveloped viruses. Furthermore, they provide a feasible rationale for defensins shaping viral evolution, resulting in differences in infection phenotypes of closely related viruses. Defensins are potent antimicrobial peptides that are found on human mucosal surfaces and can directly neutralize viruses. They are abundant in the small intestine, which is constantly challenged by ingested viral pathogens. Interestingly, non-enveloped viruses, such as adenovirus, that infect the gastrointestinal system are unaffected by defensins or can even appropriate defensins to enhance their infection. In contrast, respiratory adenoviruses are neutralized by the same defensins. How enteric viruses overcome defensin neutralization is not well understood. Our studies are the first to show that defensins can drive the evolution of non-enveloped viruses. Furthermore, we identify important components within human adenovirus that dictate sensitivity to defensins. This new insight into defensin-virus interactions informs our understanding of mucosal immunity to viral infections.
Collapse
Affiliation(s)
- Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youngmee Sul
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Beth A. Bromme
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicolle D. Myers
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ksenia V. Skorohodova
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anshu P. Gounder
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chen S, Li X, Li M, Mei Q, Huang J, Wu Z, Zhang L. Mucosal expression of defensin-5, soluble phospholipase A2 and lysozyme in the intestine in a rat model of acute liver failure and its relationship to intestinal bacterial translocation. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:293-300. [PMID: 32278502 DOI: 10.1016/j.gastrohep.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/29/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION To study the expression of defensin-5 (RD-5), soluble phospholipase A2 (sPLA2) and lysozyme in the intestine in a rat model of acute liver failure and its relationship with intestinal bacterial translocation (BT). PATIENTS AND METHODS Sprague-Dawley (SD) rats were divided into two groups. The experimental group was divided into five subgroups according to the lapsing time after the model was established, which were designated accordingly as 8h, 16h, 24h, 48h, and 72h groups. Acute liver failure (ALF) model was induced by intraperitoneal injection of 10% d-galactosamine. The homogenates of mesenteric lymph nodes (MLNs), liver and spleen from each group were cultured in agar to determine the bacterial outgrowth. The mRNA expression of RD-5, sPLA2, lysozyme and the protein expression of sPLA2, lysozyme were determined. RESULTS No bacteria grew in the organ cultures from the control group while experimental groups had positive cultures. Expression of the RD-5 and sPLA2 mRNA in the experimental groups gradually increased at early time points and peaked 16h after induction of ALF, then progressively decreased. The mRNA expression of lysozyme in the experimental group peaked at 8h after ALF induction, then progressively decreased. Similar results were obtained with Western blot and immunohistochemical staining. DISCUSSION The immune barrier function of the ileal mucosa in the rat model of acute liver failure was compromised as demonstrated by the decreased expression of RD-5, sPLA2 and lysozyme in Paneth cells along with increased intestinal bacterial translocation.
Collapse
Affiliation(s)
- Silin Chen
- Department of Infectious Diseases, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xiaopeng Li
- Department of Infectious Diseases, First Affiliated Hospital of Nanchang University, Jiangxi, China; Key Laboratory of Liver Regeneration Medicine, Jiangxi, China
| | - Ming Li
- Department of Infectious Diseases, First Affiliated Hospital of Nanchang University, Jiangxi, China; Key Laboratory of Liver Regeneration Medicine, Jiangxi, China
| | - Qing Mei
- Department of Ultrasound, Jing Zhou Central Hospital, Hubei, China
| | - Juanjun Huang
- Department of Infectious Diseases, Ganzhou People's Hospital, Jiangxi, China
| | - Zhenping Wu
- Zhejiang University School of Medicine, First Affiliated Hospital, Zhejiang, China
| | - Lunli Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Nanchang University, Jiangxi, China; Key Laboratory of Liver Regeneration Medicine, Jiangxi, China.
| |
Collapse
|
13
|
The expression patterns of immune response genes in the Peripheral Blood Mononuclear cells of pregnant women presenting with subclinical or clinical HEV infection are different and trimester-dependent: A whole transcriptome analysis. PLoS One 2020; 15:e0228068. [PMID: 32012176 PMCID: PMC6996850 DOI: 10.1371/journal.pone.0228068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis E is an enteric disease highly prevalent in the developing countries. The basis for high mortality among pregnant hepatitis E patients remains unclear. Importantly, a large proportion of infected pregnant women present with subclinical infection as well. In order to understand the possible mechanisms influencing clinical presentation of hepatitis E in pregnant women, we explored a system biology approach. For this, PBMCs from various categories were subjected to RNAseq analysis. These included non-pregnant (NPR, acute and convalescent phases) and pregnant (PR, 2nd and 3rd trimesters, acute phase and subclinical HEV infections) patients and corresponding healthy controls. The current study deals with immune response genes. In contrast to exclusive up-regulation of nonspecific, early immune response transcripts in the NPR patients, the PR patients exhibited broader and heightened expression of genes associated with innate as well as adaptive T and B cell responses. The study identified for the first time (1) inverse relationship of immunoglobulin (Ig) genes overexpression and (2) association of differential expression of S100 series genes with disease presentation. The data suggests possible involvement of TLR4 and NOD1 in pregnant patients and alpha defensins in all patient categories suggesting a role in protection. Induction of IFNγ gene was not detected during the acute phase irrespective of pregnancy. Association of response to vitamin D, transcripts related to NK/NKT and regulatory T cells during subclinical infection are noteworthy. The data obtained here could be correlated with several studies reported earlier in hepatitis E patients suggesting utility of PBMCs as an alternate specimen. The extensive, informative data provided here for the first time should form basis for future studies that will help in understanding pathogenesis of fulminant hepatitis E.
Collapse
|
14
|
Contini C, Firinu D, Serrao S, Manconi B, Olianas A, Cinetto F, Cossu F, Castagnola M, Messana I, Del Giacco S, Cabras T. RP-HPLC-ESI-IT Mass Spectrometry Reveals Significant Variations of the Human Salivary Protein Profile Associated with Predominantly Antibody Deficiencies. J Clin Immunol 2020; 40:329-339. [PMID: 31916122 DOI: 10.1007/s10875-020-00743-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Present study is designed to discover potential salivary biomarkers associated with predominantly antibody deficiencies, which include a large spectrum of disorders sharing failure of antibody production, and B cell defects resulting in recurrent infections, autoimmune and inflammatory manifestations, and tumor susceptibility. Understanding and clinical classification of these syndromes is still challenging. METHODS We carried out a study of human saliva based on liquid chromatography-mass spectrometry measurements of intact protein mass values. Salivary protein profiles of patients (n = 23) and healthy controls (n = 30) were compared. RESULTS Patients exhibited lower abundance of α-defensins 1-4, cystatins S1 and S2, and higher abundance of glutathionylated cystatin B and cystatin SN than controls. Patients could be clustered in two groups on the basis of different levels of cystatin SN, S1 and S2, suggesting that these proteins may play different roles in the disease. CONCLUSIONS Quantitative variations of these pro-inflammatory and antimicrobial peptides/proteins may be related to immunodeficiency and infectious condition of the patients. The high incidence of tumors in the group with the highest level of cystatin SN, which is recognized as tumoral marker, appeared an intriguing result deserving of future investigations. Data are available via ProteomeXchange with identifier PXD012688.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy.
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Francesco Cinetto
- Ca' Foncello Hospital - Treviso, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Fausto Cossu
- Pediatric HSCT Unit, Pediatric Clinic of University, Ospedale Microcitemico, Cagliari, Italy
| | - Massimo Castagnola
- Proteomics and Metabolomics Laboratory, IRCCS - Fondazione Santa Lucia, Rome, Italy
| | - Irene Messana
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche, c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica, L.go F. Vito, 1, 00168, Rome, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| |
Collapse
|
15
|
Contini C, Firinu D, Serrao S, Manconi B, Olianas A, Cinetto F, Cossu F, Castagnola M, Messana I, Del Giacco S, Cabras T. RP-HPLC-ESI-IT Mass Spectrometry Reveals Significant Variations of the Human Salivary Protein Profile Associated with Predominantly Antibody Deficiencies. J Clin Immunol 2020. [PMID: 31916122 DOI: 10.1007/s10875-020-00743-4.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
PURPOSE Present study is designed to discover potential salivary biomarkers associated with predominantly antibody deficiencies, which include a large spectrum of disorders sharing failure of antibody production, and B cell defects resulting in recurrent infections, autoimmune and inflammatory manifestations, and tumor susceptibility. Understanding and clinical classification of these syndromes is still challenging. METHODS We carried out a study of human saliva based on liquid chromatography-mass spectrometry measurements of intact protein mass values. Salivary protein profiles of patients (n = 23) and healthy controls (n = 30) were compared. RESULTS Patients exhibited lower abundance of α-defensins 1-4, cystatins S1 and S2, and higher abundance of glutathionylated cystatin B and cystatin SN than controls. Patients could be clustered in two groups on the basis of different levels of cystatin SN, S1 and S2, suggesting that these proteins may play different roles in the disease. CONCLUSIONS Quantitative variations of these pro-inflammatory and antimicrobial peptides/proteins may be related to immunodeficiency and infectious condition of the patients. The high incidence of tumors in the group with the highest level of cystatin SN, which is recognized as tumoral marker, appeared an intriguing result deserving of future investigations. Data are available via ProteomeXchange with identifier PXD012688.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy.
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| | - Francesco Cinetto
- Ca' Foncello Hospital - Treviso, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Fausto Cossu
- Pediatric HSCT Unit, Pediatric Clinic of University, Ospedale Microcitemico, Cagliari, Italy
| | - Massimo Castagnola
- Proteomics and Metabolomics Laboratory, IRCCS - Fondazione Santa Lucia, Rome, Italy
| | - Irene Messana
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche, c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica, L.go F. Vito, 1, 00168, Rome, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Univ. Monserrato, Monserrato, 09042, CA, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Univ. Monserrato, ss 554, 09042, Monserrato, CA, Italy
| |
Collapse
|
16
|
Tartaglia LJ, Badamchi-Zadeh A, Abbink P, Blass E, Aid M, Gebre MS, Li Z, Pastores KC, Trott S, Gupte S, Larocca RA, Barouch DH. Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathog 2019; 15:e1008180. [PMID: 31841560 PMCID: PMC6936886 DOI: 10.1371/journal.ppat.1008180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.
Collapse
Affiliation(s)
- Lawrence J. Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Makda S. Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Zhenfeng Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Kevin Clyde Pastores
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sebastien Trott
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Siddhant Gupte
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Rafael A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hemmi S, Spindler KR. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett 2019; 593:3649-3659. [PMID: 31777948 DOI: 10.1002/1873-3468.13699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Small laboratory animals are powerful models for investigating in vivo viral pathogenesis of a number of viruses. For adenoviruses (AdVs), however, species-specificity poses limitations to studying human adenoviruses (HAdVs) in mice and other small laboratory animals. Thus, this review covers work on naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-1), a member of the species Murine mastadenovirus A. Molecular genetics, virus life cycle, cell and tissue tropism, interactions with the host immune response, persistence, and host genetics of susceptibility are described. A brief discussion of MAdV-2 (member of species Murine mastadenovirus B) and MAdV-3 (member of species Murine mastadenovirus C) is included. We report the use of MAdVs in the development of vectors and vaccines.
Collapse
Affiliation(s)
- Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Abstract
In this issue of Cell Host & Microbe, Bottermann et al. (2019) reveal that complement component C4 inhibits adenovirus by inactivating the virus capsid through mechanisms requiring antibody engagement, but not late-acting complement pathways. This antiviral function likely broadly impacts non-enveloped viruses and may help illuminate the process of virus disassembly.
Collapse
|
19
|
Robinson CM. Enteric viruses exploit the microbiota to promote infection. Curr Opin Virol 2019; 37:58-62. [PMID: 31284078 DOI: 10.1016/j.coviro.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Enteric viruses infect the mammalian gastrointestinal tract which is home to a diverse community of intestinal bacteria. Accumulating evidence suggests that certain enteric viruses utilize these bacteria to promote infection. While this is not surprising considering their proximity, multiple viruses from different viral families have been shown to bind directly to bacteria or bacterial components to aid in viral replication, pathogenesis, and transmission. These data suggest that the concept of a single virus infecting a single cell, independent of the environment, needs to be reevaluated. In this review, I will discuss the current knowledge of enteric virus-bacterial interactions and discuss the implications for viral pathogenesis and transmission.
Collapse
Affiliation(s)
- Christopher M Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Hu J, Wang X, Xing Y, Rong E, Ning M, Smith J, Huang Y. Origin and development of oligoadenylate synthetase immune system. BMC Evol Biol 2018; 18:201. [PMID: 30587119 PMCID: PMC6307210 DOI: 10.1186/s12862-018-1315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background Oligoadenylate synthetases (OASs) are widely distributed in Metazoa including sponges, fish, reptiles, birds and mammals and show large variation, with one to twelve members in any given species. Upon double-stranded RNA (dsRNA) binding, avian and mammalian OASs generate the second messenger 2'-5'-linked oligoadenylate (2-5A), which activates ribonuclease L (RNaseL) and blocks viral replication. However, how Metazoa shape their OAS repertoires to keep evolutionary balance to virus infection is largely unknown. We performed comprehensive phylogenetic and functional analyses of OAS genes from evolutionarily lower to higher Metazoa to demonstrate how the OAS repertoires have developed anti-viral activity and diversified their functions. Results Ancient Metazoa harbor OAS genes, but lack both upstream and downstream genes of the OAS-related pathways, indicating that ancient OASs are not interferon-induced genes involved in the innate immune system. Compared to OASs of ancient Metazoa (i.e. sponge), the corresponding ones of higher Metazoa present an increasing number of basic residues on the OAS/dsRNA interaction interface. Such an increase of basic residues might improve their binding affinity to dsRNA. Moreover, mutations of functional residues in the active pocket might lead to the fact that higher Metazoan OASs lose the ability to produce 3'-5'-linked oligoadenylate (3-5A) and turn into specific 2-5A synthetases. In addition, we found that multiple rounds of gene duplication and domain coupling events occurred in the OAS family and mutations at functionally critical sites were observed in most new OAS members. Conclusions We propose a model for the expansion of OAS members and provide comprehensive evidence of subsequent neo-functionalization and sub-functionalization. Our observations lay the foundation for interrogating the evolutionary transition of ancient OAS genes to host defense genes and provide important information for exploring the unknown function of the OAS gene family. Electronic supplementary material The online version of this article (10.1186/s12862-018-1315-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Yanling Xing
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE, Wilen CB, Rajala MW, Caruso R, Holtzman MJ, Gao F, McGovern DP, Nunez G, Head RD, Stappenbeck TS. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J Clin Invest 2018; 128:5110-5122. [PMID: 30137026 DOI: 10.1172/jci120453] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn's disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell-enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell-specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael W Rajala
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Richard D Head
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
22
|
Singh AK, Nguyen TH, Vidovszky MZ, Harrach B, Benkő M, Kirwan A, Joshi L, Kilcoyne M, Berbis MÁ, Cañada FJ, Jiménez-Barbero J, Menéndez M, Wilson SS, Bromme BA, Smith JG, van Raaij MJ. Structure and N-acetylglucosamine binding of the distal domain of mouse adenovirus 2 fibre. J Gen Virol 2018; 99:1494-1508. [PMID: 30277856 DOI: 10.1099/jgv.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Murine adenovirus 2 (MAdV-2) infects cells of the mouse gastrointestinal tract. Like human adenoviruses, it is a member of the genus Mastadenovirus, family Adenoviridae. The MAdV-2 genome has a single fibre gene that expresses a 787 residue-long protein. Through analogy to other adenovirus fibre proteins, it is expected that the carboxy-terminal virus-distal head domain of the fibre is responsible for binding to the host cell, although the natural receptor is unknown. The putative head domain has little sequence identity to adenovirus fibres of known structure. In this report, we present high-resolution crystal structures of the carboxy-terminal part of the MAdV-2 fibre. The structures reveal a domain with the typical adenovirus fibre head topology and a domain containing two triple β-spiral repeats of the shaft domain. Through glycan microarray profiling, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and site-directed mutagenesis, we show that the fibre specifically binds to the monosaccharide N-acetylglucosamine (GlcNAc). The crystal structure of the complex reveals that GlcNAc binds between the AB and CD loops at the top of each of the three monomers of the MAdV-2 fibre head. However, infection competition assays show that soluble GlcNAc monosaccharide and natural GlcNAc-containing polymers do not inhibit infection by MAdV-2. Furthermore, site-directed mutation of the GlcNAc-binding residues does not prevent the inhibition of infection by soluble fibre protein. On the other hand, we show that the MAdV-2 fibre protein binds GlcNAc-containing mucin glycans, which suggests that the MAdV-2 fibre protein may play a role in viral mucin penetration in the mouse gut.
Collapse
Affiliation(s)
- Abhimanyu K Singh
- 1Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain.,†Present address: School of Biosciences, Stacey Building, University of Kent, Canterbury CT2 7NJ, UK
| | - Thanh H Nguyen
- 1Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain.,‡Present address: Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Márton Z Vidovszky
- 2Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Harrach
- 2Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mária Benkő
- 2Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alan Kirwan
- 3Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Lokesh Joshi
- 3Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Michelle Kilcoyne
- 4Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - M Álvaro Berbis
- 5Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - F Javier Cañada
- 5Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Jesús Jiménez-Barbero
- 5Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.,§Present address: Molecular Recognition and Host-Pathogen Interactions Unit, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain.,¶Present address: Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
| | - Margarita Menéndez
- 6Departamento de Química Física-Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Madrid, Spain.,7CIBER of Respiratory Diseases (CIBERES-ISCIII), Madrid, Spain
| | - Sarah S Wilson
- 8Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Beth A Bromme
- 8Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Jason G Smith
- 8Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mark J van Raaij
- 1Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
23
|
Human Neutrophil Defensin-1, -3, and -4 Are Elevated in Nasal Aspirates from Children with Naturally Occurring Adenovirus Infection. Can Respir J 2018; 2018:1038593. [PMID: 30154940 PMCID: PMC6091448 DOI: 10.1155/2018/1038593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
Background Adenoviruses are highly contagious pathogens which cause respiratory disease particularly in children; they may induce severe disease in infants. Human neutrophil peptides (HNPs) have been found to exhibit antiadenoviral activity. Thus, we have investigated HNPs in nasal aspirates (NAs) of children suffering from adenoviral common cold. Objective To investigate the release of HNP-1–4 in adenovirus infection and the relationship with self-limiting upper respiratory tract infections. Methods Nasal aspirate samples (n=14) were obtained from children (aged 6–12 years) infected with adenovirus between June 2012 and December 2015. Control samples were taken 4 weeks after infection when the children were asymptomatic. Levels of HNPs were measured using an enzyme-linked immunosorbent assay (ELISA). Results There were increased levels of HNP-1, -3, and -4, but not HNP-2, in nasal aspirates (NAs) during adenovirus infections compared to healthy specimens (p ≤ 0.01). Moreover, there was also increase in the neutrophil count, which is a known cell source of HNPs. Conclusion Our finding supports the involvement of HNP-1, -3, and -4 in naturally occurring cold in children infected with adenovirus. Because of their known antiviral properties, it is tempting to hypothesize that HNPs might play a protective role in adenovirus-induced respiratory disease; however, this remains to be shown.
Collapse
|
24
|
Seamons A, Treuting PM, Meeker S, Hsu C, Paik J, Brabb T, Escobar SS, Alexander JS, Ericsson AC, Smith JG, Maggio-Price L. Obstructive Lymphangitis Precedes Colitis in Murine Norovirus-Infected Stat1-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1536-1554. [PMID: 29753791 PMCID: PMC6109697 DOI: 10.1016/j.ajpath.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Murine norovirus (MNV) is an RNA virus that can prove lethal in mice with impaired innate immunity. We found that MNV-4 infection of Stat1-/- mice was not lethal, but produced a 100% penetrant, previously undescribed lymphatic phenotype characterized by chronic-active lymphangitis with hepatitis, splenitis, and chronic cecal and colonic inflammation. Lesion pathogenesis progressed from early ileal enteritis and regional dilated lymphatics to lymphangitis, granulomatous changes in the liver and spleen, and, ultimately, typhlocolitis. Lesion development was neither affected by antibiotics nor reproduced by infection with another enteric RNA virus, rotavirus. MNV-4 infection in Stat1-/- mice decreased expression of vascular endothelial growth factor (Vegf) receptor 3, Vegf-c, and Vegf-d and increased interferon (Ifn)-γ, tumor necrosis factor-α, and inducible nitric oxide synthase. However, anti-IFN-γ and anti-tumor necrosis factor-α antibody treatment did not attenuate the histologic lesions. Studies in Ifnαβγr-/- mice suggested that canonical signaling via interferon receptors did not cause MNV-4-induced disease. Infected Stat1-/- mice had increased STAT3 phosphorylation and expressed many STAT3-regulated genes, consistent with our findings of increased myeloid cell subsets and serum granulocyte colony-stimulating factor, which are also associated with increased STAT3 activity. In conclusion, in Stat1-/- mice, MNV-4 induces lymphatic lesions similar to those seen in Crohn disease as well as hepatitis, splenitis, and typhlocolitis. MNV-4-infected Stat1-/- mice may be a useful model to study mechanistic associations between viral infections, lymphatic dysfunction, and intestinal inflammation in a genetically susceptible host.
Collapse
Affiliation(s)
- Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, Washington.
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stacey Meeker
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Charlie Hsu
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Sabine S Escobar
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, Louisiana
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Lillian Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection. mSphere 2018; 3:3/3/e00105-18. [PMID: 29925671 PMCID: PMC6010623 DOI: 10.1128/msphere.00105-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota. Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota.
Collapse
|
26
|
Park MS, Kim JI, Lee I, Park S, Bae JY, Park MS. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul) 2018; 26:242-254. [PMID: 29310427 PMCID: PMC5933891 DOI: 10.4062/biomolther.2017.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sehee Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Holly MK, Smith JG. Adenovirus Infection of Human Enteroids Reveals Interferon Sensitivity and Preferential Infection of Goblet Cells. J Virol 2018; 92:e00250-18. [PMID: 29467318 PMCID: PMC5899204 DOI: 10.1128/jvi.00250-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (HAdV) are significant human pathogens. Although only a subset of HAdV serotypes commonly cause gastroenteritis in humans, most HAdV species replicate in the gastrointestinal tract. Knowledge of the complex interaction between HAdVs and the human intestinal epithelium has been limited by the lack of a suitable cell culture system containing relevant cell types. Recently, this need has been met by the stable and prolonged cultivation of primary intestinal epithelial cells as enteroids. Human enteroids have been used to reveal novel and interesting aspects of rotavirus, norovirus, and enterovirus replication, prompting us to explore their suitability for HAdV culture. We found that both prototype strains and clinical isolates of enteric and nonenteric HAdVs productively replicate in human enteroids. HAdV-5p, a respiratory pathogen, and HAdV-41p, an enteric pathogen, are both sensitive to type I and III interferons in human enteroid monolayers but not A549 cells. Interestingly, HAdV-5p, but not HAdV-41p, preferentially infected goblet cells. And, HAdV-5p but not HAdV-41p was potently neutralized by the enteric human alpha-defensin HD5. These studies highlight new facets of HAdV biology that are uniquely revealed by primary intestinal epithelial cell culture.IMPORTANCE Enteric adenoviruses are a significant cause of childhood gastroenteritis worldwide, yet our understanding of their unique biology is limited. Here we report robust replication of both prototype and clinical isolates of enteric and respiratory human adenoviruses in enteroids, a primary intestinal cell culture system. Recent studies have shown that other fastidious enteric viruses replicate in human enteroids. Therefore, human enteroids may provide a unified platform for culturing enteric viruses, potentially enabling isolation of a greater diversity of viruses from patients. Moreover, both the ability of interferon to restrict respiratory and enteric adenoviruses and a surprising preference of a respiratory serotype for goblet cells demonstrate the power of this culture system to uncover aspects of adenovirus biology that were previously unattainable with standard cell lines.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Holly MK, Smith JG. Paneth Cells during Viral Infection and Pathogenesis. Viruses 2018; 10:v10050225. [PMID: 29701691 PMCID: PMC5977218 DOI: 10.3390/v10050225] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Paneth cells are major secretory cells located in the crypts of Lieberkühn in the small intestine. Our understanding of the diverse roles that Paneth cells play in homeostasis and disease has grown substantially since their discovery over a hundred years ago. Classically, Paneth cells have been characterized as a significant source of antimicrobial peptides and proteins important in host defense and shaping the composition of the commensal microbiota. More recently, Paneth cells have been shown to supply key developmental and homeostatic signals to intestinal stem cells in the crypt base. Paneth cell dysfunction leading to dysbiosis and a compromised epithelial barrier have been implicated in the etiology of Crohn’s disease and susceptibility to enteric bacterial infection. Our understanding of the impact of Paneth cells on viral infection is incomplete. Enteric α-defensins, produced by Paneth cells, can directly alter viral infection. In addition, α-defensins and other antimicrobial Paneth cell products may modulate viral infection indirectly by impacting the microbiome. Here, we discuss recent insights into Paneth cell biology, models to study their function, and the impact, both direct and indirect, of Paneth cells on enteric viral infection.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Box 357735, 1705 NE Pacific St., Seattle, WA 98195, USA.
| | - Jason G Smith
- Department of Microbiology, University of Washington, Box 357735, 1705 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Interactions between Enteric Bacteria and Eukaryotic Viruses Impact the Outcome of Infection. Viruses 2018; 10:v10010019. [PMID: 29301335 PMCID: PMC5795432 DOI: 10.3390/v10010019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
Enteric viruses encounter a multitude of environments as they traverse the gastrointestinal tract. The interaction of enteric eukaryotic viruses with members of the host microbiota impacts the outcome of infection. Infection with several enteric viruses is impaired in the absence of the gut microbiota, specifically bacteria. The effects of bacteria on virus biology are diverse. Poliovirus capsid stability and receptor engagement are positively impacted by bacteria and bacterial lipopolysaccharides. Norovirus utilizes histo-blood group antigens produced by enteric bacteria to attach and productively infect B cells. Lipopolysaccharides on the envelope of mouse mammary tumor virus promote a tolerogenic environment that allows for the establishment of viral persistence. Reovirus binds Gram negative and Gram-positive bacteria through bacterial envelope components to enhance virion thermostability. Through the direct engagement of bacteria and bacterial components, viruses evolved diverse ways to impact the outcome of infection.
Collapse
|
30
|
Hsu CC, Meeker SM, Escobar S, Brabb TL, Paik J, Park H, Iritani BM, Maggio-Price L. Murine norovirus inhibits B cell development in the bone marrow of STAT1-deficient mice. Virology 2017; 515:123-133. [PMID: 29287229 PMCID: PMC5801037 DOI: 10.1016/j.virol.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Noroviruses are a leading cause of gastroenteritis in humans and it was recently revealed that noroviruses can infect B cells. We demonstrate that murine norovirus (MNV) infection can significantly impair B cell development in the bone marrow in a signal transducer and activator of transcription 1 (STAT1) dependent, but interferon signaling independent manner. We also show that MNV replication is more pronounced in the absence of STAT1 in ex vivo cultured B cells. Interestingly, using bone marrow transplantation studies, we found that impaired B cell development requires Stat1-/- hematopoietic cells and Stat1-/- stromal cells, and that the presence of wild-type hematopoietic or stromal cells was sufficient to restore normal development of Stat1-/- B cells. These results suggest that B cells normally restrain norovirus replication in a cell autonomous manner, and that wild-type STAT1 is required to protect B cell development during infection.
Collapse
Affiliation(s)
- Charlie C Hsu
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Stacey M Meeker
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Sabine Escobar
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Thea L Brabb
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Heon Park
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Brian M Iritani
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Lillian Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Peck BCE, Shanahan MT, Singh AP, Sethupathy P. Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells Int 2017; 2017:5604727. [PMID: 28904533 PMCID: PMC5585682 DOI: 10.1155/2017/5604727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael T. Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ajeet P. Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
The Role of Defensins in HIV Pathogenesis. Mediators Inflamm 2017; 2017:5186904. [PMID: 28839349 PMCID: PMC5559915 DOI: 10.1155/2017/5186904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Profound loss of CD4+ T cells, progressive impairment of the immune system, inflammation, and sustained immune activation are the characteristics of human immunodeficiency virus-1 (HIV-1) infection. Innate immune responses respond immediately from the day of HIV infection, and a thorough understanding of the interaction between several innate immune cells and HIV-1 is essential to determine to what extent those cells play a crucial role in controlling HIV-1 in vivo. Defensins, divided into the three subfamilies α-, β-, and θ-defensins based on structure and disulfide linkages, comprise a critical component of the innate immune response and exhibit anti-HIV-1 activities and immunomodulatory capabilities. In humans, only α- and β-defensins are expressed in various tissues and have broad impacts on HIV-1 transmission, replication, and disease progression. θ-defensins have been identified as functional peptides in Old World monkeys, but not in humans. Instead, θ-defensins exist only as pseudogenes in humans, chimpanzees, and gorillas. The use of the synthetic θ-defensin peptide “retrocyclin” as an antiviral therapy was shown to be promising, and further research into the development of defensin-based HIV-1 therapeutics is needed. This review focuses on the role of defensins in HIV-1 pathogenesis and highlights future research efforts that warrant investigation.
Collapse
|
33
|
Abstract
α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Karina Diaz
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
34
|
Wang ZZ, Bing XL, Liu SS, Chen XX. RNA interference of an antimicrobial peptide, Btdef, reduces Tomato yellow leaf curl China virus accumulation in the whitefly Bemisia tabaci. PEST MANAGEMENT SCIENCE 2017; 73:1421-1427. [PMID: 27804213 DOI: 10.1002/ps.4472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/03/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci (Gennadius) is considered one of the main pests for agriculture. One important problem with the whitefly is its notorious status as a vector for plant viruses, primarily begomoviruses. We have previously identified a defensin-like antimicrobial peptide, Btdef, from the whitefly B. tabaci MEAM1. However, the function of Btdef in the immune system of the insect vector and begomovirus transmission has yet to be explored. RESULTS To explore the role of Btdef during begomovirus transmission, we firstly investigated the transcriptional response of Btdef following acquisition of Tomato yellow leaf curl China virus (TYLCCNV). The expression of Btdef was up-regulated in the viruliferous whiteflies. After RNA silencing of the Btdef gene in adult whiteflies fed with dsRNA, they were allowed to feed on TYLCCNV-infected plants and then quantified for TYLCCNV DNA titre. Unexpectedly, silencing the Btdef gene reduced both the abundance and expressions of TYLCCNV genes in the whiteflies. In the meantime, the density of the endosymbiont Rickettsia was significantly reduced in dsBtdef-fed whiteflies. CONCLUSION Our data provide evidence that Btdef is involved in begomovirus infection, possibly through symbiont-mediated alteration of begomovirus-whitefly interactions. These findings indicate that Btdef may be targeted for the development of new technology for the control of whitefly-transmitted begomoviruses. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Li Bing
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Abstract
The small intestinal epithelium produces numerous antimicrobial peptides and proteins, including abundant enteric α-defensins. Although they most commonly function as potent antivirals in cell culture, enteric α-defensins have also been shown to enhance some viral infections in vitro. Efforts to determine the physiologic relevance of enhanced infection have been limited by the absence of a suitable cell culture system. To address this issue, here we use primary stem cell-derived small intestinal enteroids to examine the impact of naturally secreted α-defensins on infection by the enteric mouse pathogen, mouse adenovirus 2 (MAdV-2). MAdV-2 infection was increased when enteroids were inoculated across an α-defensin gradient in a manner that mimics oral infection but not when α-defensin levels were absent or bypassed through other routes of inoculation. This increased infection was a result of receptor-independent binding of virus to the cell surface. The enteroid experiments accurately predicted increased MAdV-2 shedding in the feces of wild type mice compared to mice lacking functional α-defensins. Thus, our studies have shown that viral infection enhanced by enteric α-defensins may reflect the evolution of some viruses to utilize these host proteins to promote their own infection. Enteric α-defensins are an ancient form of host defense against pathogens, but until recently there was no robust in vitro system available to study their functions upon secretion from the cells that produce them naturally in vivo. Here, using small intestinal enteroids as a source of naturally secreted α-defensins, we show that enteric viral infection is increased in the presence of these peptides. We then show that α-defensins also enhance infection in vivo, as predicted by the results of the enteroid model. This study points to a new role for enteric α-defensins in promoting viral infection and has implications for the ability of these peptides to dictate viral tropism in the gastrointestinal tract.
Collapse
|
36
|
Schulze K, Ebensen T, Babiuk LA, Gerdts V, Guzman CA. Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2169-2178. [PMID: 28579436 DOI: 10.1016/j.nano.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 05/20/2017] [Indexed: 01/08/2023]
Abstract
The most promising strategy to sustainably prevent infectious diseases is vaccination. However, emerging as well as re-emerging diseases still constitute a considerable threat. Furthermore, lack of compliance and logistic constrains often result in the failure of vaccination campaigns. To overcome these hurdles, novel vaccination strategies need to be developed, which fulfill maximal safety requirements, show maximal efficiency and are easy to administer. Mucosal vaccines constitute promising non-invasive approaches able to match these demands. Here we demonstrate that nanoparticle (polyphosphazenes)-based vaccine formulations including c-di-AMP as adjuvant, cationic innate defense regulator peptides (IDR) and ovalbumin (OVA) as model antigen were able to stimulate strong humoral and cellular immune responses, which conferred protection against the OVA expressing influenza strain A/WSN/OVAI (H1N1). The presented results confirm the potency of nanoparticle-based vaccine formulations to deliver antigens across the mucosal barrier, but also demonstrate the necessity to include adjuvants to stimulate efficient antigen-specific immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Helmholtz Center for Infection Research (HZI), Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Thomas Ebensen
- Helmholtz Center for Infection Research (HZI), Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization and Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada.
| | - Carlos A Guzman
- Helmholtz Center for Infection Research (HZI), Department of Vaccinology and Applied Microbiology, Braunschweig, Germany.
| |
Collapse
|
37
|
Sankaran-Walters S, Hart R, Dills C. Guardians of the Gut: Enteric Defensins. Front Microbiol 2017; 8:647. [PMID: 28469609 PMCID: PMC5395650 DOI: 10.3389/fmicb.2017.00647] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/29/2017] [Indexed: 01/01/2023] Open
Abstract
Enteric defensins likely play a key role in the management of the human microbiome throughout development. The functional and mechanistic diversity of defensins is much greater than was initially thought. Defensin expression and overall Paneth cell physiology likely plays a key role in the development of colitis and other inflammatory or dysbiotic diseases of the gut. As our understanding of enteric defensins grows, their potential as tools of clinical intervention becomes more apparent. In this review, we focus on the function and activity of Paneth Cell defensins and highlight their role in disease.
Collapse
|
38
|
α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome. mBio 2017; 8:mBio.02304-16. [PMID: 28119475 PMCID: PMC5263252 DOI: 10.1128/mbio.02304-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. IMPORTANCE Although the antiviral activity of α-defensins against enveloped viruses can be largely explained by interference with receptor binding and fusion, a common mechanism for inhibition of nonenveloped viruses remains elusive. In studies of a prominent human α-defensin that is expressed in the gut and in the male and female genitourinary tract, we discovered striking parallels between the mechanisms of inhibition of HPV and human adenovirus infection. Thus, detailed studies of the impact of α-defensins on the intracellular trafficking of two disparate viruses support a general mechanism of α-defensin antiviral activity against nonenveloped viruses.
Collapse
|
39
|
Hsieh IN, Hartshorn KL. The Role of Antimicrobial Peptides in Influenza Virus Infection and Their Potential as Antiviral and Immunomodulatory Therapy. Pharmaceuticals (Basel) 2016; 9:E53. [PMID: 27608030 PMCID: PMC5039506 DOI: 10.3390/ph9030053] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) remains a major threat that can cause severe morbidity and mortality due to rapid genomic variation. Resistance of IAVs to current anti-IAV drugs has been emerging, and antimicrobial peptides (AMPs) have been considered to be potential candidates for novel treatment against IAV infection. AMPs are endogenous proteins playing important roles in host defense through direct antimicrobial and antiviral activities and through immunomodulatory effects. In this review, we will discuss the anti-IAV and immunomodulatory effects of classical AMPs (defensins and cathelicidins), and proteins more recently discovered to have AMP-like activity (histones and Alzheimer's associated β-amyloid). We will discuss the interactions between AMPs and other host defense proteins. Major emphasis will be placed on novel synthetic AMPs derived from modification of natural proteins, and on potential methods of increasing expression of endogenous AMPs, since these approaches may lead to novel antiviral therapeutics.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
40
|
Defensins at the Mucosal Surface: Latest Insights into Defensin-Virus Interactions. J Virol 2016; 90:5216-5218. [PMID: 27009960 DOI: 10.1128/jvi.00904-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defensins are innate immune effector peptides expressed at mucosal surfaces throughout the human body and are potently antiviral in vitro The role of defensins in viral pathogenesis in vivo is poorly understood; however, recent studies have revealed that defensin-virus interactions in vivo are complicated and distinct from their proposed antiviral mechanisms in vitro These findings highlight the need for additional research that connects defensin neutralization of viruses in cell culture to in vivo antiviral mechanisms.
Collapse
|