1
|
Casto AM, Song H, Xie H, Selke S, Roychoudhury P, Wu MC, Wald A, Greninger AL, Johnston C. Viral Genomic Variation and the Severity of Genital Herpes Simplex Virus-2 Infection as Quantified by Shedding Rate: A Viral Genome-Wide Association Study. J Infect Dis 2024; 230:1357-1366. [PMID: 38805234 PMCID: PMC11646587 DOI: 10.1093/infdis/jiae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The clinical severity of genital herpes simplex virus-2 (HSV-2) infection varies widely among infected persons with some experiencing frequent genital lesions while others are asymptomatic. The viral genital shedding rate is closely associated with, and has been established as, a surrogate marker of clinical severity. METHODS To assess the relationship between viral genetics and shedding, we assembled a set of 145 persons who had the severity of their genital herpes quantified through determination of their HSV genital shedding rate. An HSV-2 sample from each person was sequenced and biallelic variants among these genomes were identified. RESULTS We found no association between metrics of genome-wide variation in HSV-2 and shedding rate. A viral genome-wide association study identified the minor alleles of 3 individual unlinked variants as significantly associated with higher shedding rate (P < 8.4 × 10-5): C44973T (A512T), a nonsynonymous variant in UL22 (glycoprotein H); A74534G, a synonymous variant in UL36 (large tegument protein); and T119283C, an intergenic variant. We also found an association between the total number of minor alleles for the significant variants and shedding rate (P = 6.6 × 10-7). CONCLUSIONS These results add to a growing body of literature for HSV suggesting a connection between viral genetic variation and clinically important phenotypes of infection.
Collapse
Affiliation(s)
- Amanda M Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Hoseung Song
- Division of Industrial and Systems Engineering, Graduate School of Data Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Li H, Zhang R, Qu J, Kang Y, Zhang J, Guo R, Li J, Zhang X, Han L, Xie H, Wang X. Development and immunogenicity evaluation of a quadruple-gene-deleted pseudorabies virus strain. Front Microbiol 2024; 15:1479794. [PMID: 39372271 PMCID: PMC11449858 DOI: 10.3389/fmicb.2024.1479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Since 2011, the emergence of Pseudorabies virus (PRV) variants has led to significant vaccine failures, resulting in severe economic losses in China's swine industry. Conventional PRV vaccines have shown limited efficacy against these emergent variants, underscoring the urgent need for novel immunization strategies. This study aimed to develop and evaluate a novel recombinant PRV vaccine candidate with improved safety and immunogenicity profiles. Utilizing the homology-directed repair (HDR)-CRISPR/Cas9 system, we generated a recombinant PRV strain, designated PRV SX-10ΔgI/gE/TK/UL24, with deletions in the gI, gE, TK, and UL24 genes. In vitro analyses demonstrated that the recombinant virus exhibited similar replication kinetics and growth curves comparable to the parental strain. The immunological properties of the recombinant PRV were assessed in murine and porcine models. All animals inoculated with PRV SX-10ΔgI/gE/TK/UL24 survived without exhibiting significant clinical signs or pathological alterations. Immunological assays revealed that PRV SX-10ΔgI/gE/TK/UL24 elicited significantly higher levels of gB-specific antibodies, neutralizing antibodies, and cytokines (including IFN-γ, IL-2, and IL-4) compared to both the Bartha-K61 and PRV SX-10ΔgI/gE/TK strains. Notably, both murine and porcine subjects immunized with PRV SX-10ΔgI/gE/TK/UL24 demonstrated enhanced protection against challenges with the variant PRV SX-10 strain, compared to other vaccine strains. These findings suggest that PRV SX-10ΔgI/gE/TK/UL24 represents a promising PRV vaccine candidate strain, offering valuable insights for the prevention and control of PRV in clinical applications.
Collapse
Affiliation(s)
- Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiahao Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yahao Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - JunDa Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Likang Han
- College of Veterinary Medicine, Gansu Agricultural University, Anning, China
| | - Honglin Xie
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Yin XT, Hartman A, Sirajuddin N, Shukla D, Leger AS, Keadle TL, Stuart PM. UVB induced reactivation leads to HSV1 in the corneas of virtually all latently infected mice and requires STING to develop corneal disease. Sci Rep 2024; 14:6859. [PMID: 38514671 PMCID: PMC10957950 DOI: 10.1038/s41598-024-52597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/21/2024] [Indexed: 03/23/2024] Open
Abstract
Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide (CP). Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45+ cells in these corneas is significantly reduced. The resulting paucity of CD45+CD11b+GR-1+F4/80-neutrophils, and to a lesser extent CD45+CD11b+GR-1-F4/80+ macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alexis Hartman
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nadia Sirajuddin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Anthony St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Washington University, 7569 Amherst Avenue, University City, MO, 63130-2805, USA.
| |
Collapse
|
4
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Chau VQ, Kolb AW, Miller DL, Yannuzzi NA, Brandt CR. Phylogenetic and Genomic Characterization of Whole Genome Sequences of Ocular Herpes Simplex Virus Type 1 Isolates Identifies Possible Virulence Determinants in Humans. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37450309 DOI: 10.1167/iovs.64.10.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Purpose There are limited data on the prevalence and genetic diversity of herpes simplex virus type 1 (HSV-1) virulence genes in ocular isolates. Here, we sequenced 36 HSV-1 ocular isolates, collected by the Bascom Palmer Eye Institute, a university-based eye hospital, from three different ocular anatomical sites (conjunctiva, cornea, and eyelid) and carried out a genomic and phylogenetic analyses. Methods The PacBio Sequel II long read platform was used for genome sequencing. Phylogenetic analysis and genomic analysis were performed to help better understand genetic variability among common virulence genes in ocular herpetic disease. Results A phylogenetic network generated using the genome sequences of the 36 Bascom Palmer ocular isolates, plus 174 additional strains showed that ocular isolates do not group together phylogenetically. Analysis of the thymidine kinase and DNA polymerase protein sequences from the Bascom Palmer isolates showed multiple novel single nucleotide polymorphisms, but only one, BP-K14 encoded a known thymidine kinase acyclovir resistance mutation. An analysis of the multiple sequence alignment comprising the 51 total ocular isolates versus 159 nonocular strains detected several possible single nucleotide polymorphisms in HSV-1 genes that were found significantly more often in the ocular isolates. These genes included UL6, gM, VP19c, VHS, gC, VP11/12, and gG. Conclusions There does not seem to be a specific genetic feature of viruses causing ocular infection. The identification of novel and common recurrent polymorphisms may help to understand the drivers of herpetic pathogenicity and specific factors that may influence the virulence of ocular disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| | - Darlene L Miller
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Nicolas A Yannuzzi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, United States
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
7
|
Kolb AW, Ferguson SA, Larsen IV, Brandt CR. Disease parameters following ocular herpes simplex virus type 1 infection are similar in male and female BALB/C mice. PLoS One 2023; 18:e0287194. [PMID: 37319284 PMCID: PMC10270577 DOI: 10.1371/journal.pone.0287194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarah A. Ferguson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Inna V. Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
8
|
Dweikat SN, Renner DW, Bowen CD, Szpara ML. Multi-phenotype analysis for enhanced classification of 11 herpes simplex virus 1 strains. J Gen Virol 2022; 103:001780. [PMID: 36264606 PMCID: PMC10019087 DOI: 10.1099/jgv.0.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) is best known for causing oral lesions and mild clinical symptoms, but it can produce a significant range of disease severities and rates of reactivation. To better understand this phenotypic variation, we characterized 11 HSV1 strains that were isolated from individuals with diverse infection outcomes. We provide new data on genomic and in vitro plaque phenotype analysis for these isolates and compare these data to previously reported quantitation of the disease phenotype of each strain in a murine animal model. We show that integration of these three types of data permitted clustering of these HSV1 strains into four groups that were not distinguishable by any single dataset alone, highlighting the benefits of combinatorial multi-parameter phenotyping. Two strains (group 1) produced a partially or largely syncytial plaque phenotype and attenuated disease phenotypes in mice. Three strains of intermediate plaque size, causing severe disease in mice, were genetically clustered to a second group (group 2). Six strains with the smallest average plaque sizes were separated into two subgroups (groups 3 and 4) based on their different genetic clustering and disease severity in mice. Comparative genomics and network graph analysis suggested a separation of HSV1 isolates with attenuated vs. virulent phenotypes. These observations imply that virulence phenotypes of these strains may be traceable to genetic variation within the HSV1 population.
Collapse
Affiliation(s)
- Sarah N Dweikat
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Daniel W Renner
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Christopher D Bowen
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Moriah L Szpara
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
9
|
Koujah L, Allaham M, Patil CD, Ames JM, Suryawanshi RK, Yadavalli T, Agelidis A, Mun C, Surenkhuu B, Jain S, Shukla D. Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocul Surf 2021; 21:238-249. [PMID: 33766740 DOI: 10.1016/j.jtos.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE Herpes simplex virus-1 (HSV-1) infection leads to varying pathologies including the development of ocular lesions, stromal keratitis and encephalitis. While the role for host immunity in disease progression is well understood, the contribution of genetic variances in generating preferential viral entry receptor usage and resulting immunopathogenesis in humans are not known. METHODS Ocular cultures were obtained from patients presenting distinct pathologies of herpes simplex keratitis (HSK). Next-generation sequencing and subsequent analysis characterized genetic variances among the strains and estimated evolutionary divergence. Murine model of ocular infection was used to assess phenotypic contributions of strain variances on damage to the ocular surface and propagation of innate immunity. Flow cytometry of eye tissue identified differential recruitment of immune cell populations, cytokine array probed for programming of local immune response in the draining lymph node and histology was used to assess inflammation of the trigeminal ganglion (TG). Ex-vivo corneal cultures and in-vitro studies elucidated the role of genetic variances in altering host-pathogen interactions, leading to divergent host responses. RESULTS Phylogenetic analysis of the clinical isolates suggests evolutionary divergence among currently circulating HSV-1 strains. Mutations causing alterations in functional host interactions were identified, particularly in viral entry glycoproteins which generated a receptor bias to herpesvirus entry mediator, an immune modulator involved in immunopathogenic diseases like HSK, leading to exacerbated ocular surface pathologies and heightened viral burden in the TG and brainstem. CONCLUSIONS Our data suggests receptor bias resulting from genetic variances in clinical strains may dictate disease severity and treatment outcome.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mowafak Allaham
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joshua M Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Christine Mun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Renner DW, Parsons L, Shreve JT, Engel EA, Kuny CV, Enquist L, Neumann D, Mangold C, Szpara ML. Genome Sequence of the Virulent Model Herpes Simplex Virus 1 Strain McKrae Demonstrates the Presence of at Least Two Widely Used Variant Strains. Microbiol Resour Announc 2021; 10:e01146-19. [PMID: 33766904 PMCID: PMC7996463 DOI: 10.1128/mra.01146-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) strain McKrae was isolated in 1965 and has been utilized by many laboratories. Three HSV-1 strain McKrae stocks have been sequenced previously, revealing discrepancies in key genes. We sequenced the genome of HSV-1 strain McKrae from the laboratory of James M. Hill to better understand the genetic differences between isolates.
Collapse
Affiliation(s)
- Daniel W Renner
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Jacob T Shreve
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Chad V Kuny
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Colleen Mangold
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
12
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
13
|
Casto AM, Huang MLW, Xie H, Jerome KR, Wald A, Johnston CM, Greninger AL. Herpes Simplex Virus Mistyping due to HSV-1 × HSV-2 Interspecies Recombination in Viral Gene Encoding Glycoprotein B. Viruses 2020; 12:E860. [PMID: 32781734 PMCID: PMC7472045 DOI: 10.3390/v12080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Human herpes simplex viruses (HSV) 1 and 2 are extremely common human pathogens with overlapping disease spectra. Infections due to HSV-1 and HSV-2 are distinguished in clinical settings using sequence-based "typing" assays. Here we describe a case of HSV mistyping caused by a previously undescribed HSV-1 × HSV-2 recombination event in UL27, the HSV gene that encodes glycoprotein B. This is the first documented case of HSV mistyping caused by an HSV-1 × HSV-2 recombination event and the first description of an HSV interspecies recombination event in UL27, which is frequently used as a target for diagnostics and experimental therapeutics. We also review the primer and probe target sequences for a commonly used HSV typing assay from nearly 700 HSV-1 and HSV-2 samples and find that about 4% of HSV-1 samples have a single nucleotide change in at least one of these loci, which could impact assay performance. Our findings illustrate how knowledge of naturally occurring genomic variation in HSV-1 and HSV-2 is essential for the design and interpretation of molecular diagnostics for these viruses.
Collapse
Affiliation(s)
- Amanda M. Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Meei-Li W. Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Christine M. Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| |
Collapse
|
14
|
Sergeyev OV, Bosh'ian RE, Barinsky IF. [RETRACTED: High-throughput sequencing in diagnostics and prevention of herpes simplex virus infection (Herpesviridae, Alphaherpesvirinae, Simplexvirus, Human alphaherpesvirus 1)]. Vopr Virusol 2020; 65:126-131. [PMID: 33533214 DOI: 10.36233/0507-4088-2020-65-3-126-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
RETRACTEDHerpes simplex viruses types 1 (HSV-1) and 2 (HSV-2) are among the most common viruses in the human population. The clinical manifestations of HSV infection vary widely, which necessitates reliable molecular methods for the timely diagnosis of herpes virus infection, as well as for detection of mutations in the genes responsible for drug resistance. PCR is often unable to detect HSV isolates with nucleotide substitutions at the primer binding site. Sanger sequencing of the whole genome reveals mutations mainly at the consensus level, which accumulate at advanced stages of viral infection. High-throughput sequencing (HTS, next generation sequencing) offers an obvious advantage both in early diagnosis of herpes virus infection and identification of HSV variants.
Collapse
Affiliation(s)
- O V Sergeyev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - R E Bosh'ian
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I F Barinsky
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
15
|
Lassalle F, Beale MA, Bharucha T, Williams CA, Williams RJ, Cudini J, Goldstein R, Haque T, Depledge DP, Breuer J. Whole genome sequencing of Herpes Simplex Virus 1 directly from human cerebrospinal fluid reveals selective constraints in neurotropic viruses. Virus Evol 2020; 6:veaa012. [PMID: 32099667 PMCID: PMC7031915 DOI: 10.1093/ve/veaa012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) chronically infects over 70 per cent of the global population. Clinical manifestations are largely restricted to recurrent epidermal vesicles. However, HSV-1 also leads to encephalitis, the infection of the brain parenchyma, with high associated rates of mortality and morbidity. In this study, we performed target enrichment followed by direct sequencing of HSV-1 genomes, using target enrichment methods on the cerebrospinal fluid (CSF) of clinical encephalitis patients and from skin swabs of epidermal vesicles on non-encephalopathic patients. Phylogenetic analysis revealed high inter-host diversity and little population structure. In contrast, samples from different lesions in the same patient clustered with similar patterns of allelic variants. Comparison of consensus genome sequences shows HSV-1 has been freely recombining, except for distinct islands of linkage disequilibrium (LD). This suggests functional constraints prevent recombination between certain genes, notably those encoding pairs of interacting proteins. Distinct LD patterns characterised subsets of viruses recovered from CSF and skin lesions, which may reflect different evolutionary constraints in different body compartments. Functions of genes under differential constraint related to immunity or tropism and provide new hypotheses on tissue-specific mechanisms of viral infection and latency.
Collapse
Affiliation(s)
- Florent Lassalle
- Department of Infectious Disease Epidemiology, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
| | - Mathew A Beale
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Tehmina Bharucha
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Charlotte A Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel J Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Tanzina Haque
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH
| |
Collapse
|
16
|
Shipley MM, Renner DW, Pandey U, Ford B, Bloom DC, Grose C, Szpara ML. Personalized viral genomic investigation of herpes simplex virus 1 perinatal viremic transmission with dual fatality. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004382. [PMID: 31582464 PMCID: PMC6913147 DOI: 10.1101/mcs.a004382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Here we present a personalized viral genomics approach to investigating a rare case of perinatal herpes simplex virus 1 (HSV-1) transmission that ended in death of both mother and neonate. We sought to determine whether the virus involved in this rare case had any unusual features that may have contributed to the dire patient outcome. A pregnant woman with negative HerpeSelect antibody test underwent cesarean section at 30 wk gestation and died the same day. The premature newborn died 5 d later. Both individuals were found postmortem to have positive blood HSV-1 PCR tests. Using oligonucleotide enrichment and deep sequencing, we determined that viral transmission from mother to infant was nearly perfect at the consensus genome level. At the virus population level, 77% of minor variants (MVs) in the mother's blood also appeared on the neonate's skin, of which more than half were disseminated into the neonate's blood. We also detected nonmaternal MVs that arose de novo in the neonate's viral populations. Of note, one de novo MV in the neonate's skin virus induced a nonsynonymous mutation in the UL6 protein, which is a component of the portal that allows DNA entry into new progeny capsids. This case suggests that perinatal viremic HSV-1 transmission includes the majority of genetic diversity from the maternal virus population and that new, nonsynonymous mutations can occur after relatively few rounds of replication. This report expands our understanding of viral transmission in humans and may lead to improved diagnostic strategies for neonatal HSV-1 acquisition.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bradley Ford
- Department of Pathology, University of Iowa, Iowa City, Iowa 52242, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Charles Grose
- Division of Infectious Disease/Virology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
17
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
18
|
Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection. J Virol 2019; 93:JVI.01824-18. [PMID: 30760568 PMCID: PMC6450105 DOI: 10.1128/jvi.01824-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences. A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland’s history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations. IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.
Collapse
|
19
|
Ramchandani MS, Jing L, Russell RM, Tran T, Laing KJ, Magaret AS, Selke S, Cheng A, Huang ML, Xie H, Strachan E, Greninger AL, Roychoudhury P, Jerome KR, Wald A, Koelle DM. Viral Genetics Modulate Orolabial Herpes Simplex Virus Type 1 Shedding in Humans. J Infect Dis 2019; 219:1058-1066. [PMID: 30383234 PMCID: PMC6420167 DOI: 10.1093/infdis/jiy631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Orolabial herpes simplex virus type 1 (HSV-1) infection has a wide spectrum of severity in immunocompetent persons. To study the role of viral genotype and host immunity, we characterized oral HSV-1 shedding rates and host cellular response, and genotyped viral strains, in monozygotic (MZ) and dizygotic (DZ) twins. METHODS A total of 29 MZ and 22 DZ HSV-1-seropositive twin pairs were evaluated for oral HSV-1 shedding for 60 days. HSV-1 strains from twins were genotyped as identical or different. CD4+ T-cell responses to HSV-1 proteins were studied. RESULTS The median per person oral HSV shedding rate was 9% of days that a swab was obtained (mean, 10.2% of days). A positive correlation between shedding rates was observed within all twin pairs, and in the MZ and DZ twins. In twin subsets with sufficient HSV-1 DNA to genotype, 15 had the same strain and 14 had different strains. Viral shedding rates were correlated for those with the same but not different strains. The median number of HSV-1 open reading frames recognized per person was 16. The agreement in the CD4+ T-cell response to specific HSV-1 open reading frames was greater between MZ twins than between unrelated persons (P = .002). CONCLUSION Viral strain characteristics likely contribute to oral HSV-1 shedding rates.
Collapse
Affiliation(s)
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ronnie M Russell
- Department of Medicine, University of Washington, Seattle, Washington
| | - Tran Tran
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anqi Cheng
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Eric Strachan
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Alex L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
20
|
Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW, Prichard MN, Whitley RJ, Weitzman MD, Szpara ML. Genotypic and Phenotypic Diversity of Herpes Simplex Virus 2 within the Infected Neonatal Population. mSphere 2019; 4:e00590-18. [PMID: 30814317 PMCID: PMC6393728 DOI: 10.1128/msphere.00590-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.
Collapse
Affiliation(s)
- Lisa N Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher D Bowen
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Ashley N Della Fera
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David W Kimberlin
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard J Whitley
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
21
|
Pandey U, Szpara ML. Herpes Simplex Virus Disease Management and Diagnostics in the Era of High-Throughput Sequencing. ACTA ACUST UNITED AC 2019; 41:41-48. [PMID: 34305220 DOI: 10.1016/j.clinmicnews.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herpes simplex virus (HSV) serotypes 1 and 2 are among the most widespread human viruses. HSV disease has a complex phenotype, with symptoms that can range from mild lesions to encephalitis. In the clinical setting, this diversity of outcomes poses a major challenge, making timely disease diagnosis and treatment challenging. High-throughput sequencing (HTS) has been one of the breakthrough technologies in the modern era of molecular biology, and it is revolutionizing the study of pathogen biology and clinical diagnostics. Here, we review recent studies that have used HTS to answer questions related to the evolution of drug resistance, transmission and spread, virulence marker identification, and the design of better antiviral therapeutics for HSV. We also highlight practical considerations for handling computational analysis of HSV genomes and adoption of HTS as a routine diagnostic procedure in the clinical laboratories.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
Law GA, Herr AE, Cwick JP, Taylor MP. A New Approach to Assessing HSV-1 Recombination during Intercellular Spread. Viruses 2018; 10:E220. [PMID: 29693602 PMCID: PMC5977213 DOI: 10.3390/v10050220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The neuroinvasive Herpes simplex virus type 1 (HSV-1) utilizes intergenomic recombination in order to diversify viral populations. Research efforts to assess HSV-1 recombination are often complicated by the use of attenuating mutations, which differentiate viral progeny but unduly influence the replication and spread. In this work, we generated viruses with markers that allowed for classification of viral progeny with limited attenuation of viral replication. We isolated viruses, harboring either a cyan (C) or yellow (Y) fluorescent protein (FP) expression cassette inserted in two different locations within the viral genome, in order to visually quantify the recombinant progeny based on plaque fluorescence. We found that the FP marked genomes had a limited negative affect on the viral replication and production of progeny virions. A co-infection of the two viruses resulted in recombinant progeny that was dependent on the multiplicity of infection and independent of the time post infection, at a rate that was similar to previous reports. The sequential passage of mixed viral populations revealed a limited change in the distribution of the parental and recombinant progeny. Interestingly, the neuroinvasive spread within neuronal cultures and an in vivo mouse model, revealed large, random shifts in the parental and recombinant distributions in viral populations. In conclusion, our approach highlights the utility of FP expressing viruses in order to provide new insights into mechanisms of HSV-1 recombination.
Collapse
Affiliation(s)
- Gabrielle A Law
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Alix E Herr
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - James P Cwick
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Matthew P Taylor
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
23
|
Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution. J Virol 2017; 92:JVI.00908-17. [PMID: 29046445 PMCID: PMC5730764 DOI: 10.1128/jvi.00908-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well.
Collapse
|
24
|
Kolb AW, Lewin AC, Moeller Trane R, McLellan GJ, Brandt CR. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus. BMC Genomics 2017; 18:887. [PMID: 29157201 PMCID: PMC5697016 DOI: 10.1186/s12864-017-4283-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Andrew C Lewin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph Moeller Trane
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Pandey U, Renner DW, Thompson RL, Szpara ML, Sawtell NM. Inferred father-to-son transmission of herpes simplex virus results in near-perfect preservation of viral genome identity and in vivo phenotypes. Sci Rep 2017; 7:13666. [PMID: 29057909 PMCID: PMC5654476 DOI: 10.1038/s41598-017-13936-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
High throughout sequencing has provided an unprecedented view of the circulating diversity of all classes of human herpesviruses. For herpes simplex virus 1 (HSV-1), we and others have previously published data demonstrating sequence diversity between hosts. However the extent of variation during transmission events, or in one host over years of chronic infection, remain unknown. Here we present an initial example of full characterization of viruses isolated from a father to son transmission event. The likely occasion of transmission occurred 17 years before the strains were isolated, enabling a first view of the degree of virus conservation after decades of recurrences, including transmission and adaptation to a new host. We have characterized the pathogenicity of these strains in a mouse ocular model of infection, and sequenced the full viral genomes. Surprisingly, we find that these two viruses have preserved their phenotype and genotype nearly perfectly during inferred transmission from father to son, and during nearly two decades of episodes of recurrent disease in each human host. Given the close genetic relationship of these two hosts, it remains to be seen whether or not this conservation of sequence will occur during non-familial transmission events.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Richard L Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | - Nancy M Sawtell
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
26
|
Ghazaei C. Molecular Insights into Pathogenesis and Infection with Aspergillus Fumigatus. Malays J Med Sci 2017; 24:10-20. [PMID: 28381925 DOI: 10.21315/mjms2017.24.1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
The virulence of fungi is dependent on multiple factors, including the immune status of patients and biological features of fungi. In particular, the virulence of Aspergillus fumigatus is due to the complex interaction among various molecules involved in thermotolerance (such as ribosomal biogenesis proteins, α-mannosyltransferase and heat shock proteins), pigment production (DHN-melanin), immune evasion (like melanin and hydrophobin) and nutrient uptake (such as siderophores and zinc transporters). Other molecules also play important roles in the virulence of A. fumigatus, including cell wall components and those which maintain its integrity (for instance β-1-3 glucan, α-1-3 glucan, chitin, galactomannan and mannoproteins) and adhesion (such as hydrophobins), as well as various hydrolytic enzymes (such as serine and aspartic protease, phospholipases, metalloproteinase and dipeptidyl peptidases). Signalling molecules (including G-protein, cAMP, Ras protein and calcineurin) also increase the virulence through altering the metabolic response to stress conditions and toxins (such as gliotoxin, fumitremorgins, fumagatin and helvolic acid).
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
27
|
The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features. Viruses 2017; 9:v9020026. [PMID: 28146109 PMCID: PMC5332945 DOI: 10.3390/v9020026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
As one of the major pathogens for human herpetic diseases, herpes simplex virus type 1 (HSV1) causes herpes labialis, genital herpes and herpetic encephalitis. Our aim here was to investigate the infectious process of HSV1 in rhesus macaques and the pathological features induced during this infection. Clinical symptoms that manifested in the rhesus macaque during HSV1 infection included vesicular lesions and their pathological features. Viral distribution in the nervous tissues and associated pathologic changes indicated the typical systematic pathological processes associated with viral distribution of HSV1. Interestingly, vesicular lesions recurred in oral skin or in mucosa associated with virus shedding in macaques within four to five months post-infection, and viral latency-associated transcript (LAT) mRNA was found in the trigeminal ganglia (TG) on day 365 post-infection. Neutralization testing and enzyme-linked immunospot (ELISpot) detection of specific T cell responses confirmed the specific immunity induced by HSV1 infection. Thus, rhesus macaques could serve as an infectious model for HSV1 due to their typical clinical symptoms and the pathological recurrence associated with viral latency in nervous tissues.
Collapse
|
28
|
Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner. Proc Natl Acad Sci U S A 2016; 113:12256-12261. [PMID: 27791013 DOI: 10.1073/pnas.1609695113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The herpes simplex virus (HSV) infected cell culture polypeptide 27 (ICP27) protein is essential for virus infection of cells. Recent studies suggested that ICP27 inhibits splicing in a gene-specific manner via an unknown mechanism. Here, RNA-sequencing revealed that ICP27 not only inhibits splicing of certain introns in <1% of cellular genes, but also can promote use of alternative 5' splice sites. In addition, ICP27 induced expression of pre-mRNAs prematurely cleaved and polyadenylated from cryptic polyadenylation signals (PAS) located in intron 1 or 2 of ∼1% of cellular genes. These previously undescribed prematurely cleaved and polyadenylated pre-mRNAs, some of which contain novel ORFs, were typically intronless, <2 Kb in length, expressed early during viral infection, and efficiently exported to cytoplasm. Sequence analysis revealed that ICP27-targeted genes are GC-rich (as are HSV genes), contain cytosine-rich sequences near the 5' splice site, and have suboptimal splice sites in the impacted intron, suggesting that a common mechanism is shared between ICP27-mediated alternative polyadenylation and splicing. Optimization of splice site sequences or mutation of nearby cytosines eliminated ICP27-mediated splicing inhibition, and introduction of C-rich sequences to an ICP27-insensitive splicing reporter conferred this phenotype, supporting the inference that specific gene sequences confer susceptibility to ICP27. Although HSV is the first virus and ICP27 is the first viral protein shown to activate cryptic PASs in introns, we suspect that other viruses and cellular genes also encode this function.
Collapse
|
29
|
Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the Herpes Simplex Virus 1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions. J Virol 2016; 90:8115-31. [PMID: 27384650 PMCID: PMC5008079 DOI: 10.1128/jvi.00821-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.
Collapse
|
30
|
Both CD8+ and CD4+ T Cells Contribute to Corneal Clouding and Viral Clearance following Vaccinia Virus Infection in C57BL/6 Mice. J Virol 2016; 90:6557-6572. [PMID: 27170749 DOI: 10.1128/jvi.00570-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Vaccinia virus (VACV) keratitis is a serious complication following smallpox vaccination and can lead to blindness. The pathological mechanisms involved in ocular VACV infection are poorly understood. Previous studies have used rabbits, but the lack of immune reagents and transgenic or knockout animals makes them less suitable for mechanistic studies. We report that infection of C57BL/6 mice with 1 × 10(7) PFU of vaccinia virus strain WR results in blepharitis, corneal neovascularization, and stromal keratitis. The DryVax strain of VACV was completely attenuated. Infection required corneal scarification and replication-competent virus, and the severity of ocular disease was similar in 4- to 6-week-old and 1-year-old mice. Viral titers peaked at approximately 1 × 10(6) PFU on day 5 postinfection, and virus had not cleared by day 13 postinfection. Neutrophils were found in the peripheral cornea on day 1 after infection and then declined, followed by infiltration of both CD4(+) and CD8(+) T cells, which remained peripheral throughout the infection. Blood vessel growth extended 2 to 5 mm into the cornea from the limbus. Infection of CD4(-/-), CD8(-/-), or antibody-depleted mice resulted in similar disease severity and corneal clouding, indicating that both T-cell subsets were involved in the immunopathological response. Depletion of both CD4(+) and CD8(+) T cells resulted in significantly more severe disease and failure to clear the virus. On the basis of our results, the pathology of VACV keratitis is significantly different from that of herpes simplex virus keratitis. Further studies are likely to reveal novel information regarding virulence and immune responses to viral ocular infection. IMPORTANCE Potentially blinding eye infections can occur after vaccination for smallpox. Very little is known about the pathological mechanisms that are involved, and the information that is available was generated using rabbit models. The lack of immunological reagents for rabbits makes such studies difficult. We characterized a mouse model of vaccinia virus ocular disease using C57BL/6 mice and strain WR and show that both CD4(+) and CD8(+) T-cell subsets play a role in the blinding eye disease and in controlling virus replication. On the basis of these results, vaccinia virus keratitis is significantly different from herpes simplex virus keratitis, and further studies using this model should generate novel insights into immunopathological responses to viral ocular infection.
Collapse
|