1
|
Valle J. Biofilm-associated proteins: from the gut biofilms to neurodegeneration. Gut Microbes 2025; 17:2461721. [PMID: 39898557 PMCID: PMC11792866 DOI: 10.1080/19490976.2025.2461721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Human microbiota form a biofilm with substantial consequences for health and disease. Numerous studies have indicated that microbial communities produce functional amyloids as part of their biofilm extracellular scaffolds. The overlooked interplay between bacterial amyloids and the host may have detrimental consequences for the host, including neurodegeneration. This work gives an overview of the biofilm-associated amyloids expressed by the gut microbiota and their potential role in neurodegeneration. It discusses the biofilm-associated proteins (BAPs) of the gut microbiota, maps the amyloidogenic domains of these proteins, and analyzes the presence of bap genes within accessory genomes linked with transposable elements. Furthermore, the evidence supporting the existence of amyloids in the gut are presented. Finally, it explores the potential interactions between BAPs and α-synuclein, extending the literature on amyloid cross-kingdom interactions. Based on these findings, this study propose that BAP amyloids act as transmissible catalysts, facilitating the misfolding, accumulation, and spread of α-synuclein aggregates. This review contributes to the understanding of complex interactions among the microbiota, transmissible elements, and host, which is crucial for developing novel therapeutic approaches to combat microbiota-related diseases and improve overall health outcomes.
Collapse
Affiliation(s)
- Jaione Valle
- Microbial Biotechnology Department, Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Navarra, Spain
| |
Collapse
|
2
|
Singh AA, Khan F, Song M. Biofilm-Associated Amyloid Proteins Linked with the Progression of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2695. [PMID: 40141340 PMCID: PMC11942204 DOI: 10.3390/ijms26062695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Biofilm-associated amyloid proteins have emerged as significant contributors to the progression of neurodegenerative diseases, representing a complex intersection of microorganisms and human health. The cross-beta sheet structure characteristic of amyloids produced by gut-colonizing bacteria remains intact, crucial for the resilience of biofilms. These amyloids exacerbate neurodegenerative disorders such as Alzheimer's and Parkinson's by cross-seeding human amyloidogenic proteins like amyloid-beta and α-synuclein, accelerating their misfolding and aggregation. Despite molecular chaperones and heat shock proteins maintaining protein homeostasis, bacterial amyloids can overwhelm them, worsening neuronal damage. Genetic variations in chaperone genes further influence amyloidogenesis and neurodegeneration. Persistent bacterial infections and inflammation compromise the blood-brain barrier, allowing inflammatory molecules and amyloids to enter the brain, perpetuating the cycle of neurodegeneration. The gut-brain axis underscores the impact of dysbiosis and gut microbiota on brain function, potentially contributing to neurodegeneration. The enhancement of biofilm resilience and antibiotic resistance by functional amyloid fibrils complicates the treatment landscape. The interplay among chaperone systems, microbial amyloids, and neurodegenerative diseases underscores the urgent need for advanced treatment strategies targeting these pathways to attenuate disease progression. Understanding the processes that relate biofilm-associated amyloids to the onset of neurological disorders is critical for diagnosing and developing novel treatment strategies.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Otzen DE, Peña-Díaz S, Widmann J, Daugberg AOH, Zhang Z, Jiang Y, Mittal C, Dueholm MKD, Louros N, Wang H, Javed I. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol Aspects Med 2025; 103:101351. [PMID: 40024004 DOI: 10.1016/j.mam.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
The amyloid state of proteins occurs in many different contexts in Nature and in modern society, ranging from the pathological kind (neurodegenerative diseases and amyloidosis) via man-made forms (food processing and - to a much smaller extent - protein biologics) to functional versions (bacterial biofilm, peptide hormones and signal transmission). These classes all come together in the human body which endogenously produces amyloidogenic protein able to form pathological human amyloid (PaHA), hosts a microbiome which continuously makes functional bacterial amyloid (FuBA) and ingests food which can contain amyloid. This can have grave consequences, given that PaHA can spread throughout the body in a "hand-me-down" fashion from cell to cell through small amyloid fragments, which can kick-start growth of new amyloid wherever they encounter monomeric amyloid precursors. Amyloid proteins can also self- and cross-seed across dissimilar peptide sequences. While it is very unlikely that ingested amyloid plays a role in this crosstalk, FuBA-PaHA interactions are increasingly implicated in vivo amyloid propagation. We are now in a position to understand the structural and bioinformatic basis for this cross-talk, thanks to the very recently obtained atomic-level structures of the two major FuBAs CsgA (E. coli) and FapC (Pseudomonas). While there are many reports of homology-driven heterotypic interactions between different PaHA, the human proteome does not harbor significant homology to CsgA and FapC. Yet we and others have uncovered significant cross-stimulation (and in some cases inhibition) of FuBA and PaHA both in vitro and in vivo, which we here rationalize based on structure and sequence. These interactions have important consequences for the transmission and development of neurodegenerative diseases, not least because FuBA and PaHA can come into contact via the gut-brain interface, recurrent infections with microbes and potentially even through invasive biofilm in the brain. Whether FuBA and PaHA first interact in the gut or the brain, they can both stimulate and block each other's aggregation as well as trigger inflammatory responses. The microbiome may also affect amyloidogenesis in other ways, e.g. through their own chaperones which recognize and block growth of both PaHA and FuBA as we show both experimentally and computationally. Heterotypic interactions between and within PaHA and FuBA both in vitro and in vivo are a vital part of the amyloid phenomenon and constitute a vibrant and exciting frontier for future research.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders Ogechi Hostrup Daugberg
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Zhefei Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yanting Jiang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chandrika Mittal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China; Jiangsu Fuyuda Food Products Co., Ltd, Qinyou Road 88, Gaoyou City, Jiangsu Province, 225600, China.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
4
|
Priyanka, Sharma M, Vaid B, Bharti R, Raut S, Jolly RS, Khatri N. Comprehensive safety and toxicity analysis of 2,2'-Bipyridine derivatives in combating MRSA biofilm formation and persistence. Front Cell Infect Microbiol 2025; 15:1493679. [PMID: 39925377 PMCID: PMC11802822 DOI: 10.3389/fcimb.2025.1493679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) infections have become arduous to treat due to their capacity to form biofilms, develop persistence, and exhibit significant antimicrobial resistance. These factors contribute to the complexity of managing MRSA infections and highlight the urgent need for innovative treatment strategies. Objectives This endeavor aims to evaluate the safety of 2,2'-Bipyridine (2,2'-Bipy) derivatives and their antimicrobial, anti-biofilm, and anti-persister activities in treating MRSA Infections. Methods Six derivatives were screened for their ADMET properties and tested for minimum inhibitory concentrations against various bacterial strains using agar well diffusion and broth dilution. Safety studies were conducted through hemolysis tests, cell viability assays, and in vivo acute oral toxicity examinations. Bactericidal mechanisms and biofilm disruption effects were analyzed using crystal violet staining and confocal microscopy assays. The murine thigh infection model was also used to investigate the in vivo efficacy. Results All derivatives exhibited favorable physicochemical profiles and ADMET properties and are predicted to be safe based on their drug-like properties. in vitro studies demonstrated that derivatives are non-toxic to 3T3 L1, and in vivo studies confirmed their safety in mice at a dose of 300 mg/kg and their non-hemolytic nature against rabbit red blood cells. All compounds showed potent antibacterial activity against the tested bacteria, including the resistant MRSA strain 831. They inhibited biofilm formation and eradicated biofilms in a dose-dependent manner against MTCC 737 and MRSA 831, and they effectively eliminated MRSA persister cells, outperforming the reference antibiotic vancomycin. These derivatives were found to depolarize the mitochondrial membrane and accumulate intracellular reactive oxygen species. These derivatives significantly reduced the bacterial load in the murine thigh infection model. Conclusion The study concluded that 2,2'-Bipy derivatives possess significant antimicrobial activity, are non-toxic, and are effective in inhibiting biofilm formation and killing persister cells.
Collapse
Affiliation(s)
- Priyanka
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mohini Sharma
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Bhavna Vaid
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- PG Department of Chemistry, Sri Guru Tegh Bahadur (SGTB) Khalsa College, Sri Anandpur Sahib, Punjab, India
| | - Ram Bharti
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - R. S. Jolly
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
5
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
6
|
Li Y, Sung Min H, Chen C, Shan H, Lin Y, Yin F, Chen Y, Lu L, Yu X. A chitosan/gelatin/aldehyde hyaluronic acid hydrogel coating releasing calcium ions and vancomycin in pH response to prevent the formation of bacterial biofilm. Carbohydr Polym 2025; 347:122723. [PMID: 39486953 DOI: 10.1016/j.carbpol.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 11/04/2024]
Abstract
Osteomyelitis is a refractory disease of orthopedics, part of which is caused by medical implants. The main difficulties in treatment are the barrier effect after the formation of bacterial biofilm, and the difficulty in achieving sustained antibiotic intervention. In view of this situation, we studied a hydrogel coating that can release CaCl2 and vancomycin in pH-responsive manner. We used nano-TiO2 to modify Chitosan/ Gelatin/Aldehyde Hyaluronic Acid (CS/Gel/AHA) hydrogel, and combined with the dip-coating technique, prepared a coating with good mechanical strength. The hydrogel-loaded zeolitic imidazolate framework (ZIF) decomposes under acidic conditions, and the released Ca2+ act on the bacterial Bap protein to inhibit the formation of biofilm, and the released vancomycin kills free bacteria. The antibacterial coating achieved good bactericidal effect in both in vitro experiments and rat subcutaneous implant model. These results not only provide a new way to enhance the strength of hydrogels to prepare coatings, but also utilize a new approach to responsively inhibit the formation of biofilms, showing the promising application prospects of the coating in antibacterial treatment of medical implants.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Hong Sung Min
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Chen Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yiwei Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Fuli Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yixian Chen
- Department of Surgery of Chinese Medicine, Jiangxi University of Chinese Medicine, Jiangxi 330004, PR China
| | - Liheng Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
7
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|
8
|
Kashi M, Noei M, Chegini Z, Shariati A. Natural compounds in the fight against Staphylococcus aureus biofilms: a review of antibiofilm strategies. Front Pharmacol 2024; 15:1491363. [PMID: 39635434 PMCID: PMC11615405 DOI: 10.3389/fphar.2024.1491363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus is an important pathogen due to its ability to form strong biofilms and antibiotic resistance. Biofilms play an important role in bacterial survival against the host immune system and antibiotics. Natural compounds (NCs) have diverse bioactive properties with a low probability of resistance, making them promising candidates for biofilm control. NC such as curcumin, cinnamaldehyde, carvacrol, eugenol, thymol, citral, linalool, 1,8-cineole, pinene, cymene, terpineol, quercetin, and limonene have been widely utilized for the inhibition and destruction of S. aureus biofilms. NCs influence biofilm formation through several procedures. Some of the antibiofilm mechanisms of NCs are direct bactericidal effect, disrupting the quorum sensing system, preventing bacteria from aggregation and attachment to surfaces, reducing the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), interfering with sortase A enzyme, and altering the expression of biofilm-associated genes such as icaADBC, agr, and sarA. Furthermore, these compounds affect extracellular polymeric substances (EPS) and their components, such as polysaccharide intercellular adhesin (PIA) and eDNA. However, some disadvantages, such as low water solubility and bioavailability, limit their clinical usage. Therefore, scientists have considered using nanotechnology and drug platforms to improve NC's efficacy. Some NC, such as thymol and curcumin, can also enhance photodynamic therapy against S. aurous biofilm community. This article evaluates the anti-biofilm potential of NC, their mechanisms of action against S. aureus biofilms, and various aspects of their application.
Collapse
Affiliation(s)
- Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
9
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Su J, Yao B, Huang R, Liu X, Zhang Z, Zhang Y. Cross-Kingdom Pathogenesis of Pantoea alfalfae CQ10: Insights from Transcriptome and Proteome Analyses. Microorganisms 2024; 12:2197. [PMID: 39597586 PMCID: PMC11596184 DOI: 10.3390/microorganisms12112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
In grassland agroecosystems, some plant pathogenic bacteria can cause disease in animals. These strains are known as plant and animal cross-kingdom pathogenic bacteria. In this study, we established an alfalfa root infection model and a mouse model via the gavage administration of the Pantoea alfalfae CQ10 (CQ10) bacterial suspension. It was confirmed that the CQ10 strain caused bacterial leaf blight of alfalfa. Mice inoculated with 0.4 mL of 109 cfu/mL bacterial suspension developed clinical symptoms 48 h later, such as diminished vitality, tendencies to huddle, and lack of appetite, including severe lesions in stomach, liver, kidney, and spleen tissues. CQ10 strains were isolated from mouse feces at different time points of inoculation. Thus, CQ10 is a plant and animal cross-kingdom pathogenic bacterium. Transcriptome and proteome analyses showed that biofilm and iron uptake are important virulence factors of the pathogen CQ10, among which Bap and Lpp regulating biofilm are the key cross-kingdom virulence genes of CQ10. From an evolutionary perspective, insights gained from this dual animal-plant pathogen system may help to elucidate the molecular basis underlying the host specificity of bacterial pathogens. The result provides a theoretical basis for the risk assessment, prevention, and control strategies of new pathogenic bacteria entering a new region.
Collapse
Affiliation(s)
- Jing Su
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Bo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Rong Huang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Xiaoni Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
11
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Demontier E, Ster C, Chamberland S, Ramanathan S, Dufour S, Malouin F. Biofilm Dairy Foods Review: Effect of biofilm production on antimicrobial susceptibility of Staphylococcus aureus bovine mastitis strains from the most prevalent Canadian spa types. J Dairy Sci 2024:S0022-0302(24)01061-0. [PMID: 39122151 DOI: 10.3168/jds.2024-25238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Staphylococcus aureus intramammary infections often leads to clinical and subclinical mastitis in dairy cattle. Prediction of disease evolution and treatment efficacy based on the characteristics of disease-causing strains of S. aureus would significantly improve management of dairy herds. To study the impact of biofilm production and the influence of genetic lineage, we selected S. aureus isolates from the most prevalent Canadian spa types associated with bovine mastitis. Antimicrobial susceptibility in planktonic growth and for bacteria embedded in biofilm was compared. PCR was used to detect the bap gene responsible for atypical biofilm formation. All Canadian spa types from dairy cattle were susceptible to the 8 antimicrobial agents tested. Only strain sa3493 from spa type t267 showed a resistance to pirlimycin. However, bacteria producing larger amounts of biofilms better survived the bactericidal action of antimicrobial agents even when exposed to concentrations 64 folds higher than the minimal inhibitory concentration determined for planktonic cultures. Pirlimycin was more effective on bacteria producing low to moderate levels of biofilm compared with vancomycin or ceftiofur. Antimicrobial agents did not affect the viability of spa types t13401 and t605 that were high biofilm producers. While both these spa types produced high amounts of biofilm, only t605 possessed the bap gene. We also found a close relationship between DIM at sampling and the presence of spa type t605 isolates. These results suggest that detection of S. aureus spa type may help predict the effectiveness of antimicrobial therapy and that some spa types are more likely to be retrieved toward the end of the lactation.
Collapse
Affiliation(s)
- E Demontier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - C Ster
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; New address: Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Chamberland
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Ramanathan
- Département d'immunologie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - S Dufour
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2
| | - F Malouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Regroupement stratégique FRQNT pour un lait de qualité optimale, Op+lait, Université de Montréal, St-Hyacinthe, QC, Canada, J2S 2M2.
| |
Collapse
|
13
|
Dixit S, Varshney S, Gupta D, Sharma S. Factors affecting biofilm formation by bacteria on fabrics. Int Microbiol 2024; 27:1111-1123. [PMID: 38057457 DOI: 10.1007/s10123-023-00460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Fabrics act as fomites for microorganisms, thereby playing a significant role in infection transmission, especially in the healthcare and hospitality sectors. This study aimed to examine the biofilm formation ability of four nosocomial infection-causing bacteria (Acinetobacter calcoaceticus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on cotton, polyester, polyester-cotton blend, silk, wool, viscose, and nylon, used frequently in the healthcare sector, by qualitative and quantitative methods. The impact of temperature, pH, and relative humidity (RH) on biofilm formation was also assessed. P. aeruginosa and S. aureus were strong biofilm producers, while E. coli produced weak biofilm. Wool (maximum roughness) showed the highest bacterial load, while silk (lowest roughness) showed the least. P. aeruginosa exhibited a higher load on all fabrics, than other test bacteria. Extracellular polymeric substances were characterized by infrared spectroscopy. Roughness of biofilms was assessed by atomic force microscopy. For biofilm formation, optimum temperature, pH, and RH were 30 °C, 7.0, and 62%, respectively. MgCl2 and CaCl2 were the most effective in removing bacterial biofilm. In conclusion, biofilm formation was observed to be influenced by the type of fabric, bacteria, and environmental conditions. Implementing recommended guidelines for the effective disinfection of fabrics is crucial to curb the risk of nosocomial infections. In addition, designing modified healthcare fabrics that inhibit pathogen load could be an effective method to mitigate the transmission of infections.
Collapse
Affiliation(s)
- Shweta Dixit
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swati Varshney
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Present address: Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepti Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
14
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
16
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
17
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
18
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024; 65:1894-1910. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
21
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
22
|
Pechaud Y, Derlon N, Queinnec I, Bessiere Y, Paul E. Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. WATER RESEARCH 2024; 250:120985. [PMID: 38118257 DOI: 10.1016/j.watres.2023.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
In industry, treatments against biofilms need to be optimized and, in the wastewater treatment field, biofilm composition needs to be controlled. Therefore, describing the biochemical and physical structures of biofilms is now required to better understand the influence of operating parameters and treatment on biofilms. The present study aims to investigate how growth conditions influence EPS composition, biofilm physical properties and volume detachment using a 1D biofilm model. Two types of EPS are considered in the present model, proteins and polysaccharides. The main hypotheses are that: (i) the production of polysaccharides occurs mainly under strong nutrient limitation(s) while the production of proteins is coupled to both the substrate uptake rate and the lysis process; (ii) the local biofilm porosity depends on the local biofilm composition. Both volume and surface detachment occur in biofilms and volume detachment extent depends on the biofilm local cohesion and thus on the local composition of biofilms for a given shear stress. The model is based on experimental trends and aims to represent these observations on the basis of biochemical and physical processes. Four case studies covering a wide range of contrasting growth conditions such as different COD/N ratios, applied SOLR and shear stresses are investigated. The model predicts how the biochemical and physical biofilm structures change as a result of contrasting growth conditions. More precisely simulation results are in good agreement with the main experimental observations reported in the literature, such as: (i) a strong nitrogen limitation of growth induces an important accumulation of polysaccharides leading to a more porous and homogenous biofilm, (ii) a high applied surface organic loading load allows to obtain a high biofilm thickness, (iii) a strong shear stress applied during the biofilm growth leads to a reduction of the biofilm thickness and to a consolidation of the biofilm structure. Overall, this model represents a relevant decision tool for the selection of appropriate enzymatic treatments in the context of negative biofilm control. From our results, it appears that protease based treatments should be more appropriate for biofilms developed under low COD/N ratios (about 20 gCOD/gN) whereas both glucosidases and proteases based treatments should be more appropriate for biofilms developed under high COD/N ratio (about 70 gCOD/gN). In addition, the model could be useful for other applications such as resource recovery in biofilms or granules, and help to better understand biological membrane fouling.
Collapse
Affiliation(s)
- Y Pechaud
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France; Laboratoire Géomatériaux et Environnement (EA 4508), Université Gustave Eiffel, Marne-la-Vallée 77454, France.
| | - N Derlon
- EAWAG, Ueberlandstrasse 133, P.O Box 611, Dübendorf 8600, Switzerland
| | - I Queinnec
- CNRS, LAAS, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Y Bessiere
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France
| | - E Paul
- TBI, CNRS, INRAE, INSA, Université de Toulouse, 35 avenue de Rangueil, Toulouse 31077, France.
| |
Collapse
|
23
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
24
|
Rahman S, Das AK. Staphylococcal superantigen-like protein 10 enhances the amyloidogenic biofilm formation in Staphylococcus aureus. BMC Microbiol 2023; 23:390. [PMID: 38062361 PMCID: PMC10701973 DOI: 10.1186/s12866-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a highly infectious pathogen that represents a significant burden on the current healthcare system. Bacterial attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in chronic diseases such as endocarditis, osteomyelitis and wound infections. These biofilms decrease bacterial susceptibility to antibiotics and immune defences, making the infections challenging to treatment. S. aureus produces numerous exotoxins that contribute to the pathogenesis of the bacteria. In this study, we have identified a novel function of staphylococcal superantigen-like protein 10 (SSL10) in enhancing the formation of staphylococcal biofilms. Biofilm biomass is significantly increased when SSL10 is added exogenously to bacterial cultures, whereas SSL2 and SSL12 are found to be less active. Exogenously added SSL10 mask the surface charge of the bacterial cells and lowers their zeta potential, leading to the aggregation of the cells. Moreover, the biofilm formation by SSL10 is governed by amyloid aggregation, as evident from spectroscopic and microscopic studies. These findings thereby give the first overview of the SSL-mediated amyloid-based biofilm formation and further drive the future research in identifying potential molecules for developing new antibacterial therapies against Staphylococcus aureus.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
25
|
Vujinović S, Graber HU, Vićić I, Vejnović B, Stevanović O, Krnjaić D, Milivojević D, Katić V. Genotypes and virulence factors in Staphylococcus aureus isolated from dairy cows with subclinical mastitis in Serbia. Comp Immunol Microbiol Infect Dis 2023; 101:102056. [PMID: 37678080 DOI: 10.1016/j.cimid.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to determine the prevalence of Staphylococcus aureus subclinical mastitis and to genotype the S. aureus isolates using the 16S-23S rRNA intergenic spacer (RS-PCR) method. In addition, the genes responsible for adherence, biofilm formation, host evasion, tissue necrosis, methicillin resistance, and enterotoxin production of S. aureus were investigated. The overall prevalence of S. aureus subclinical mastitis in lactating cows was 5.4% (95% confidence interval, CI=4.7-6.1%). An increased risk of S. aureus intramammary infection was observed on small family farms (odds ratio, OR=4.2, 95% CI=2.6-6.6, P < 0.001) and medium-sized farms (OR=3.5, 95% CI=2.2-5.7, P < 0.001). The RS-PCR analysis revealed 44 genotypes and genotype variants, of which 15 new genotypes and five new variants were detected within small and medium-sized farms. S. aureus isolates of new genotypes and genotype variants carried the clfA gene responsible for adherence at a lower frequency (64.8%) and enterotoxin-producing genes sea (20.4%), seb (14.8%) and sec (14.8%) at a higher frequency than the other known genotypes (P < 0.001), and were confirmed to carry the sej and sep genes. The spa gene was detected in all S. aureus isolates, whereas none harbored bap, ser, or tsst-1 genes. Methicillin-resistant strains of S. aureus (MRSA) were also detected, with a higher prevalence (19.2%) on large farms with more than 50 cows (P < 0.001). Using molecular techniques as diagnostic tools provides a better understanding of intramammary staphylococcal infections' occurrence, spread, and eradication.
Collapse
Affiliation(s)
- Slobodan Vujinović
- Veterinary Specialized Institute "Šabac", Vojvode Putnika 54, 15000 Šabac, Serbia
| | - Hans Ulrich Graber
- Agroscope, Research Division, Food Microbial Systems, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ivan Vićić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Branislav Vejnović
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| | - Oliver Stevanović
- PI Veterinary Institute Dr Vaso Butozan Banja Luka, Branka Radicevića 18, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Dejan Krnjaić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| | - Dušan Milivojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Vera Katić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
27
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
28
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
29
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
30
|
Zhou C, Zhou Y, Zheng Y, Yu Y, Yang K, Chen Z, Chen X, Wen K, Chen Y, Bai S, Song J, Wu T, Lei E, Wan M, Cai Q, Ma L, Wong WL, Bai Y, Zhang C, Feng X. Amphiphilic Nano-Swords for Direct Penetration and Eradication of Pathogenic Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20458-20473. [PMID: 37039625 DOI: 10.1021/acsami.3c03091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacterial biofilms are major causes of persistent and recurrent infections and implant failures. Biofilms are formable by most clinically important pathogens worldwide, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, causing recalcitrance to standard antibiotic therapy or anti-biofilm strategies due to amphiphilic impermeable extracellular polymeric substances (EPS) and the presence of resistant and persistent bacteria within the biofilm matrix. Herein, we report our design of an oligoamidine-based amphiphilic "nano-sword" with high structural compacity and rigidity. Its rigid, amphiphilic structure ensures effective penetration into EPS, and the membrane-DNA dual-targeting mechanism exerts strong bactericidal effect on the dormant bacterial persisters within biofilms. The potency of this oligoamidine is shown in two distinct modes of application: it may be used as a coating agent for polycaprolactone to fully inhibit surface biofilm growth in an implant-site mimicking micro-environment; meanwhile, it cures model mice of biofilm infections in various ex vivo and in vivo studies.
Collapse
Affiliation(s)
- Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xianhui Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yajie Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qingyun Cai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
31
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
33
|
The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans. NPJ Biofilms Microbiomes 2023; 9:6. [PMID: 36697414 PMCID: PMC9877000 DOI: 10.1038/s41522-023-00371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-β amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.
Collapse
|
34
|
Wong LL, Mugunthan S, Kundukad B, Ho JCS, Rice SA, Hinks J, Seviour T, Parikh AN, Kjelleberg S. Microbial biofilms are shaped by the constant dialogue between biological and physical forces in the extracellular matrix. Environ Microbiol 2023; 25:199-208. [PMID: 36502515 DOI: 10.1111/1462-2920.16306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - James Chin Shing Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark
| | - Atul N Parikh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.,Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Appl Microbiol Biotechnol 2023; 107:1373-1389. [PMID: 36635396 PMCID: PMC9898353 DOI: 10.1007/s00253-022-12356-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 μg/mL and 7.70 μg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 μg/mL and ≥ 8 μg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 μg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.
Collapse
|
36
|
Peng Q, Tang X, Dong W, Sun N, Yuan W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics (Basel) 2022; 12:antibiotics12010012. [PMID: 36671212 PMCID: PMC9854888 DOI: 10.3390/antibiotics12010012] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Sun
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| |
Collapse
|
37
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, González-Gómez JP, González-Torres B, Velázquez-Suárez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, Cardona-López MA, Robles-García MÁ, Gutiérrez-Lomelí M. Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol 2022; 13:1001700. [PMID: 36532477 PMCID: PMC9755592 DOI: 10.3389/fmicb.2022.1001700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Staphylococcus aureus is an important pathogen that can form biofilms on food contact surfaces (FCS) in the dairy industry, posing a serious food safety, and quality concern. Biofilm is a complex system, influenced by nutritional-related factors that regulate the synthesis of the components of the biofilm matrix. This study determines the prevalence of biofilm-associated genes and evaluates the development under different growth conditions and compositions of biofilms produced by S. aureus. METHODS Biofilms were developed in TSB, TSBG, TSBNaCl, and TSBGNaCl on stainless-steel (SS), with enumeration at 24 and 192 h visualized by epifluorescence and scanning electron microscopy (SEM). The composition of biofilms was determined using enzymatic and chemical treatments and confocal laser scanning microscopy (CLSM). RESULTS AND DISCUSSION A total of 84 S. aureus (SA1-SA84) strains were collected from 293 dairy industry FCS (FCS-stainless steel [n = 183] and FCS-polypropylene [n = 110]) for this study. The isolates harbored the genes sigB (66%), sar (53%), agrD (52%), clfB/clfA (38%), fnbA/fnbB (20%), and bap (9.5%). 99. In particular, the biofilm formed by bap-positive S. aureus onto SS showed a high cell density in all culture media at 192 h in comparison with the biofilms formed at 24 h (p < 0.05). Epifluorescence microscopy and SEM revealed the metabolically active cells and the different stages of biofilm formation. CLSM analysis detected extracellular polymeric of S. aureus biofilms on SS, such as eDNA, proteins, and polysaccharides. Finally, the level of detachment on being treated with DNase I (44.7%) and NaIO 4(42.4%) was greater in the biofilms developed in TSB compared to culture medium supplemented with NaCl at 24 h; however, there was no significant difference when the culture medium was supplemented with glucose. In addition, after treatment with proteinase K, there was a lower level of biomass detachment (17.7%) of the biofilm developed in TSBNaCl (p < 0.05 at 24 h) compared to that in TSB, TSBG, and TSBGNaCl (33.6, 36.9, and 37.8%, respectively). These results represent a deep insight into the composition of S. aureus biofilms present in the dairy industry, which promotes the development of more efficient composition-specific disinfection strategies.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Jean-Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Noemí Yolanda Velázquez-Suárez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Liliana Martínez-Chávez
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nanci Edid Martínez-Gonzáles
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Luz María Ibarra-Velázquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Marco Antonio Cardona-López
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Miguel Ángel Robles-García
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| |
Collapse
|
38
|
Targeting hydrophobicity in biofilm-associated protein (Bap) as a novel antibiofilm strategy against Staphylococcus aureus biofilm. Biophys Chem 2022; 289:106860. [DOI: 10.1016/j.bpc.2022.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
39
|
Paleczny J, Brożyna M, Dudek-Wicher R, Dydak K, Oleksy-Wawrzyniak M, Madziała M, Bartoszewicz M, Junka A. The Medium Composition Impacts Staphylococcus aureus Biofilm Formation and Susceptibility to Antibiotics Applied in the Treatment of Bone Infections. Int J Mol Sci 2022; 23:ijms231911564. [PMID: 36232864 PMCID: PMC9569719 DOI: 10.3390/ijms231911564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The biofilm-associated infections of bones are life-threatening diseases, requiring application of dedicated antibiotics in order to counteract the tissue damage and spread of microorganisms. The in vitro analyses on biofilm formation and susceptibility to antibiotics are frequently carried out using methods that do not reflect conditions at the site of infection. To evaluate the influence of nutrient accessibility on Staphylococcus aureus biofilm development in vitro, a cohesive set of analyses in three different compositional media was performed. Next, the efficacy of four antibiotics used in bone infection treatment, including gentamycin, ciprofloxacin, levofloxacin, and vancomycin, against staphylococcal biofilm, was also assessed. The results show a significant reduction in the ability of biofilm to grow in a medium containing elements occurring in the serum, which also translated into the diversified changes in the efficacy of used antibiotics, compared to the setting in which conventional media were applied. The differences indicate the need for implementation of adequate in vitro models that closely mimic the infection site. The results of the present research may be considered an essential step toward the development of in vitro analyses aiming to accurately indicate the most suitable antibiotic to be applied against biofilm-related infections of bones.
Collapse
Affiliation(s)
- Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marcin Madziała
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
40
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
41
|
Influence of Environmental Factors on Biofilm Formation of Staphylococci Isolated from Wastewater and Surface Water. Pathogens 2022; 11:pathogens11101069. [PMID: 36297126 PMCID: PMC9611571 DOI: 10.3390/pathogens11101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of biofilms can negatively affect several different areas, such as the food industry, environment, and biomedical sectors. Conditions under which bacteria grow and develop, such as temperature, nutrients, and pH, among others, can largely influence biofilm production. Staphylococcus species survive in the natural environment due to their tolerance to a wide range of temperatures, dryness, dehydration, and low water activity. Therefore, we aimed to evaluate the influence of external environmental factors on the formation of biofilm of staphylococci isolated from hospital wastewater and surface waters. We investigated the biofilm formation of methicillin-resistant and -susceptible S. aureus (MRSA and MSSA) and coagulase-negative staphylococci (CoNS) under various temperatures, pH values, salt concentrations, glucose concentrations, and under anaerobic and aerobic conditions. CoNS had the ability to produce more biofilm biomass than MSSA and MRSA. All environmental factors studied influenced the biofilm formation of staphylococci isolates after 24 h of incubation. Higher biofilm formation was achieved at 4% of NaCl and 0.5% of glucose for MSSA and CoNS, and 1% of NaCl and 1.5% of glucose for MRSA isolates. Biofilm formation of isolates was greater at 25 °C and 37 °C than at 10 °C and 4 °C. pH values between 6 and 8 led to more robust biofilm formation than pH levels of 9 and 5. Although staphylococci are facultative anaerobes, biofilm formation was higher in the presence of oxygen. The results demonstrated that multiple environmental factors affect staphylococci biofilm formation. Different conditions affect differently the biofilm formation of MRSA, MSSA, and CoNS strains.
Collapse
|
42
|
Spiegelman L, Bahn-Suh A, Montaño ET, Zhang L, Hura GL, Patras KA, Kumar A, Tezcan FA, Nizet V, Tsutakawa SE, Ghosh P. Strengthening of enterococcal biofilms by Esp. PLoS Pathog 2022; 18:e1010829. [PMID: 36103556 PMCID: PMC9512215 DOI: 10.1371/journal.ppat.1010829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/26/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.
Collapse
Affiliation(s)
- Lindsey Spiegelman
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Adrian Bahn-Suh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elizabeth T. Montaño
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Ling Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kathryn A. Patras
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Amit Kumar
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - F. Akif Tezcan
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Susan E. Tsutakawa
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
43
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Matilla-Cuenca L, Taglialegna A, Gil C, Toledo-Arana A, Lasa I, Valle J. Bacterial biofilm functionalization through Bap amyloid engineering. NPJ Biofilms Microbiomes 2022; 8:62. [PMID: 35909185 PMCID: PMC9339546 DOI: 10.1038/s41522-022-00324-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.
Collapse
Affiliation(s)
| | - Agustina Taglialegna
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.,The Campus 4 Crinan Street London N1, London, UK
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.
| |
Collapse
|
45
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
46
|
Rahman SME, Islam SMA, Xi Q, Han R, Oh DH, Wang J. Control of bacterial biofilms in red meat - A systematic review. Meat Sci 2022; 192:108870. [PMID: 35671629 DOI: 10.1016/j.meatsci.2022.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Biofilm formation is a serious threat in the meat industry, mainly since it aids food-borne pathogen survival. Biofilms are often difficult to eliminate, and it is essential to understand the best possible deployable measures to remove or inactivate biofilms. We systematically reviewed the published in vitro studies that investigated various methods for removing biofilms in red meat. Publicly available databases, including Google Scholar and PubMed, were queried for relevant studies. The search was restricted to articles published in the English language from 2010 to 2021. We mined a total of 394 studies, of which 12 articles were included in this review. In summary, the studies demonstrated the inhibitory effect of various methods, including the use of bacteriophages, dry heat, cold atmospheric pressure, ozone gas, oils, and acids, on red meat extract or red meat culture. This systematic review suggests that in addition to existing sanitation and antibiotic procedures, other methods, such as the use of phage cocktails and different oils as nanoparticles, yield positive outcomes and may be taken from the in vitro setting to industry with prior validation of the techniques.
Collapse
Affiliation(s)
- S M E Rahman
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - S M A Islam
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Engineering Technology Research Center of Food Quality and Safety Control, Qingdao 266109, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Engineering Technology Research Center of Food Quality and Safety Control, Qingdao 266109, China.
| |
Collapse
|
47
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
48
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
49
|
Marmion M, Macori G, Ferone M, Whyte P, Scannell A. Survive and thrive: Control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int J Food Microbiol 2022; 368:109612. [DOI: 10.1016/j.ijfoodmicro.2022.109612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
50
|
Corsini PM, Wang S, Rehman S, Fenn K, Sagar A, Sirovica S, Cleaver L, Edwards-Gayle CJC, Mastroianni G, Dorgan B, Sewell LM, Lynham S, Iuga D, Franks WT, Jarvis J, Carpenter GH, Curtis MA, Bernadó P, Darbari VC, Garnett JA. Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022; 8:9. [PMID: 35217675 PMCID: PMC8881592 DOI: 10.1038/s41522-022-00272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.
Collapse
Affiliation(s)
- Paula M Corsini
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Katherine Fenn
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Slobodan Sirovica
- Centre for Oral Bioengineering, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lee M Sewell
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, UK
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Vidya C Darbari
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|