1
|
Bourke BP, Dusek RJ, Ergunay K, Linton YM, Drovetski SV. Viral pathogen detection in U.S. game-farm mallard ( Anas platyrhynchos) flags spillover risk to wild birds. Front Vet Sci 2024; 11:1396552. [PMID: 38860005 PMCID: PMC11163284 DOI: 10.3389/fvets.2024.1396552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
The threat posed by emerging infectious diseases is a major concern for global public health, animal health and food security, and the role of birds in transmission is increasingly under scrutiny. Each year, millions of mass-reared game-farm birds are released into the wild, presenting a unique and a poorly understood risk to wild and susceptible bird populations, and to human health. In particular, the shedding of enteric pathogens through excrement into bodies of water at shared migratory stop-over sites, and breeding and wintering grounds, could facilitate multi-species long-distance pathogen dispersal and infection of high numbers of naive endemic birds annually. The Mallard (Anas platyrhynchos) is the most abundant of all duck species, migratory across much of its range, and an important game species for pen-rearing and release. Major recent population declines along the US Atlantic coast has been attributed to game-farm and wild mallard interbreeding and the introduction maladaptive traits into wild populations. However, pathogen transmission and zoonosis among game-farms Mallard may also impact these populations, as well as wildlife and human health. Here, we screened 16 game-farm Mallard from Wisconsin, United States, for enteric viral pathogens using metatranscriptomic data. Four families of viral pathogens were identified - Picobirnaviridae (Genogroup I), Caliciviridae (Duck Nacovirus), Picornaviridae (Duck Aalivirus) and Sedoreoviridae (Duck Rotavirus G). To our knowledge, this is the first report of Aalivirus in the Americas, and the first report of Calicivirus outside domestic chicken and turkey flocks in the United States. Our findings highlight the risk of viral pathogen spillover from peri-domestically reared game birds to naive wild bird populations.
Collapse
Affiliation(s)
- Brian P. Bourke
- Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution—National Museum of Natural History, Washington, DC, United States
| | - Robert J. Dusek
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, United States
| | - Koray Ergunay
- Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution—National Museum of Natural History, Washington, DC, United States
- Hacettepe University, Department of Medical Microbiology, Ankara, Türkiye
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution—National Museum of Natural History, Washington, DC, United States
| | - Sergei V. Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, MD, United States
| |
Collapse
|
2
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
3
|
Perez LJ, Cloherty GA, Berg MG. Parallel evolution of picobirnaviruses from distinct ancestral origins. Microbiol Spectr 2023; 11:e0269323. [PMID: 37888988 PMCID: PMC10714727 DOI: 10.1128/spectrum.02693-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Picobirnaviruses (PBVs) are highly heterogeneous viruses encoding a capsid and RdRp. Detected in a wide variety of animals with and without disease, their association with gastrointestinal and respiratory infections, and consequently their public health importance, has rightly been questioned. Determining the "true" host of Picobirnavirus lies at the center of this debate, as evidence exists for them having both vertebrate and prokaryotic origins. Using integrated and time-stamped phylogenetic approaches, we show they are contemporaneous viruses descending from two different ancestors: avian Reovirus and fungal Partitivirus. The fungal PBV-R2 species emerged with a single segment (RdRp) until it acquired a capsid from vertebrate PBV-R1 and PBV-R3 species. Protein and RNA folding analyses revealed how the former came to resemble the latter over time. Thus, parallel evolution from disparate hosts has driven the adaptation and genetic diversification of the Picobirnaviridae family.
Collapse
Affiliation(s)
- Lester J. Perez
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| | - Gavin A. Cloherty
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| | - Michael G. Berg
- Infectious Disease Core Research, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois, USA
- Abbott Pandemic Defense Coalition (APDC), Chicago, Illinois, USA
| |
Collapse
|
4
|
Rodríguez-Espinosa MJ, Rodríguez JM, Castón JR, de Pablo PJ. Mechanical disassembly of human picobirnavirus like particles indicates that cargo retention is tuned by the RNA-coat protein interaction. NANOSCALE HORIZONS 2023; 8:1665-1676. [PMID: 37842804 DOI: 10.1039/d3nh00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Here we investigate the cargo retention of individual human picobirnavirus (hPBV) virus-like particles (VLPs) which differ in the N-terminal of their capsid protein (CP): (i) hPBV CP contains the full-length CP sequence; (ii) hPBV Δ45-CP lacks the first 45 N-terminal residues; and (iii) hPBV Ht-CP is the full-length CP with a N-terminal 36-residue tag that includes a 6-His segment. Consequently, each VLP variant holds a different interaction with the ssRNA cargo. We used atomic force microscopy (AFM) to induce and monitor the mechanical disassembly of individual hPBV particles. First, while Δ45-CP particles that lack ssRNA allowed a fast tip indentation after breakage, CP and Ht-CP particles that pack heterologous ssRNA showed a slower tip penetration after being fractured. Second, mechanical fatigue experiments revealed that the increased length in 8% of the N-terminal (Ht-CP) makes the virus particles to crumble ∼10 times slower than the wild type N-terminal CP, indicating enhanced RNA cargo retention. Our results show that the three differentiated N-terminal topologies of the capsid result in distinct cargo release dynamics during mechanical disassembly experiments because of the different interaction with RNA.
Collapse
Affiliation(s)
- María J Rodríguez-Espinosa
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Javier M Rodríguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - José R Castón
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes 2023; 15:2177488. [PMID: 36823020 PMCID: PMC9980608 DOI: 10.1080/19490976.2023.2177488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The human gut virome has been increasingly explored in recent years. However, nearly all virome-sequencing efforts rely solely on fecal samples and few studies leverage multiomic approaches to investigate phage-host relationships. Here, we combine metagenomics, metaviromics, and metatranscriptomics to study virome-bacteriome interactions at the colonic mucosal-luminal interface in a cohort of three individuals with inflammatory bowel disease; non-IBD controls were not included in this study. We show that the mucosal viral population is distinct from the stool virome and houses abundant crAss-like phages that are undetectable by fecal sampling. Through viral protein prediction and metatranscriptomic analysis, we explore viral gene transcription, prophage activation, and the relationship between the presence of integrase and temperate phages in IBD subjects. We also show the impact of deep sequencing on virus recovery and offer guidelines for selecting optimal sequencing depths in future metaviromic studies. Systems biology approaches such as those presented in this report will enhance our understanding of the human virome and its interactions with our microbiome and our health.
Collapse
Affiliation(s)
- Austin Yan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Laetitia Schramm
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David R. Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,Inflammatory Bowel Disease Centre and CHEO Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,CONTACT Alain Stintzi Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
6
|
Villalta A, Schmitt A, Estrozi LF, Quemin ERJ, Alempic JM, Lartigue A, Pražák V, Belmudes L, Vasishtan D, Colmant AMG, Honoré FA, Couté Y, Grünewald K, Abergel C. The giant mimivirus 1.2 Mb genome is elegantly organized into a 30-nm diameter helical protein shield. eLife 2022; 11:e77607. [PMID: 35900198 PMCID: PMC9512402 DOI: 10.7554/elife.77607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.
Collapse
Affiliation(s)
- Alejandro Villalta
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Alain Schmitt
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Leandro F Estrozi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS)GrenobleFrance
| | - Emmanuelle RJ Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
| | - Jean-Marie Alempic
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Audrey Lartigue
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Lucid Belmudes
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Agathe MG Colmant
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Flora A Honoré
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Chantal Abergel
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| |
Collapse
|
7
|
Atasoy MO, Isidan H, Turan T. Genetic diversity, frequency and concurrent infections of picobirnaviruses in diarrhoeic calves in Turkey. Trop Anim Health Prod 2022; 54:127. [PMID: 35247085 PMCID: PMC8897729 DOI: 10.1007/s11250-022-03128-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Calf diarrhoea is one of the major problems in cattle farming with high morbidity and mortality in herds. Two enteric viruses, bovine rotavirus (BRV) and bovine coronavirus (BCoV), are the leading cause of gastroenteritis in young calves, whereas picobirnaviruses (PBVs) are often associated with diarrhoea. In the present study, the faecal specimens of 127 diarrhoeic bovines (less than 1-month-old) were employed to investigate the infection frequencies of these three pathogens. Results indicated that frequencies of BRV and BCoV in diarrhoeic calves were 38.58% and 29.92%, respectively. The 7.08% of bovine calf samples (9 out of 127) were found to be positive for PBV genogroup I. Sequence analysis further revealed the high genetic heterogeneity within representative PBV sequences. Additionally, both PBV-BCoV (n = 2) and BCoV-BRV-PBV (n = 1) co-infections were detected in bovine calves for the first time. Consequently, our findings pointed out the highly divergent nature of PBVs without regard to exact host or territory and the occasional co-existence with other enteric agents.
Collapse
Affiliation(s)
- Mustafa Ozan Atasoy
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Hakan Isidan
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Turhan Turan
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
8
|
Pathania S, Rawal RK, Singh PK. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J Mol Struct 2022; 1250:131756. [PMID: 34690363 PMCID: PMC8520695 DOI: 10.1016/j.molstruc.2021.131756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
With the arrival of the Covid-19 pandemic, anti-viral agents have regained center stage in the arena of medicine. Out of the various drug targets involved in managing RNA-viral infections, the one that dominates almost all RNA viruses is RdRp (RNA-dependent RNA polymerase). RdRp are proteins that are involved in the replication of RNA-based viruses. Inhibition of RdRps has been an integral approach for managing various viral infections such as dengue, influenza, HCV (Hepatitis), BVDV, etc. Inhibition of the coronavirus RdRp is currently rigorously explored for the treatment of Covid-19 related complications. So, keeping in view the importance and current relevance of this drug target, we have discussed the importance of RdRp in developing anti-viral agents against various viral diseases. Different reported inhibitors have also been discussed, and emphasis has been laid on highlighting the inhibitor's pharmacophoric features and SAR profile.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India,CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India,Corresponding authors
| | - Pankaj Kumar Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, FI-20014, Finland,Corresponding authors
| |
Collapse
|
9
|
Emergence of a Distinct Picobirnavirus Genotype Circulating in Patients Hospitalized with Acute Respiratory Illness. Viruses 2021; 13:v13122534. [PMID: 34960803 PMCID: PMC8708096 DOI: 10.3390/v13122534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Picobirnaviruses (PBV) are found in a wide range of hosts and typically associated with gastrointestinal infections in immunocompromised individuals. Here, a divergent PBV genome was assembled from a patient hospitalized for acute respiratory illness (ARI) in Colombia. The RdRp protein branched with sequences previously reported in patients with ARI from Cambodia and China. Sputa from hospitalized individuals (n = 130) were screened by RT-qPCR which enabled detection and subsequent metagenomic characterization of 25 additional PBV infections circulating in Colombia and the US. Phylogenetic analysis of RdRp highlighted the emergence of two dominant lineages linked to the index case and Asian strains, which together clustered as a distinct genotype. Bayesian inference further established capsid and RdRp sequences as both significantly associated with ARI. Various respiratory-tropic pathogens were detected in PBV+ patients, yet no specific bacteria was common among them and four individuals lacked co-infections, suggesting PBV may not be a prokaryotic virus nor exclusively opportunistic, respectively. Competing models for the origin and transmission of this PBV genotype are presented that attempt to reconcile vectoring by a bacterial host with human pathogenicity. A high prevalence in patients with ARI, an ability to reassort, and demonstrated global spread indicate PBV warrant greater public health concern.
Collapse
|
10
|
Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int J Biol Macromol 2021; 193:1249-1273. [PMID: 34756970 PMCID: PMC8552795 DOI: 10.1016/j.ijbiomac.2021.10.172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
In this review, we describe the key molecular entities involved in the process of infection by SARS-CoV-2, while also detailing how those key entities influence the spread of the disease. We further introduce the molecular mechanisms of preventive and treatment strategies including drugs, antibodies, and vaccines.
Collapse
Affiliation(s)
- Jahangir Emrani
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, United States of America.
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Liesl Jeffers-Francis
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - John C Teleha
- Department of Reference and Instruction, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Nathan Mowa
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Misty D Thomas
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| |
Collapse
|
11
|
Abstract
The RNA-dependent RNA polymerase (RdRp) of all known double-stranded RNA viruses is located within the viral particle and is responsible for the transcription and replication of the viral genome. Through an RT-PCR assay, we determined that purified virions, in vitro translated RdRp proteins, and purified recombinant RdRp proteins of partitiviruses also have reverse transcriptase (RT) function. We show that partitivirus RdRps 1) synthesized DNA from homologous and heterologous dsRNA templates; 2) are active using both ssRNA and dsRNA templates; and 3) are active at lower temperatures compared to an optimal reaction temperature of commercial RT enzymes. This finding poses an intriguing question: why do partitiviruses, with dsRNA genomes, have a polymerase with RT functions? In comparison, 3Dpol, the RdRp of poliovirus, did not show any RT activity. Our findings lead us to propose a new evolutionary model for RNA viruses where the RdRp of dsRNA viruses could be the ancestor of RdRps.
Collapse
Affiliation(s)
- Mahtab Peyambari
- Center for Infectious Disease Dynamics, Millennium Science Complex, Pennsylvania State University, University Park, PA, USA
| | | | - Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Millennium Science Complex, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Levanova AA, Vainio EJ, Hantula J, Poranen MM. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Viruses 2021; 13:v13091738. [PMID: 34578320 PMCID: PMC8473416 DOI: 10.3390/v13091738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| | - Eeva J. Vainio
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Jarkko Hantula
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| |
Collapse
|
13
|
Proof of Concept of the Yadokari Nature: a Capsidless Replicase-Encoding but Replication-Dependent Positive-Sense Single-Stranded RNA Virus Hosted by an Unrelated Double-Stranded RNA Virus. J Virol 2021; 95:e0046721. [PMID: 34106772 DOI: 10.1128/jvi.00467-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense single-stranded RNA (ssRNA) virus, yadokari virus 1 (YkV1), and an unrelated double-stranded RNA (dsRNA) virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix. We have proposed that YkV1 diverts the YnV1 capsid to trans-encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp and whether YnV1 capsid copackages both YkV1 and YnV1 components. To address these questions, we first took advantage of the reverse genetics tools available for YkV1. Mutations in the GDD RdRp motif, one of the two identifiable functional motifs in the YkV1 polyprotein, abolished its replication competency. Mutations were also introduced in the conserved 2A-like peptide motif, hypothesized to cleave the YkV1 polyprotein cotranslationally. Interestingly, the replication proficiency of YkV1 mutants in the host fungus agreed with the cleavage activity of the 2A-like peptide tested using a baculovirus expression system. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with a subset of YnV1 capsids solely packaging YkV1 dsRNA and RdRp. These results provide proof of concept that a capsidless positive-sense ssRNA [(+)ssRNA] virus is hosted by an unrelated dsRNA virus. IMPORTANCE Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single-stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. We previously showed that YkV1 highjacks the capsid of YnV1 for trans-encapsidation of its own RNA and RdRp. YkV1 was hypothesized to divert the heterocapsid as the replication site, as is commonly observed for dsRNA viruses. Herein, mutational analyses showed that the RdRp and 2A-like domains of the YkV1 polyprotein are important for its replication. The active RdRp must be cleaved by a 2A-like peptide from the C-proximal protein. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with YnV1 capsids solely packaging YkV1 dsRNA and RdRp. This study provides proof of concept of a virus neo-lifestyle where a (+)ssRNA virus snatches capsids from an unrelated dsRNA virus to replicate with its own RdRp, thereby mimicking the typical dsRNA virus lifestyle.
Collapse
|
14
|
Understanding the Genetic Diversity of Picobirnavirus: A Classification Update Based on Phylogenetic and Pairwise Sequence Comparison Approaches. Viruses 2021; 13:v13081476. [PMID: 34452341 PMCID: PMC8402817 DOI: 10.3390/v13081476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Picobirnaviruses (PBVs) are small, double stranded RNA viruses with an ability to infect a myriad of hosts and possessing a high degree of genetic diversity. PBVs are currently classified into two genogroups based upon classification of a 200 nt sequence of RdRp. We demonstrate here that this phylogenetic marker is saturated, affected by homoplasy, and has high phylogenetic noise, resulting in 34% unsolved topologies. By contrast, full-length RdRp sequences provide reliable topologies that allow ancestralism of members to be correctly inferred. MAFFT alignment and maximum likelihood trees were established as the optimal methods to determine phylogenetic relationships, providing complete resolution of PBV RdRp and capsid taxa, each into three monophyletic groupings. Pairwise distance calculations revealed these lineages represent three species. For RdRp, the application of cutoffs determined by theoretical taxonomic distributions indicates that there are five genotypes in species 1, eight genotypes in species 2, and three genotypes in species 3. Capsids were also divided into three species, but sequences did not segregate into statistically supported subdivisions, indicating that diversity is lower than RdRp. We thus propose the adoption of a new nomenclature to indicate the species of each segment (e.g., PBV-C1R2).
Collapse
|
15
|
Gong P. Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses. Enzymes 2021; 49:215-233. [PMID: 34696833 DOI: 10.1016/bs.enz.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.
Collapse
Affiliation(s)
- Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Structure Unveils Relationships between RNA Virus Polymerases. Viruses 2021; 13:v13020313. [PMID: 33671332 PMCID: PMC7922027 DOI: 10.3390/v13020313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure-based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism. The structure-based distance tree presented here follows the recently established RdRp-based RNA virus classification at genus, subfamily, family, order, class and subphylum ranks. However, the topology of our phylogenetic tree suggests an alternative phylum level organization.
Collapse
|
17
|
Abstract
Picobirnaviruses (PBVs) are bisegmented double-stranded RNA viruses that have been detected in a wide variety of animal species including invertebrates and in environmental samples. Since PBVs are ubiquitous in feces/gut contents of humans and other animals with or without diarrhea, they were considered as opportunistic enteric pathogens of mammals and avian species. However, the virus remains to be propagated in animal cell cultures, or in gnotobiotic animals. Recently, the classically defined prokaryotic motif, the ribosomal binding site sequence, has been identified upstream of putative open reading frame/s in PBV and PBV-like sequences from humans, various animals, and environmental samples, suggesting that PBVs might be prokaryotic viruses. On the other hand, based on the detection of some novel PBV-like RNA-dependent RNA polymerase sequences that use the alternative mitochondrial genetic code (that of mold or invertebrates) for translation, and principal component analysis of codon usage bias for these sequences, it has been proposed that PBVs might be fungal viruses with a lifestyle reminiscent of mitoviruses. These contradicting observations warrant further studies to ascertain the true host/s of PBVs, which still remains controversial. In this minireview, we have focused on the various findings that have raised a debate on the true host/s of PBVs.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yashpal S Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| |
Collapse
|
18
|
Nazaktabar A. Molecular epidemiology and phylogenetic analysis of bovine picobirnaviruses causing calf diarrhea, in Iran. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:319-324. [PMID: 34815843 PMCID: PMC8576153 DOI: 10.30466/vrf.2020.110016.2620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/12/2020] [Indexed: 11/16/2022]
Abstract
Picobirnavirus (PBV) is an enteropathogen virus causing diarrhea as an opportunistic virus in its vertebrate host. There is no information about human or animal PBVs in Iran. The aim of the present study was the investigation of the epidemiology of bovine PBV in the broad geographical area of Iran. Four hundred and eighty-five stool samples of up to 1 month old diarrheic calves were collected from 14 provinces and were tested with polyacrylamide gel electrophoresis (PAGE), and reverse transcription polymerase chain reaction (RT-PCR). Five samples were positive in PAGE assay (1.00%) and all of them were amplified using GI specific primers in RT-PCR. Phylogenetic analysis of one of the amplicons (strain Nazaktabar-14) revealed a low relationship to bovine PBV sequences and more identity to PBV isolates from other hosts. The structural alignment of the deduced amino acids of the partially sequenced RdRp gene of the Nazaktabar-14 strain showed high conservation. Sequences obtained from other amplicons showed a high mutation rate and further analysis of one of them showed that, despite the potential of forming deleterious mutations, most of the point mutations occurred in the RdRp gene of PBVs may be a silent mutation. There is little information about the molecular epidemiology of bovine PBVs. This study was the first report on the occurrence of PBVs in Iran and the first study on the molecular epidemiology of bovine PBV in the Middle East, revealing its low frequency as a diarrhea causative agent.
Collapse
Affiliation(s)
- Ahmad Nazaktabar
- Correspondence Ahmad Nazaktabar. DVM, PhD, Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran . E-mail:
| |
Collapse
|
19
|
Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus. J Virol 2020; 94:JVI.01542-20. [PMID: 32938763 DOI: 10.1128/jvi.01542-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.
Collapse
|
20
|
Kashnikov AY, Epifanova NV, Novikova NA. Picobirnaviruses: prevalence, genetic diversity, detection methods. Vavilovskii Zhurnal Genet Selektsii 2020; 24:661-672. [PMID: 33659852 PMCID: PMC7716564 DOI: 10.18699/vj20.660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article presents a general overview of the prevalence, genetic diversity and detection methods of picobirnaviruses (PBVs), which are small, non-enveloped icosahedral viruses with a segmented double-stranded RNA genome consisting of two segments taxonomically related to the genus Picobirnavirus of the family Picobirnaviridae. This review of scientific papers published in 1988-2019 provides data on the PBV distribution in the nature and a broad host range. PBV infection is characterized as opportunistic, the lack of understanding of the etiological role of PBVs in diarrhea is emphasized, since these viruses are detected both in symptomatic and asymptomatic cases. The concept of PBV infection as a chronic disease caused by a long-lasting persistence of the virus in the host is considered. Such factors as stress syndrome, physiological conditions, immune status and host age at the time of primary PBV infection influence the virus detection rate in humans and animals. The possible zoonotic nature of human PBV infection is noted due to the capacity for interspecies PBV transmission acquired during evolution as a result of the reassortment of the genome segments of different viruses infecting the same host. Data providing evidence that PBVs belong to eukaryotes and a challenging hypothesis stating that PBVs are bacterial viruses are presented. The need to intensify work on PBV detection because of their wide distribution, despite the complexity due to the lack of the cultivation system, is emphasized. Two strategies of RT-PCR as main PBV detection methods are considered. The genomes of individual representatives of the genus isolated from different hosts are characterized. Emphasis is placed on the feasibility of developing primers with broader specificity for expanding the range of identifiable representatives of the genus PBV due to a huge variety of their genotypes. The importance of effective monitoring of PBV prevalence for studying the zoonotic and anthroponotic potential using metagenomic analysis is highlighted, and so is the possibility of using PBV as a marker for environmental monitoring.
Collapse
Affiliation(s)
- A Yu Kashnikov
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| |
Collapse
|
21
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
22
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
23
|
Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure 2020; 28:604-612.e3. [PMID: 32049031 PMCID: PMC7289189 DOI: 10.1016/j.str.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments indicate the generalizability of this architecture.
Collapse
Affiliation(s)
- Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Joycelyn SJ, Ng A, Kleymann A, Malik YS, Kobayashi N, Ghosh S. High detection rates and genetic diversity of picobirnaviruses (PBVs) in pigs on St. Kitts Island: Identification of a porcine PBV strain closely related to simian and human PBVs. INFECTION GENETICS AND EVOLUTION 2020; 84:104383. [PMID: 32473351 DOI: 10.1016/j.meegid.2020.104383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
Abstract
We report here high rates (75.38%, 49/65) of detection of genogroup I (GI) PBVs in diarrheic pigs on the Caribbean island of St. Kitts. High quality gene segment-2 sequences encoding a significant region (~350 amino acid (aa) residues) of the putative RNA-dependent RNA polymerase (RdRp) were obtained for 23 PBV strains. The porcine PBV strains from St. Kitts exhibited high genetic diversity among themselves (deduced aa identities of 56-100%) and with other PBVs (maximum deduced aa identities of 64-97%), and retained the three domains that are conserved in putative RdRps of PBVs. The nearly complete gene segment-2 sequence (full-length minus partial 3'- untranslated region) of a porcine PBV strain (strain PO36 from St. Kitts) that is closely related (deduced aa identities of 96-97%) to simian and human GI PBVs was determined using a combination of the non-specific primer-based amplification method and conventional RT-PCR. The complete putative RdRp sequence of strain PO36 preserved the various features that are maintained in PBVs from various species. For the first time, several co-circulating PBV strains from pigs were characterized for a significant region (~350 aa) of the putative RdRp, providing important insights into the genetic diversity of PBVs in a porcine population. Taken together, these observations corroborated growing evidence that PBVs can be highly prevalent and show limited correlation globally with host species or geography. This is the first report on detection of PBVs in pigs from the Caribbean region.
Collapse
Affiliation(s)
- Soh Jiaying Joycelyn
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; School of Applied Science, Temasek Polytechnic, Singapore
| | - Agnes Ng
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; The Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Alyssa Kleymann
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Yashpal S Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis.
| |
Collapse
|
25
|
Detection and Molecular Characterization of Picobirnaviruses (PBVs) in the Mongoose: Identification of a Novel PBV Using an Alternative Genetic Code. Viruses 2020; 12:v12010099. [PMID: 31952167 PMCID: PMC7019992 DOI: 10.3390/v12010099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/12/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022] Open
Abstract
We report high rates of detection (35.36%, 29/82) of genogroup-I (GI) picobirnaviruses (PBVs) in non-diarrheic fecal samples from the small Indian mongoose (Urva auropunctata). In addition, we identified a novel PBV-like RNA-dependent RNA polymerase (RdRp) gene sequence that uses an alternative mitochondrial genetic code (that of mold or invertebrate) for translation. The complete/nearly complete gene segment-2/RdRp gene sequences of seven mongoose PBV GI strains and the novel PBV-like strain were obtained by combining a modified non-specific primer-based amplification method with conventional RT-PCRs, facilitated by the inclusion of a new primer targeting the 3′-untranslated region (UTR) of PBV gene segment-2. The mongoose PBV and PBV-like strains retained the various features that are conserved in gene segment-2/RdRps of other PBVs. However, high genetic diversity was observed among the mongoose PBVs within and between host species. This is the first report on detection of PBVs in the mongoose. Molecular characterization of the PBV and PBV-like strains from a new animal species provided important insights into the various features and complex diversity of PBV gene segment-2/putative RdRps. The presence of the prokaryotic ribosomal binding site in the mongoose PBV genomes, and analysis of the novel PBV-like RdRp gene sequence that uses an alternative mitochondrial genetic code (especially that of mold) for translation corroborated recent speculations that PBVs may actually infect prokaryotic or fungal host cells.
Collapse
|
26
|
Structure of RdRps Within a Transcribing dsRNA Virus Provides Insights Into the Mechanisms of RNA Synthesis. J Mol Biol 2020; 432:358-366. [DOI: 10.1016/j.jmb.2019.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
|
27
|
Ding K, Celma CC, Zhang X, Chang T, Shen W, Atanasov I, Roy P, Zhou ZH. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat Commun 2019; 10:2216. [PMID: 31101900 PMCID: PMC6525196 DOI: 10.1038/s41467-019-10236-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
Transcribing and replicating a double-stranded genome require protein modules to unwind, transcribe/replicate nucleic acid substrates, and release products. Here we present in situ cryo-electron microscopy structures of rotavirus dsRNA-dependent RNA polymerase (RdRp) in two states pertaining to transcription. In addition to the previously discovered universal "hand-shaped" polymerase core domain shared by DNA polymerases and telomerases, our results show the function of N- and C-terminal domains of RdRp: the former opens the genome duplex to isolate the template strand; the latter splits the emerging template-transcript hybrid, guides genome reannealing to form a transcription bubble, and opens a capsid shell protein (CSP) to release the transcript. These two "helicase" domains also extensively interact with CSP, which has a switchable N-terminal helix that, like cellular transcriptional factors, either inhibits or promotes RdRp activity. The in situ structures of RdRp, CSP, and RNA in action inform mechanisms of not only transcription, but also replication.
Collapse
Affiliation(s)
- Ke Ding
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Cristina C Celma
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Xing Zhang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Chang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Wesley Shen
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Ivo Atanasov
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
The 13th International Double-Stranded RNA Virus Symposium, Houffalize, Belgium, 24 to 28 September 2018. J Virol 2019; 93:JVI.01964-18. [PMID: 30723139 DOI: 10.1128/jvi.01964-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
The triennial International Double-Stranded RNA Virus Symposium, this year organized by J. Matthijnssens, J. S. L. Parker, P. Danthi, and P. Van Damme in Belgium, gathered over 200 scientists to discuss novel observations and hypotheses in the field. The keynote lecture on functional interactions of bacteria and viruses in the gut microbiome was presented by Julie Pfeiffer. Workshops were held on viral diversity, molecular epidemiology, molecular virology, immunity and pathogenesis, virus structure, the viral use and abuse of cellular pathways, and applied double-stranded RNA (dsRNA) virology. The establishment of a plasmid only-based reverse genetics system for rotaviruses by several Japanese research groups in 2017 has now been reproduced by various other research groups and was discussed in detail. The visualization of dsRNA virus replication steps in living cells received much attention. Mechanisms of the cellular innate immune response to virus infection and of viral pathogenesis were explored. Knowledge of the gut microbiome's influence on specific immune responses has increased rapidly, also due to the availability of relevant animal models of virus infection. The method of cryo-electron microscopic (cryo-EM) tomography has elucidated various asymmetric structures in viral particles. The use of orthoreoviruses for oncolytic virotherapy was critically assessed. The application of llama-derived single chain nanobodies for passive immunotherapy was considered attractive. In a satellite symposium the introduction, impact and further developments of rotavirus vaccines were reviewed. The Jean Cohen Lecturer of this meeting was Harry B. Greenberg, who presented aspects of his research on rotaviruses over a period of more than 40 years. He was also interviewed at the meeting by Vincent Racaniello for the 513th session of This Week in Virology.
Collapse
|
29
|
Delmas B, Attoui H, Ghosh S, Malik YS, Mundt E, Vakharia VN. ICTV virus taxonomy profile: Picobirnaviridae. J Gen Virol 2019; 100:133-134. [DOI: 10.1099/jgv.0.001186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Bernard Delmas
- 1VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Houssam Attoui
- 2UMR1161 Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Souvik Ghosh
- 3Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St.Kitts and Nevis
| | - Yashpal S. Malik
- 4Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Egbert Mundt
- 5Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Vikram N. Vakharia
- 6Department of Marine Biotechnology, University of Maryland, Baltimore County, 701, EastPratt Street, Baltimore, MD 21202, USA
| | | |
Collapse
|
30
|
The Challenges of Analysing Highly Diverse Picobirnavirus Sequence Data. Viruses 2018; 10:v10120685. [PMID: 30513931 PMCID: PMC6316005 DOI: 10.3390/v10120685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
The reliable identification and classification of infectious diseases is critical for understanding their biology and controlling their impact. Recent advances in sequencing technology have allowed insight into the remarkable diversity of the virosphere, of which a large component remains undiscovered. For these emerging or undescribed viruses, the process of classifying unknown sequences is heavily reliant on existing nucleotide sequence information in public databases. However, due to the enormous diversity of viruses, and past focus on the most prevalent and impactful virus types, databases are often incomplete. Picobirnaviridae is a dsRNA virus family with broad host and geographic range, but with relatively little sequence information in public databases. The family contains one genus, Picobirnavirus, which may be associated with gastric illness in humans and animals. Little further information is available due in part to difficulties in identification. Here, we investigate diversity both within the genus Picobirnavirus and among other dsRNA virus types using a combined phylogenetic and functional (protein structure homology-modelling) approach. Our results show that diversity within picobirnavirus exceeds that seen between many other dsRNA genera. Furthermore, we find that commonly used practices employed to classify picobirnavirus, such as analysis of short fragments and trimming of sequences, can influence phylogenetic conclusions. The degree of phylogenetic and functional divergence among picobirnavirus sequences in our study suggests an enormous undiscovered diversity, which contributes to the undescribed “viral dark matter” component of metagenomic studies.
Collapse
|
31
|
Lemay G. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Viruses 2018; 10:E671. [PMID: 30486370 PMCID: PMC6315682 DOI: 10.3390/v10120671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
At the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us. It is also essential of being careful about concepts that seem so well established, but could still be better validated using new approaches. I hope that the few reflections presented here will stimulate discussions and maybe attract new investigators into the field of reovirus research. Many other aspects of the viral multiplication cycle would merit our attention. However, I will essentially limit my discussion to these central aspects of the viral cycle that are transcription of viral genes and their phenotypic expression through the host cell translational machinery. The objective here is not to review every aspect but to put more emphasis on important progress and challenges in the field.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
32
|
Abstract
Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Φ6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly. Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Φ6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Φ6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Φ6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions.
Collapse
|
33
|
Boros Á, Polgár B, Pankovics P, Fenyvesi H, Engelmann P, Phan TG, Delwart E, Reuter G. Multiple divergent picobirnaviruses with functional prokaryotic Shine-Dalgarno ribosome binding sites present in cloacal sample of a diarrheic chicken. Virology 2018; 525:62-72. [PMID: 30245195 DOI: 10.1016/j.virol.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023]
Abstract
Picobirnaviruses (PBVs) of family Picobirnaviridae have bisegmented (S1 and S2 segments), double-stranded RNA genomes. In this study a total of N = 12 complete chicken PBVs (ChPBV) segments (N = 5 of S1 and N = 7 of S2, Acc. Nos.: MH425579-90) were determined using viral metagenomic and RT-PCR techniques from a single cloacal sample of a diarrheic chicken. The identified ChPBV segments are unrelated to each other and distant from all of the currently known PBVs. In silico sequence analyses revealed the presence of conserved prokaryotic Shine-Dalgarno-like (SD-like) sequences upstream of the three presumed open reading frames (ORFs) of the S1 and a single presumed ORF of the S2 segments. According to the results of expression analyses in E. coli using 6xHis-tagged recombinant ChPBV segment 1 construct and Western blot these SD-like sequences are functional in vivo suggesting that S1 of study PBVs can contain three ORFs and supporting the bacteriophage-nature of PBVs.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Hajnalka Fenyvesi
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
34
|
Molecular characterization of a novel picobirnavirus in a chicken. Arch Virol 2018; 163:3455-3458. [PMID: 30191372 DOI: 10.1007/s00705-018-4012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Picobirnaviruses (PBVs) are bisegmented viruses with a wide geographical and host species distribution. The number of novel PBV sequences has been increasing with the help of the viral metagenomics. A novel picobirnavirus strain, pbv/CHK/M3841/HUN/2011, was identified by viral metagenomics; the complete segment 1 (MH327933) and 2 (MH327934) sequences were obtained by RT-PCR from a cloacal sample of a diseased broiler breeder pullet in Hungary. Although the conserved nucleotide (e.g., ribosome binding site) and amino acid motifs (e.g., ExxRxNxxxE, S-domain of the viral capsid and motifs in the RNA-dependent RNA polymerase) were identifiable in the chicken picobirnavirus genome, the putative segment 1 showed low (< 30%) amino acid sequence identity to the corresponding proteins of marmot and dromedary PBVs, while segment 2 showed higher (< 70%) amino acid sequence identity to a wolf PBV protein sequence. This is the first full-genome picobirnavirus sequence from a broiler breeder chicken, but the pathogenicity of this virus is still questionable.
Collapse
|
35
|
Ghosh S, Shiokawa K, Aung MS, Malik YS, Kobayashi N. High detection rates of picobirnaviruses in free roaming rats (Rattus spp.): Molecular characterization of complete gene segment-2. INFECTION GENETICS AND EVOLUTION 2018; 65:131-135. [PMID: 30048810 DOI: 10.1016/j.meegid.2018.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
We report here high rates of detection (54%, 21/39) of picobirnaviruses (PBVs) in feces/intestinal contents of free roaming, apparently healthy rats (Rattus spp.) on the Caribbean island of St. Kitts. One of the PBV strains, strain PBV/Rat/KNA/Rat9/2017, was molecularly characterized for complete gene segment-2. To determine the nucleotide (nt) sequence of full-length gene segment-2, the 5'- and 3'- portions of gene segment-2 of strain Rat9 containing an overlapping region were amplified using a non-specific primer-based amplification method with modifications. The complete gene segment-2 of PBV strain Rat9 was 1730 bp in length, encoding a putative RNA-dependent RNA polymerase (RdRp) of 535 amino acid (aa). By nt and deduced aa sequence identities and phylogenetic analysis, the complete gene segment-2 of strain Rat9 exhibited high genetic diversity with those of PBVs from other host species. On the other hand, 5'- and 3'- end nt sequences of gene segment-2, and the three domains of putative RdRp that are conserved in PBVs were retained in strain Rat9. To our knowledge, this is the first report on molecular characterization of complete gene segment-2 of a PBV strain from Rattus spp., providing important insights into the putative RdRp, and genetic diversity and evolution of PBV in rats. The high detection rates of PBV in free roaming rats on St. Kitts emphasizes the importance of further studies on epidemiology and genetic makeup of PBVs in Rattus spp.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.
| | - Kanae Shiokawa
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Yashpal S Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | |
Collapse
|
36
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
37
|
Krishnamurthy SR, Wang D. Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology 2018; 516:108-114. [PMID: 29346073 DOI: 10.1016/j.virol.2018.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
Currently, the Leviviridae and Cystoviridae are the only two recognized families of prokaryotic RNA viruses. Picobirnaviruses, which are bisegmented double-stranded RNA viruses commonly found in animal stool samples, are currently thought to be animal viruses, but have not been propagated in cell culture or in an animal model. We hypothesize that picobirnaviruses are prokaryotic RNA viruses. We identified and analyzed the genomes of 38 novel picobirnaviruses and determined that a classical bacterial sequence motif, the ribosomal binding site (RBS), is present in the 5' untranslated regions (5' UTRs) of all of the novel as well as all previously published picobirnavirus sequences. Among all viruses, enrichment of the RBS motif is only observed in viral families that infect prokaryotes and not in eukaryotic infecting viral families. These results will enable future studies to more accurately understand the biology of picobirnaviruses.
Collapse
Affiliation(s)
- Siddharth R Krishnamurthy
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
38
|
Abstract
Most emerging and re-emerging human and animal viral diseases are associated with RNA viruses. All these pathogens, with the exception of retroviruses, encode a specialized enzyme called RNA-dependent RNA polymerase (RdRP), which catalyze phosphodiester-bond formation between ribonucleotides (NTPs) in an RNA template-dependent manner. These enzymes function either as single polypeptides or in complex with other viral or host components to transcribe and replicate the viral RNA genome. The structures of RdRPs and RdRP catalytic complexes, currently available for several members of (+) ssRNA, (-)ssRNA and dsRNA virus families, have provided high resolution snapshots of the functional steps underlying replication and transcription of viral RNA genomes and their regulatory mechanisms.
Collapse
Affiliation(s)
- Diego Ferrero
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Núria Verdaguer
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
39
|
Molecular characterization of complete genomic segment-2 of picobirnavirus strains detected in a cat and a dog. INFECTION GENETICS AND EVOLUTION 2017; 54:200-204. [DOI: 10.1016/j.meegid.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022]
|
40
|
Gallagher CA, Navarro R, Cruz K, Aung MS, Ng A, Bajak E, Beierschmitt A, Lawrence M, Dore KM, Ketzis J, Malik YS, Kobayashi N, Ghosh S. Detection of picobirnaviruses in vervet monkeys (Chlorocebus sabaeus): Molecular characterization of complete genomic segment-2. Virus Res 2017; 230:13-18. [PMID: 28057480 DOI: 10.1016/j.virusres.2016.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 11/28/2022]
Abstract
During 2014-2015, 270 fecal samples were collected from non-diarrheic, captive and wild African green monkeys (AGMs) on the island of St. Kitts, Caribbean region. By RNA-PAGE, picobirnaviruses (PBVs) were detected in sixteen captive AGMs. By RT-PCR and sequencing of partial gene segment-2, PBVs in 15 of these 16 samples were assigned to genogroup-I. The full-length nucleotide (nt) sequence of gene segment-2 of one of the genogroup-I PBV strains, strain PBV/African green monkey/KNA/016593/2015, was obtained using a non-specific primer-based amplification method with modifications. Gene segment-2 of strain 016593 was 1707bp long, and encoded a putative RNA-dependent RNA polymerase (RdRp) of 538aa. Furthermore, the nearly complete gene segment-2 sequences of three other AGM PBV strains were determined using primers designed from gene segment-2 sequence of 016593. The gene segment-2 of the 4 AGM PBV strains were almost identical to each other, and exhibited a high degree of genetic diversity (maximum nt and deduced aa sequence identities of 66.4% and 65.3%, respectively) with those of PBVs from other host species. The 5'- and 3'- (except for one mismatch) end nt sequences and the three domains of RdRps were retained in the AGM PBV strains. To our knowledge, this is the first report on detection, and molecular characterization of complete gene segment-2 of PBVs in vervet monkeys. PBVs were detected for the first time from the Caribbean region.
Collapse
Affiliation(s)
- Christa A Gallagher
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Ryan Navarro
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Katalina Cruz
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Agnes Ng
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies; School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
| | - Edyta Bajak
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Amy Beierschmitt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies; Behavioral Science Foundation, St. Kitts, West Indies
| | - Matthew Lawrence
- St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Kerry M Dore
- Department of Anthropology, University of Texas at San Antonio, USA
| | - Jennifer Ketzis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Yashpal S Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies; Department of Hygiene, Sapporo Medical University, Sapporo, Hokkaido, Japan.
| |
Collapse
|