1
|
Duffy PE, Tsuji M. Liver-stage malaria transcriptomes: what you don't know can kill you. Trends Parasitol 2025; 41:335-336. [PMID: 40263025 DOI: 10.1016/j.pt.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
The Plasmodium liver-stage (LS) represents a promising target for malaria vaccine and drug development, as LS elimination prevents progression to symptomatic blood-stage (BS) infection and subsequent parasite transmission. Comprehensive LS gene expression profiles remain unexplored. Zanghi et al. report successful transcriptomic analysis of human malaria LS throughout intrahepatocytic development.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
2
|
Zanghí G, Patel H, Smith JL, Camargo N, Bae Y, Hesping E, Boddey JA, Venugopal K, Marti M, Flannery EL, Chuenchob V, Fishbaugher ME, Mikolajczak SA, Roobsoong W, Sattabongkot J, Gupta P, Pazzagli L, Rezakhani N, Betz W, Hayes K, Goswami D, Vaughan AM, Kappe SHI. Genome-wide gene expression profiles throughout human malaria parasite liver stage development in humanized mice. Nat Microbiol 2025; 10:569-584. [PMID: 39891010 PMCID: PMC11790487 DOI: 10.1038/s41564-024-01905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/04/2024] [Indexed: 02/03/2025]
Abstract
Gene expression of Plasmodium falciparum (Pf) liver-stage (LS) parasites has remained poorly characterized, although they are major vaccine and drug targets. Using a human liver-chimaeric mouse model and a fluorescent parasite line (PfNF54CSPGFP), we isolated PfLS and performed transcriptomics on key LS developmental phases. We linked clustered gene expression to ApiAP2, a major family of transcription factors that regulate the parasite life cycle. This provided insights into transcriptional regulation of LS infection and expression of essential LS metabolic and biosynthetic pathways. We observed expression of antigenically variant PfEMP1 proteins and the major Pf protein export machine PTEX and identified protein candidates that might be exported by LS parasites. Comparing Pf and P. vivax LS transcriptomes, we uncovered differences in their expression of sexual commitment factors. This data will aid LS research and vaccine and drug target identification for prevention of malaria infection.
Collapse
Affiliation(s)
- Gigliola Zanghí
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jenny L Smith
- Research Scientific Computing, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Yeji Bae
- Research Scientific Computing, Seattle Children's Research Institute, Seattle, WA, USA
| | - Eva Hesping
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kannan Venugopal
- Institute for Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Institute for Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Matthew E Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Priya Gupta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucia Pazzagli
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kiera Hayes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
Thompson TA, Chahine Z, Le Roch KG. The role of long noncoding RNAs in malaria parasites. Trends Parasitol 2023; 39:517-531. [PMID: 37121862 PMCID: PMC11695068 DOI: 10.1016/j.pt.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/02/2023]
Abstract
The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates a need for novel interventions. Controlled gene expression is central to the parasite's numerous life cycle transformations and adaptation. With few specific transcription factors (TFs) identified, crucial roles for chromatin states and epigenetics in parasite transcription have become evident. Although many chromatin-modifying enzymes are known, less is known about which factors mediate their impacts on transcriptional variation. Like those of higher eukaryotes, long noncoding RNAs (lncRNAs) have recently been shown to have integral roles in parasite gene regulation. This review aims to summarize recent developments and key findings on the role of lncRNAs in P. falciparum.
Collapse
Affiliation(s)
- Trevor A Thompson
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA.
| |
Collapse
|
9
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
10
|
Jeninga MD, Tang J, Selvarajah SA, Maier AG, Duffy MF, Petter M. Plasmodium falciparum gametocytes display global chromatin remodelling during sexual differentiation. BMC Biol 2023; 21:65. [PMID: 37013531 PMCID: PMC10071754 DOI: 10.1186/s12915-023-01568-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.
Collapse
Affiliation(s)
- Myriam D Jeninga
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jingyi Tang
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Shamista A Selvarajah
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexander G Maier
- The Australian National University, Research School of Biology, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
- Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Michaela Petter
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
12
|
Zanghi G, Patel H, Camargo N, Smith JL, Bae Y, Flannery EL, Chuenchob V, Fishbaugher ME, Mikolajczak SA, Roobsoong W, Sattabongkot J, Hayes K, Vaughan AM, Kappe SHI. Global gene expression of human malaria parasite liver stages throughout intrahepatocytic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522945. [PMID: 36711670 PMCID: PMC9881933 DOI: 10.1101/2023.01.05.522945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum (Pf) is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent PfNF54 parasite line (PfNF54cspGFP) to isolate PfLS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early Pf LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS. The developmental time course gene expression analysis indicated that fatty acid biosynthesis, isoprenoid biosynthesis and iron metabolism are sustaining LS development along with amino acid metabolism and biosynthesis. Countering oxidative stress appears to play an important role during intrahepatic LS development. Furthermore, we observed expression of the variant PfEMP1 antigen-encoding var genes, and we confirmed expression of PfEMP1 protein during LS development. Transcriptome comparison of the late Pf liver stage schizonts with P. vivax (Pv) late liver stages revealed highly conserved gene expression profiles among orthologous genes. A notable difference however was the expression of genes regulating sexual stage commitment. While Pv schizonts expressed markers of sexual commitment, the Pf LS parasites were not sexually committed and showed expression of gametocytogenesis repression factors. Our results provide the first comprehensive gene expression profile of the human malaria parasite Pf LS isolated during in vivo intrahepatocytic development. This data will inform biological studies and the search for effective intervention strategies that can prevent infection.
Collapse
Affiliation(s)
- Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jenny L. Smith
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Yeji Bae
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Matthew E. Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kiera Hayes
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Real E, Nardella F, Scherf A, Mancio-Silva L. Repurposing of Plasmodium falciparum var genes beyond the blood stage. Curr Opin Microbiol 2022; 70:102207. [PMID: 36183663 DOI: 10.1016/j.mib.2022.102207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.
Collapse
Affiliation(s)
- Eliana Real
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Flore Nardella
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
14
|
CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 2022; 10:microorganisms10122356. [PMID: 36557610 PMCID: PMC9785914 DOI: 10.3390/microorganisms10122356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) present P. falciparum erythrocyte membrane protein 1 proteins (PfEMP1s) on the cell surface, via which they cytoadhere to various endothelial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 different PfEMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners. Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded PfEMP1s have a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and many other cell types. Here, we discuss why the interaction between PfIEs and CD36 is optimal to maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing minimal harm to the host in most infections.
Collapse
|
15
|
Functional inactivation of Plasmodium falciparum glycogen synthase kinase GSK3 modulates erythrocyte invasion and blocks gametocyte maturation. J Biol Chem 2022; 298:102360. [PMID: 35961464 PMCID: PMC9478393 DOI: 10.1016/j.jbc.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor–ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3β, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3β does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3β during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3β-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.
Collapse
|
16
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
17
|
Mitesser V, Dzikowski R. Resetting var Gene Transcription in Plasmodium falciparum. Methods Mol Biol 2022; 2470:211-220. [PMID: 35881348 DOI: 10.1007/978-1-0716-2189-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the key mechanisms contributing to the virulence of Plasmodium falciparum is its ability to undergo antigenic switching among antigenically distinct variants of the PfEMP1 adhesive proteins, encoded by the var gene family. To avoid premature exposure of its antigenic repertoire, the parasite transcribes its var genes in a mutually exclusive manner, and switch expression at a very slow rate. This process is epigenetically regulated and it relies on "epigenetic memory," which imprints the single active var gene to remain active for multiple replication cycles. Erasing this epigenetic memory in parasites grown in culture resembles parasites, which egress from the liver. It could therefore be of interest for investigating var switching patterns at the onset of malaria infections. In addition, this procedure could be used for creating heterogeneity of var expression among parasite populations. The methodology described here for resetting of var gene expression is based on promoter titration, also known as molecular sponging.
Collapse
Affiliation(s)
- Vera Mitesser
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
18
|
Abstract
Quantitative real-time PCR (qPCR) is a simple and sensitive method for determining the amount of a specific target DNA sequence present in a sample. Compared to RNA-seq, reverse transcription qPCR (RT-qPCR) is fast, requires only low input material and is easy to analyze. Therefore, qPCR is widely used to analyze gene expression in P. falciparum, including analyses of the multicopy gene families encoding variant surface antigens (VSAs), whose expression is clonally variant and prone to changes over time. In the recent years, several P. falciparum genomes of culture-adapted strains have been sequenced, providing the knowledge to design variable gene family-specific qPCR primers for each P. falciparum genetic background. Here, we describe the required materials, methods and key factors to perform RT-qPCR experiments to determine VSA transcript abundances in the P. falciparum clones 3D7/NF54, IT4, HB3, and 7G8.
Collapse
Affiliation(s)
- Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Biology Department, University of Hamburg, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
19
|
Webster R, Sekuloski S, Odedra A, Woolley S, Jennings H, Amante F, Trenholme KR, Healer J, Cowman AF, Eriksson EM, Sathe P, Penington J, Blanch AJ, Dixon MWA, Tilley L, Duffy MF, Craig A, Storm J, Chan JA, Evans K, Papenfuss AT, Schofield L, Griffin P, Barber BE, Andrew D, Boyle MJ, de Labastida Rivera F, Engwerda C, McCarthy JS. Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Med 2021; 19:293. [PMID: 34802442 PMCID: PMC8606250 DOI: 10.1186/s12916-021-02150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).
Collapse
Affiliation(s)
- Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Silvana Sekuloski
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Current address: PharmOut, 111 Eagle Street, Brisbane, Queensland, 4000, Australia
| | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen Woolley
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK.,Centre of Defence Pathology, Royal Centre for Defence Medicine, Joint Hospital Group, Birmingham, UK
| | - Helen Jennings
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priyanka Sathe
- Current address: Medicines Development for Global Health Limited, 18 Kavanagh Street, Southbank, Victoria, 3006, Australia
| | - Jocelyn Penington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Adam J Blanch
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Matthew W A Dixon
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Leann Tilley
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Storm
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Krystal Evans
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Current address: GSK, 436 Johnston Street, Abbotsford, Victoria, 3067, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia.,Department of Medicine and Infectious Diseases, Mater Hospital and Mater Research, Brisbane, Australia
| | | | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
20
|
Silva Pereira S, Jackson AP, Figueiredo LM. Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol 2021; 38:23-36. [PMID: 34376326 DOI: 10.1016/j.pt.2021.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
21
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
22
|
Camponovo F, Lee TE, Russell JR, Burgert L, Gerardin J, Penny MA. Mechanistic within-host models of the asexual Plasmodium falciparum infection: a review and analytical assessment. Malar J 2021; 20:309. [PMID: 34246274 PMCID: PMC8272282 DOI: 10.1186/s12936-021-03813-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
Background Malaria blood-stage infection length and intensity are important drivers of disease and transmission; however, the underlying mechanisms of parasite growth and the host’s immune response during infection remain largely unknown. Over the last 30 years, several mechanistic mathematical models of malaria parasite within-host dynamics have been published and used in malaria transmission models. Methods Mechanistic within-host models of parasite dynamics were identified through a review of published literature. For a subset of these, model code was reproduced and descriptive statistics compared between the models using fitted data. Through simulation and model analysis, key features of the models were compared, including assumptions on growth, immune response components, variant switching mechanisms, and inter-individual variability. Results The assessed within-host malaria models generally replicate infection dynamics in malaria-naïve individuals. However, there are substantial differences between the model dynamics after disease onset, and models do not always reproduce late infection parasitaemia data used for calibration of the within host infections. Models have attempted to capture the considerable variability in parasite dynamics between individuals by including stochastic parasite multiplication rates; variant switching dynamics leading to immune escape; variable effects of the host immune responses; or via probabilistic events. For models that capture realistic length of infections, model representations of innate immunity explain early peaks in infection density that cause clinical symptoms, and model representations of antibody immune responses control the length of infection. Models differed in their assumptions concerning variant switching dynamics, reflecting uncertainty in the underlying mechanisms of variant switching revealed by recent clinical data during early infection. Overall, given the scarce availability of the biological evidence there is limited support for complex models. Conclusions This study suggests that much of the inter-individual variability observed in clinical malaria infections has traditionally been attributed in models to random variability, rather than mechanistic disease dynamics. Thus, it is proposed that newly developed models should assume simple immune dynamics that minimally capture mechanistic understandings and avoid over-parameterization and large stochasticity which inaccurately represent unknown disease mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03813-z.
Collapse
Affiliation(s)
- Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tamsin E Lee
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jonathan R Russell
- Institute of Disease Modeling, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Lydia Burgert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
24
|
He Q, Pascual M. An antigenic diversification threshold for falciparum malaria transmission at high endemicity. PLoS Comput Biol 2021; 17:e1008729. [PMID: 33606682 PMCID: PMC7928509 DOI: 10.1371/journal.pcbi.1008729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/03/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
In malaria and several other important infectious diseases, high prevalence occurs concomitantly with incomplete immunity. This apparent paradox poses major challenges to malaria elimination in highly endemic regions, where asymptomatic Plasmodium falciparum infections are present across all age classes creating a large reservoir that maintains transmission. This reservoir is in turn enabled by extreme antigenic diversity of the parasite and turnover of new variants. We present here the concept of a threshold in local pathogen diversification that defines a sharp transition in transmission intensity below which new antigen-encoding genes generated by either recombination or migration cannot establish. Transmission still occurs below this threshold, but diversity of these genes can neither accumulate nor recover from interventions that further reduce it. An analytical expectation for this threshold is derived and compared to numerical results from a stochastic individual-based model of malaria transmission that incorporates the major antigen-encoding multigene family known as var. This threshold corresponds to an “innovation” number we call Rdiv; it is different from, and complementary to, the one defined by the classic basic reproductive number of infectious diseases, R0, which does not readily is better apply under large and dynamic strain diversity. This new threshold concept can be exploited for effective malaria control and applied more broadly to other pathogens with large multilocus antigenic diversity. The vast diversity of the falciparum malaria parasite, as seen by the immune system of hosts in high transmission regions, underlies both high prevalence of asymptomatic infections and partial protection to re-infection despite previous exposure. This large antigenic diversity of the parasite challenges control and elimination efforts. We propose a threshold quantity for antigenic innovation, we call Rdiv, measuring the potential of transmission to accumulate new antigenic variants over time. When Rdiv is pushed below one by reduced transmission intensity, new genes encoding this variation can no longer accumulate, resulting in a lower number of strains and facilitating further intervention. This innovation number can be applied to other infectious diseases with fast turnover of antigens, where large standing diversity similarly opposes successful intervention.
Collapse
Affiliation(s)
- Qixin He
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
26
|
Pamplona A, Silva-Santos B. γδ T cells in malaria: a double-edged sword. FEBS J 2020; 288:1118-1129. [PMID: 32710527 PMCID: PMC7983992 DOI: 10.1111/febs.15494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Malaria remains a devastating global health problem, resulting in many annual deaths due to the complications of severe malaria. However, in endemic regions, individuals can acquire ‘clinical immunity’ to malaria, characterized by a decrease in severe malaria episodes and an increase of asymptomatic Plasmodium falciparum infections. Recently, it has been reported that tolerance to ‘clinical malaria’ and reduced disease severity correlates with a decrease in the numbers of circulating Vγ9Vδ2 T cells, the major subset of γδ T cells in the human peripheral blood. This is particularly interesting as this population typically undergoes dramatic expansions during acute Plasmodium infections and was previously shown to play antiparasitic functions. Thus, regulated γδ T‐cell responses may be critical to balance immune protection with severe pathology, particularly as both seem to rely on the same pro‐inflammatory cytokines, most notably TNF and IFN‐γ. This has been clearly demonstrated in mouse models of experimental cerebral malaria (ECM) based on Plasmodium berghei ANKA infection. Furthermore, our recent studies suggest that the natural course of Plasmodium infection, mimicked in mice through mosquito bite or sporozoite inoculation, includes a major pathogenic component in ECM that depends on γδ T cells and IFN‐γ production in the asymptomatic liver stage, where parasite virulence is seemingly set and determines pathology in the subsequent blood stage. Here, we discuss these and other recent advances in our understanding of the complex—protective versus pathogenic—functions of γδ T cells in malaria.
Collapse
Affiliation(s)
- Ana Pamplona
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
27
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
28
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
29
|
Witmer K, Fraschka SA, Vlachou D, Bártfai R, Christophides GK. An epigenetic map of malaria parasite development from host to vector. Sci Rep 2020; 10:6354. [PMID: 32286373 PMCID: PMC7156373 DOI: 10.1038/s41598-020-63121-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
The malaria parasite replicates asexually in the red blood cells of its vertebrate host employing epigenetic mechanisms to regulate gene expression in response to changes in its environment. We used chromatin immunoprecipitation followed by sequencing in conjunction with RNA sequencing to create an epigenomic and transcriptomic map of the developmental transition from asexual blood stages to male and female gametocytes and to ookinetes in the rodent malaria parasite Plasmodium berghei. Across the developmental stages examined, heterochromatin protein 1 associates with variantly expressed gene families localised at subtelomeric regions and variant gene expression based on heterochromatic silencing is observed only in some genes. Conversely, the euchromatin mark histone 3 lysine 9 acetylation (H3K9ac) is abundant in non-heterochromatic regions across all developmental stages. H3K9ac presents a distinct pattern of enrichment around the start codon of ribosomal protein genes in all stages but male gametocytes. Additionally, H3K9ac occupancy positively correlates with transcript abundance in all stages but female gametocytes suggesting that transcription in this stage is independent of H3K9ac levels. This finding together with known mRNA repression in female gametocytes suggests a multilayered mechanism operating in female gametocytes in preparation for fertilization and zygote development, coinciding with parasite transition from host to vector.
Collapse
Affiliation(s)
- Kathrin Witmer
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
| | - Sabine A Fraschka
- Department of Molecular Biology, Radboud University, 6525, GA, Nijmegen, The Netherlands.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | | |
Collapse
|
30
|
Odedra A, McCarthy JS. Safety Considerations for Malaria Volunteer Infection Studies: A Mini-Review. Am J Trop Med Hyg 2020; 102:934-939. [PMID: 32189610 DOI: 10.4269/ajtmh.19-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria clinical studies entailing the experimental infection of healthy volunteers with Plasmodium parasites by bites from infected mosquitos, injection of cryopreserved sporozoites, or injection of blood-stage parasites provide valuable information for vaccine and drug development. Success of these studies depends on maintaining safety. In this mini-review, we discuss the safety risks and associated mitigation strategies of these three types of experimental malaria infection. We aimed to inform researchers and regulators who are currently involved in or are planning to establish experimental malaria infection studies in endemic or non-endemic settings.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Herston, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James S McCarthy
- The University of Queensland, St Lucia, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
31
|
Hoo R, Bruske E, Dimonte S, Zhu L, Mordmüller B, Sim BKL, Kremsner PG, Hoffman SL, Bozdech Z, Frank M, Preiser PR. Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies. EBioMedicine 2019; 48:442-452. [PMID: 31521613 PMCID: PMC6838377 DOI: 10.1016/j.ebiom.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The transcriptome of Plasmodium falciparum clinical isolates varies according to strain, mosquito bites, disease severity and clinical history. Therefore, it remains a challenge to directly interpret the parasite's transcriptomic information into a more general biological signature in a natural human malaria infection. These confounding variations can be potentially overcome with parasites derived from controlled-human malaria infection (CHMI) studies. METHODS We performed CHMI studies in healthy and immunologically naïve volunteers receiving the same P. falciparum strain ((Sanaria® PfSPZ Challenge (NF54)), but with different sporozoite dosage and route of infection. Parasites isolated from these volunteers at the day of patency were subjected to in vitro culture for several generations and synchronized ring-stage parasites were subjected to transcriptome profiling. FINDINGS We observed clear deviations between CHMI-derived parasites from volunteer groups receiving different PfSPZ dose and route. CHMI-derived parasites and the pre-mosquito strain used for PfSPZ generation showed significant transcriptional variability for gene clusters associated with malaria pathogenesis, immune evasion and transmission. These transcriptional variation signature clusters were also observed in the transcriptome of P. falciparum isolates from acute clinical infections. INTERPRETATION Our work identifies a previously unrecognized transcriptional pattern in malaria infections in a non-immune background. Significant transcriptome heterogeneity exits between parasites derived from human infections and the pre-mosquito strain, implying that the malaria parasites undergo a change in functional state to adapt to its host environment. Our work also highlights the potential use of transcriptomics data from CHMI study advance our understanding of malaria parasite adaptation and transmission in humans. FUND: This work is supported by German Israeli Foundation, German ministry for education and research, MOE Tier 1 from the Singapore Ministry of Education Academic Research Fund, Singapore Ministry of Health's National Medical Research Council, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung-DZIF).
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ellen Bruske
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; German Center for Infection Research, partner site Tübingen, Germany
| | - B Kim Lee Sim
- Sanaria Inc, 9800 Medical Center Dr A209, Rockville, MD 20850, USA
| | - Peter G Kremsner
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthias Frank
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
32
|
Abstract
Heterochromatin plays a central role in the process of immune evasion, pathogenesis, and transmission of the malaria parasite Plasmodium falciparum during blood stage infection. Here, we use ChIP sequencing to demonstrate that sporozoites from mosquito salivary glands expand heterochromatin at subtelomeric regions to silence blood-stage-specific genes. Our data also revealed that heterochromatin enrichment is predictive of the transcription status of clonally variant genes members that mediate cytoadhesion in blood stage parasites. A specific member (here called NF54varsporo) of the var gene family remains euchromatic, and the resultant PfEMP1 (NF54_SpzPfEMP1) is expressed at the sporozoite surface. NF54_SpzPfEMP1-specific antibodies efficiently block hepatocyte infection in a strain-specific manner. Furthermore, human volunteers immunized with infective sporozoites developed antibodies against NF54_SpzPfEMP1. Overall, we show that the epigenetic signature of var genes is reset in mosquito stages. Moreover, the identification of a strain-specific sporozoite PfEMP1 is highly relevant for vaccine design based on sporozoites. Sporozoites expand subtelomeric heterochromatin to silence blood-stage-specific genes A strain-specific PfEMP1 is expressed on the surface of sporozoites NF54_SpzPfEMP1 is immunogenic in sporozoite-infected human volunteers Antibodies against NF54_SpzPfEMP1 block sporozoite infection of hepatocytes
Collapse
|
33
|
Wichers JS, Scholz JAM, Strauss J, Witt S, Lill A, Ehnold LI, Neupert N, Liffner B, Lühken R, Petter M, Lorenzen S, Wilson DW, Löw C, Lavazec C, Bruchhaus I, Tannich E, Gilberger TW, Bachmann A. Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. mBio 2019; 10:e01500-19. [PMID: 31363031 PMCID: PMC6667621 DOI: 10.1128/mbio.01500-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
During its intraerythrocytic development, the malaria parasite Plasmodium falciparum exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized P. falciparumstevor gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting stevor expression profiles for hierarchical clustering. We found that most stevor genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface.IMPORTANCE Malaria claims about half a million lives each year. Plasmodium falciparum, the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established stevor expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most stevor genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.
Collapse
Affiliation(s)
- J Stephan Wichers
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Andrés Lill
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | | | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
34
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
35
|
Pilosof S, He Q, Tiedje KE, Ruybal-Pesántez S, Day KP, Pascual M. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol 2019; 17:e3000336. [PMID: 31233490 PMCID: PMC6611651 DOI: 10.1371/journal.pbio.3000336] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 07/05/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
In their competition for hosts, parasites with antigens that are novel to the host immune system will be at a competitive advantage. The resulting frequency-dependent selection can structure parasite populations into strains of limited genetic overlap. For the causative agent of malaria, Plasmodium falciparum, the high recombination rates and associated vast diversity of its highly antigenic and multicopy var genes preclude such clear clustering in endemic regions. This undermines the definition of strains as specific, temporally persisting gene variant combinations. We use temporal multilayer networks to analyze the genetic similarity of parasites in both simulated data and in an extensively and longitudinally sampled population in Ghana. When viewed over time, populations are structured into modules (i.e., groups) of parasite genomes whose var gene combinations are more similar within than between the modules and whose persistence is much longer than that of the individual genomes that compose them. Comparison to neutral models that retain parasite population dynamics but lack competition reveals that the selection imposed by host immunity promotes the persistence of these modules. The modular structure is, in turn, associated with a slower acquisition of immunity by individual hosts. Modules thus represent dynamically generated niches in host immune space, which can be interpreted as strains. Negative frequency-dependent selection therefore shapes the organization of the var diversity into parasite genomes, leaving a persistence signature over ecological time scales. Multilayer networks extend the scope of phylodynamics analyses by allowing quantification of temporal genetic structure in organisms that generate variation via recombination or other non-bifurcating processes. A strain structure similar to the one described here should apply to other pathogens with large antigenic spaces that evolve via recombination. For malaria, the temporal modular structure should enable the formulation of tractable epidemiological models that account for parasite antigenic diversity and its influence on intervention outcomes. A combination of computational modeling and empirical data reveals persistent strain structure despite vast antigenic diversity in the human malaria parasite Plasmodium falciparum, with potential consequences for the acquisition of immunity.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
36
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
37
|
Fernandes P, Howland SW, Heiss K, Hoffmann A, Hernández-Castañeda MA, Obrová K, Frank R, Wiedemann P, Bendzus M, Rénia L, Mueller AK. A Plasmodium Cross-Stage Antigen Contributes to the Development of Experimental Cerebral Malaria. Front Immunol 2018; 9:1875. [PMID: 30154793 PMCID: PMC6102508 DOI: 10.3389/fimmu.2018.01875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Cerebral malaria is a complex neurological syndrome caused by an infection with Plasmodium falciparum parasites and is exclusively attributed to a series of host–parasite interactions at the pathological blood-stage of infection. In contrast, the preceding intra-hepatic phase of replication is generally considered clinically silent and thereby excluded from playing any role in the development of neurological symptoms. In this study, however, we present an antigen PbmaLS_05 that is presented to the host immune system by both pre-erythrocytic and intra-erythrocytic stages and contributes to the development of cerebral malaria in mice. Although deletion of the endogenous PbmaLS_05 prevented the development of experimental cerebral malaria (ECM) in susceptible mice after both sporozoite and infected red blood cell (iRBC) infections, we observed significant differences in contribution of the host immune response between both modes of inoculation. Moreover, PbmaLS_05-specific CD8+ T cells contributed to the development of ECM after sporozoite but not iRBC-infection, suggesting that pre-erythrocytic antigens like PbmaLS_05 can also contribute to the development of cerebral symptoms. Our data thus highlight the importance of the natural route of infection in the study of ECM, with potential implications for vaccine and therapeutic strategies against malaria.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klára Obrová
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Wiedemann
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Martin Bendzus
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Laurent Rénia
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
38
|
Silva Pereira S, Casas-Sánchez A, Haines LR, Ogugo M, Absolomon K, Sanders M, Kemp S, Acosta-Serrano Á, Noyes H, Berriman M, Jackson AP. Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs. Genome Res 2018; 28:1383-1394. [PMID: 30006414 PMCID: PMC6120623 DOI: 10.1101/gr.234146.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Moses Ogugo
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kihara Absolomon
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Steve Kemp
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| |
Collapse
|
39
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
40
|
Lell B, Mordmüller B, Dejon Agobe JC, Honkpehedji J, Zinsou J, Mengue JB, Loembe MM, Adegnika AA, Held J, Lalremruata A, Nguyen TT, Esen M, KC N, Ruben AJ, Chakravarty S, Lee Sim BK, Billingsley PF, James ER, Richie TL, Hoffman SL, Kremsner PG. Impact of Sickle Cell Trait and Naturally Acquired Immunity on Uncomplicated Malaria after Controlled Human Malaria Infection in Adults in Gabon. Am J Trop Med Hyg 2018; 98:508-515. [PMID: 29260650 PMCID: PMC5929186 DOI: 10.4269/ajtmh.17-0343] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 11/02/2017] [Indexed: 11/07/2022] Open
Abstract
Controlled human malaria infection (CHMI) by direct venous inoculation (DVI) with 3,200 cryopreserved Plasmodium falciparum sporozoites (PfSPZ) consistently leads to parasitemia and malaria symptoms in malaria-naive adults. We used CHMI by DVI to investigate infection rates, parasite kinetics, and malaria symptoms in lifelong malaria-exposed (semi-immune) Gabonese adults with and without sickle cell trait. Eleven semi-immune Gabonese with normal hemoglobin (IA), nine with sickle cell trait (IS), and five nonimmune European controls with normal hemoglobin (NI) received 3,200 PfSPZ by DVI and were followed 28 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction (qPCR) and for malaria symptoms. End points were time to parasitemia and parasitemia plus symptoms. PfSPZ Challenge was well tolerated and safe. Five of the five (100%) NI, 7/11 (64%) IA, and 5/9 (56%) IS volunteers developed parasitemia by TBS, and 5/5 (100%) NI, 9/11 (82%) IA, and 7/9 (78%) IS by qPCR, respectively. The time to parasitemia by TBS was longer in IA (geometric mean 16.9 days) and IS (19.1 days) than in NA (12.6 days) volunteers (P = 0.016, 0.021, respectively). Five of the five, 6/9, and 1/7 volunteers with parasitemia developed symptoms (P = 0.003, NI versus IS). Naturally adaptive immunity (NAI) to malaria significantly prolonged the time to parasitemia. Sickle cell trait seemed to prolong it further. NAI plus sickle cell trait, but not NAI alone, significantly reduced symptom rate. Twenty percent (4/20) semi-immunes demonstrated sterile protective immunity. Standardized CHMI with PfSPZ Challenge is a powerful tool for dissecting the impact of innate and naturally acquired adaptive immunity on malaria.
Collapse
Affiliation(s)
- Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | | | | | - Jeannot Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Juliana Boex Mengue
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | | | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Albert Lalremruata
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - The Trong Nguyen
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Meral Esen
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Natasha KC
- Sanaria Inc., Rockville, Maryland
- Protein Potential, LLC, Rockville, Maryland
| | | | | | | | | | | | | | - Stephen L. Hoffman
- Sanaria Inc., Rockville, Maryland
- Protein Potential, LLC, Rockville, Maryland
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
41
|
Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, LE Roch KG, Fonseca LL, Voit EO. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 2018; 145:85-100. [PMID: 28712361 PMCID: PMC5798396 DOI: 10.1017/s0031182017001135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.
Collapse
Affiliation(s)
- M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - M S Peterson
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla,CA 92037,USA
| | - C J Joyner
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - K G LE Roch
- Department of Cell Biology & Neuroscience,Center for Disease and Vector Research,Institute for Integrative Genome Biology,University of California Riverside,CA 92521,USA
| | - L L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| | - E O Voit
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| |
Collapse
|
42
|
Abstract
Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration.
Collapse
|
43
|
Abdi AI, Hodgson SH, Muthui MK, Kivisi CA, Kamuyu G, Kimani D, Hoffman SL, Juma E, Ogutu B, Draper SJ, Osier F, Bejon P, Marsh K, Bull PC. Plasmodium falciparum malaria parasite var gene expression is modified by host antibodies: longitudinal evidence from controlled infections of Kenyan adults with varying natural exposure. BMC Infect Dis 2017; 17:585. [PMID: 28835215 PMCID: PMC5569527 DOI: 10.1186/s12879-017-2686-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. Methods Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants’ antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. Results We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. Conclusions This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. Trial registration Pan African Clinical Trial Registry: PACTR201211000433272. Date of registration: 10th October 2012.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya. .,Pwani University, P. O. Box 195-80108, Kilifi, Kenya.
| | | | - Michelle K Muthui
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Cheryl A Kivisi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya.,Pwani University, P. O. Box 195-80108, Kilifi, Kenya
| | - Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Domtila Kimani
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | | | - Elizabeth Juma
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | | | - Faith Osier
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Peter C Bull
- Department of Pathology, University of Cambridge, 17 Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
44
|
Mira-Martínez S, van Schuppen E, Amambua-Ngwa A, Bottieau E, Affara M, Van Esbroeck M, Vlieghe E, Guetens P, Rovira-Graells N, Gómez-Pérez GP, Alonso PL, D'Alessandro U, Rosanas-Urgell A, Cortés A. Expression of the Plasmodium falciparum Clonally Variant clag3 Genes in Human Infections. J Infect Dis 2017; 215:938-945. [PMID: 28419281 PMCID: PMC5407054 DOI: 10.1093/infdis/jix053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Many genes of the malaria parasite Plasmodium falciparum show clonally variant expression regulated at the epigenetic level. These genes participate in fundamental host-parasite interactions and contribute to adaptive processes. However, little is known about their expression patterns during human infections. A peculiar case of clonally variant genes are the 2 nearly identical clag3 genes, clag3.1 and clag3.2, which mediate nutrient uptake and are linked to resistance to some toxic compounds. Methods We developed a procedure to characterize the expression of clag3 genes in naturally infected patients and in experimentally infected human volunteers. Results We provide the first description of clag3 expression during human infections, which revealed mutually exclusive expression and identified the gene predominantly expressed. Adaptation to culture conditions or selection with a toxic compound resulted in isolate-dependent changes in clag3 expression. We also found that clag3 expression patterns were reset during transmission stages. Conclusions Different environment conditions select for parasites with different clag3 expression patterns, implying functional differences between the proteins encoded. The epigenetic memory is likely erased before parasites start infection of a new human host. Altogether, our findings support the idea that clonally variant genes facilitate the adaptation of parasite populations to changing conditions through bet-hedging strategies.
Collapse
Affiliation(s)
- Sofía Mira-Martínez
- Institute of Tropical Medicine, Antwerp, Belgium.,Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evi van Schuppen
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Muna Affara
- Medical Research Council Unit, Fajara, The Gambia
| | | | | | | | - Núria Rovira-Graells
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gloria P Gómez-Pérez
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Pedro L Alonso
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Umberto D'Alessandro
- Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit, Fajara, The Gambia.,London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Alfred Cortés
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
45
|
Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, Machevo S, Aguilar R, Sigaúque B, Chauhan VS, Langer C, Beeson J, Chitnis C, Alonso PL, Gaur D, Mayor A. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep 2017; 7:4717. [PMID: 28680086 PMCID: PMC5498679 DOI: 10.1038/s41598-017-05025-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p < 0.001) and, only in children, parasite density increased with p41 expression (p = 0.007), and decreased with eba175 (p = 0.013). Antibody responses and IRG expression were not associated. In conclusion, IRG expression is associated with age and parasite density, but not with specific antibody responses in the acute phase of infection. Our results confirm the importance of multi-antigen vaccines development to avoid parasite immune escape when tested in malaria-exposed individuals.
Collapse
Affiliation(s)
- Aida Valmaseda
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Pau Cisteró
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sonia Machevo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Ruth Aguilar
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Virander S Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Christine Langer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pedro L Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
46
|
Affiliation(s)
- Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York New York 10065, USA
| |
Collapse
|
47
|
Gómez-Díaz E, Yerbanga RS, Lefèvre T, Cohuet A, Rowley MJ, Ouedraogo JB, Corces VG. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep 2017; 7:40655. [PMID: 28091569 PMCID: PMC5238449 DOI: 10.1038/srep40655] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.
Collapse
|
48
|
Bruske EI, Dimonte S, Enderes C, Tschan S, Flötenmeyer M, Koch I, Berger J, Kremsner P, Frank M. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription. PLoS One 2016; 11:e0166135. [PMID: 27907004 PMCID: PMC5132323 DOI: 10.1371/journal.pone.0166135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections.
Collapse
Affiliation(s)
- Ellen Inga Bruske
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Serena Tschan
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Iris Koch
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
- * E-mail:
| |
Collapse
|
49
|
Dimonte S, Bruske EI, Hass J, Supan C, Salazar CL, Held J, Tschan S, Esen M, Flötenmeyer M, Koch I, Berger J, Bachmann A, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Frank M. Sporozoite Route of Infection Influences In Vitro var Gene Transcription of Plasmodium falciparum Parasites From Controlled Human Infections. J Infect Dis 2016; 214:884-94. [PMID: 27279526 DOI: 10.1093/infdis/jiw225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. METHODS Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. RESULTS At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P = .03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa CONCLUSIONS The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth.
Collapse
Affiliation(s)
- Sandra Dimonte
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Ellen I Bruske
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Johanna Hass
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Christian Supan
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Carmen L Salazar
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Jana Held
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Serena Tschan
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Meral Esen
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | | | - Iris Koch
- Max Planck Institute for Developmental Biology, Tübingen
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tübingen
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Peter G Kremsner
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen Centre de Recherches Médicales de Lambaréné (CERMEL), Fondation Internationale de l'Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| | - Matthias Frank
- Institute of Tropical Medicine University of Tübingen and German Center for Infection Research, Partner Site Tübingen
| |
Collapse
|