1
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Ghosh A, Varshney A, Narwal SK, Nirdosh, Gupta R, Mishra S. The novel Plasmodium berghei protein S14 is essential for sporozoite gliding motility and infectivity. J Cell Sci 2024; 137:jcs261857. [PMID: 38832798 DOI: 10.1242/jcs.261857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshni Gupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
6
|
Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158:103957. [PMID: 37253287 DOI: 10.1016/j.jri.2023.103957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Molecular communication between a pathogen and its host is crucial for a successful interplay. Extracellular vesicles (EVs) act as mediators for the delivery of molecular signals among pathogens or between pathogens and the host. Toxoplasma gondii (T. gondii), an intracellular parasite with a worldwide presence, produces EVs itself, or induces the secretion of EVs from infected host cells potentially having capacities to modulate the host immune response. T. gondii infection is particularly important during pregnancy. Depending on the gestational age at the time of infection, the parasite can be transmitted through the placenta to the fetus, causing clinical complications such as jaundice, hepatosplenomegaly, chorioretinitis, cranioencephalic abnormalities, or even death. T. gondii infection is related to a pro-inflammatory immune response in both mother and fetus, which may enhance parasite transmission, but the implication of EV signaling in this process remains unclear. In this review, we summarize the current knowledge on EV release from T. gondii and its human host cells in regard to the immunological consequences and the passage through the placenta.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico; Programa de Posgrado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Heriberto Caballero-Ortega
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
7
|
Loubens M, Marinach C, Paquereau CE, Hamada S, Hoareau-Coudert B, Akbar D, Franetich JF, Silvie O. The claudin-like apicomplexan microneme protein is required for gliding motility and infectivity of Plasmodium sporozoites. PLoS Pathog 2023; 19:e1011261. [PMID: 36928686 PMCID: PMC10047546 DOI: 10.1371/journal.ppat.1011261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/28/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites.
Collapse
Affiliation(s)
- Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Clara-Eva Paquereau
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Bénédicte Hoareau-Coudert
- Sorbonne Université, INSERM, UMS PASS, Plateforme de cytométrie de la Pitié-Salpêtrière (CyPS), Paris, France
| | - David Akbar
- Sorbonne Université, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris Brain Institute, ICM Quant Cell imaging Core Facility, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
8
|
Kehrer J, Pietsch E, Heinze J, Spielmann T, Frischknecht F. Clearing of hemozoin crystals in malaria parasites enables whole-cell STED microscopy. J Cell Sci 2023; 136:286288. [PMID: 36511329 DOI: 10.1242/jcs.260399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating mosquito-borne parasitic disease that manifests when Plasmodium parasites replicate within red blood cells. During the development within the red blood cell, the parasite digests hemoglobin and crystalizes the otherwise toxic heme. The resulting hemozoin crystals limit imaging by STED nanoscopy owing to their high light-absorbing capacity, which leads to immediate cell destruction upon contact with the laser. Here, we establish CUBIC-P-based clearing of hemozoin crystals, enabling whole-cell STED nanoscopy of parasites within red blood cells. Hemozoin-cleared infected red blood cells could reliably be stained with antibodies, and hence proteins in the hemozoin-containing digestive vacuole membrane, as well as in secretory vesicles of gametocytes, could be imaged at high resolution. Thus, this process is a valuable tool to study and understand parasite biology and the potential molecular mechanisms mediating drug resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany.,Infectious Diseases Imaging Platform, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Emma Pietsch
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Julia Heinze
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Malian children infected with Plasmodium ovale and Plasmodium falciparum display very similar gene expression profiles. PLoS Negl Trop Dis 2023; 17:e0010802. [PMID: 36696438 PMCID: PMC9901758 DOI: 10.1371/journal.pntd.0010802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| |
Collapse
|
10
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
11
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
12
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
13
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Miles S, Magnone J, García-Luna J, Ancarola ME, Cucher M, Dematteis S, Frischknecht F, Cyrklaff M, Mourglia-Ettlin G. Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. Int J Parasitol 2021; 51:989-997. [PMID: 34216624 DOI: 10.1016/j.ijpara.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joaquín García-Luna
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany.
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
15
|
Swift RP, Rajaram K, Liu HB, Prigge ST. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J 2021; 40:e107247. [PMID: 34031901 PMCID: PMC8365264 DOI: 10.15252/embj.2020107247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron–sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood‐stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood‐stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
16
|
Bennink S, Pradel G. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Mol Biochem Parasitol 2021; 243:111372. [PMID: 33961918 DOI: 10.1016/j.molbiopara.2021.111372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Malaria parasites are obligate intracellular pathogens that live in human red blood cells harbored by a parasitophorous vacuole. The parasites need to exit from the red blood cell to continue life-cycle progression and ensure human-to-mosquito transmission. Two types of blood stages are able to lyse the enveloping red blood cell to mediate egress, the merozoites and the gametocytes. The intraerythrocytic parasites exit the red blood cell via an inside-out mode during which the membrane of the parasitophorous vacuole ruptures prior to the red blood cell membrane. Membrane rupture is initiated by the exocytosis of specialized secretory vesicles following the perception of egress triggers. The molecular mechanisms of red blood cell egress have particularly been studied in malaria gametocytes. Upon activation by external factors, gametocytes successively discharge at least two types of vesicles, the osmiophilic bodies needed to rupture the parasitophorous vacuole membrane and recently identified egress vesicles that are important for the perforation of the erythrocyte membrane. In recent years, important components of the signaling cascades leading to red blood cell egress have been investigated and several proteins of the osmiophilic bodies have been identified. We here report on the newest findings on the egress of gametocytes from the red blood cell. We further focus on the content and function of the egress-related vesicles and discuss the molecular machinery that might drive vesicle discharge.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Singer M, Frischknecht F. Fluorescent tagging of Plasmodium circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Cell Microbiol 2021; 23:e13321. [PMID: 33600048 DOI: 10.1111/cmi.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
The circumsporozoite protein, CSP, is the major surface protein of Plasmodium sporozoites, the form of malaria parasites transmitted by mosquitoes. CSP is involved in sporozoite formation within and egress from oocysts, entry into mosquito salivary glands and mammalian liver as well as migration in the skin. Yet, how CSP facilitates sporozoite formation, oocyst egress and hepatocyte specific invasion is still not fully understood. Here, we aimed at generating a series of parasites expressing full-length versions of CSP with internally inserted green fluorescent protein between known domains at the endogenous csp locus. This enabled the investigation of sporozoite formation in living oocysts. GFP insertion after the signal peptide leads to cleavage of GFP before the fusion protein reached the plasma membrane while insertion of GFP before or after the TSR domain prevented sporozoite egress and liver invasion. These data suggest different strategies for obtaining mature salivary gland sporozoites that express GFP-CSP fusions.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
18
|
Counihan NA, Modak JK, de Koning-Ward TF. How Malaria Parasites Acquire Nutrients From Their Host. Front Cell Dev Biol 2021; 9:649184. [PMID: 33842474 PMCID: PMC8027349 DOI: 10.3389/fcell.2021.649184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Plasmodium parasites responsible for the disease malaria reside within erythrocytes. Inside this niche host cell, parasites internalize and digest host hemoglobin to source amino acids required for protein production. However, hemoglobin does not contain isoleucine, an amino acid essential for Plasmodium growth, and the parasite cannot synthesize it de novo. The parasite is also more metabolically active than its host cell, and the rate at which some nutrients are consumed exceeds the rate at which they can be taken up by erythrocyte transporters. To overcome these constraints, Plasmodium parasites increase the permeability of the erythrocyte membrane to isoleucine and other low-molecular-weight solutes it requires for growth by forming new permeation pathways (NPPs). In addition to the erythrocyte membrane, host nutrients also need to cross the encasing parasitophorous vacuole membrane (PVM) and the parasite plasma membrane to access the parasite. This review outlines recent advances that have been made in identifying the molecular constituents of the NPPs, the PVM nutrient channel, and the endocytic apparatus that transports host hemoglobin and identifies key knowledge gaps that remain. Importantly, blocking the ability of Plasmodium to source essential nutrients is lethal to the parasite, and thus, components of these key pathways represent potential antimalaria drug targets.
Collapse
Affiliation(s)
| | - Joyanta K Modak
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
19
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
20
|
Arredondo SA, Schepis A, Reynolds L, Kappe SHI. Secretory Organelle Function in the Plasmodium Sporozoite. Trends Parasitol 2021; 37:651-663. [PMID: 33589364 DOI: 10.1016/j.pt.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium sporozoites exhibit a complex infection biology in the mosquito and mammalian hosts. The sporozoite apical secretory organelles, the micronemes and rhoptries, store protein mediators of parasite/host/vector interactions and must secrete them in a temporally and spatially well orchestrated manner. Micronemal proteins are critical for sporozoite motility throughout its journey from the mosquito midgut oocyst to the mammalian liver, and also for cell traversal (CT) and hepatocyte invasion. Rhoptry proteins, until recently thought to be only important for hepatocyte invasion, appear to also play an unexpected role in motility and in the interaction with mosquito tissue. Therefore, navigating the different microenvironments with secretion likely requires the sporozoite to have a more complex system of secretory organelles than previously appreciated.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
21
|
Grasso F, Mochi S, Fratini F, Olivieri A, Currà C, Siden Kiamos I, Deligianni E, Birago C, Picci L, Pizzi E, Pace T, Ponzi M. A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages. Mol Cell Proteomics 2020; 19:1986-1997. [PMID: 32883804 PMCID: PMC7710150 DOI: 10.1074/mcp.ra120.002212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.
Collapse
Affiliation(s)
- Felicia Grasso
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Stefania Mochi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Federica Fratini
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Anna Olivieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Chiara Currà
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Cecilia Birago
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Elisabetta Pizzi
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| |
Collapse
|
22
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
23
|
Olajide JS, Cai J. Perils and Promises of Pathogenic Protozoan Extracellular Vesicles. Front Cell Infect Microbiol 2020; 10:371. [PMID: 32923407 PMCID: PMC7456935 DOI: 10.3389/fcimb.2020.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures formed during biological processes in living organisms. For protozoan parasites, secretion of EVs can occur directly from the parasite organellar compartments and through parasite-infected or antigen-stimulated host cells in response to in vitro and in vivo physiological stressors. These secreted EVs characteristically reflect the biochemical features of their parasitic origin and activating stimuli. Here, we review the species-specific morphology and integrity of parasitic protozoan EVs in concurrence with the origin, functions, and internalization process by recipient cells. The activating stimuli for the secretion of EVs in pathogenic protozoa are discoursed alongside their biomolecules and specific immune cell responses to protozoan parasite-derived EVs. We also present some insights on the intricate functions of EVs in the context of protozoan parasitism.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China.,Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| |
Collapse
|
24
|
Andreadaki M, Pace T, Grasso F, Siden‐Kiamos I, Mochi S, Picci L, Bertuccini L, Ponzi M, Currà C. Plasmodium berghei
Gamete Egress Protein is required for fertility of both genders. Microbiologyopen 2020; 9:e1038. [PMID: 32352241 PMCID: PMC7349110 DOI: 10.1002/mbo3.1038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Male and female Plasmodium gametocytes ingested by the Anopheles mosquitoes during a blood meal egress from the red blood cells by rupturing the two surrounding membranes, the parasitophorous vacuole and the red blood cell membranes. Proteins of the so‐called osmiophilic bodies, (OBs), secretory organelles resident in the cytoplasm, are important players in this process. Once gametes emerge, the female is ready to be fertilized while the male develops into motile flagellar gametes. Here, we describe the function(s) of PBANKA_1115200, which we named Gamete Egress Protein (GEP), a protein specific to malaria parasites. GEP is restricted to gametocytes, expressed in gametocytes of both genders and partly localizes to the OBs. A mutant lacking the protein shows aberrant rupture of the two surrounding membranes, while OBs discharge is delayed but not aborted. Moreover, we identified a second function of GEP during exflagellation since the axonemes of the male flagellar gametes were not motile. Genetic crossing experiments reveal that both genders are unable to establish infections in mosquitoes and thus the lack of GEP leads to a complete block in Plasmodium transmission from mice to mosquitoes. The combination of our results reveals essential and pleiotropic functions of GEP in Plasmodium gametogenesis.
Collapse
Affiliation(s)
- Maria Andreadaki
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Tomasino Pace
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Felicia Grasso
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Inga Siden‐Kiamos
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Stefania Mochi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Leonardo Picci
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | | | - Marta Ponzi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Chiara Currà
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| |
Collapse
|
25
|
Jiang Y, Wei J, Cui H, Liu C, Zhi Y, Jiang Z, Li Z, Li S, Yang Z, Wang X, Qian P, Zhang C, Zhong C, Su XZ, Yuan J. An intracellular membrane protein GEP1 regulates xanthurenic acid induced gametogenesis of malaria parasites. Nat Commun 2020; 11:1764. [PMID: 32273496 PMCID: PMC7145802 DOI: 10.1038/s41467-020-15479-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/14/2020] [Indexed: 11/09/2022] Open
Abstract
Gametocytes differentiation to gametes (gametogenesis) within mosquitos is essential for malaria parasite transmission. Both reduction in temperature and mosquito-derived XA or elevated pH are required for triggering cGMP/PKG dependent gametogenesis. However, the parasite molecule for sensing or transducing these environmental signals to initiate gametogenesis remains unknown. Here we perform a CRISPR/Cas9-based functional screening of 59 membrane proteins expressed in the gametocytes of Plasmodium yoelii and identify that GEP1 is required for XA-stimulated gametogenesis. GEP1 disruption abolishes XA-stimulated cGMP synthesis and the subsequent signaling and cellular events, such as Ca2+ mobilization, gamete formation, and gametes egress out of erythrocytes. GEP1 interacts with GCα, a cGMP synthesizing enzyme in gametocytes. Both GEP1 and GCα are expressed in cytoplasmic puncta of both male and female gametocytes. Depletion of GCα impairs XA-stimulated gametogenesis, mimicking the defect of GEP1 disruption. The identification of GEP1 being essential for gametogenesis provides a potential new target for intervention of parasite transmission.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jun Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chuanyuan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yuan Zhi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - ZhengZheng Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhenkui Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Shaoneng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Cui Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, 510642, Guangzhou, China.
| |
Collapse
|
26
|
Ishino T, Tachibana M, Baba M, Iriko H, Tsuboi T, Torii M. Observation of morphological changes of female osmiophilic bodies prior to Plasmodium gametocyte egress from erythrocytes. Mol Biochem Parasitol 2020; 236:111261. [PMID: 31981605 DOI: 10.1016/j.molbiopara.2020.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Gametocytes, which differentiate from asexual-stage parasites, are activated by environmental changes when ingested into the mosquito midgut, and are rapidly released from erythrocytes prior to fertilization. Secretory proteins localized to osmiophilic bodies (OBs), organelles unique to gametocytes, have been reported to be involved in female gametocyte egress. In this study, we investigate the dynamics of OBs in activated gametocytes of Plasmodium falciparum and Plasmodium yoelii using the female OB-specific marker protein, G377. After activation, female gametocyte OBs migrate to the parasite surface and fuse to form large vesicles beneath the parasite plasma membrane. At the marginal region of female gametocytes, fused vesicles secrete contents by exocytosis into the parasitophorous vacuole space, prior to parasite egress via the break-down of the erythrocyte membrane. This is the first detailed description of how proteins are transported through osmiophilic bodies.
Collapse
Affiliation(s)
- Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan; Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
27
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
28
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Zhan X, He J, Yu L, Liu Q, Sun Y, Nie Z, Guo J, Zhao Y, Li M, Luo X, He L, Zhao J. Identification of a novel thrombospondin-related anonymous protein (BoTRAP2) from Babesia orientalis. Parasit Vectors 2019; 12:200. [PMID: 31053087 PMCID: PMC6500065 DOI: 10.1186/s13071-019-3457-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thrombospondin-related anonymous protein (TRAP) was first discovered in the sporozoite of Plasmodium falciparum and TRAP family proteins are secreted by micronemes and transported to the parasite surface to participate in the invasion process. Various TRAP proteins have been identified in apicomplexan protozoans, but there have been few reports about TRAP proteins in Babesia orientalis. METHODS The functional domain of TRAP2 in B. orientalis was cloned, sequenced, characterized and compared to the TRAP sequences of related apicomplexan parasites. The functional domain of BoTRAP2 was truncated, named BoTRAP2-1, and then cloned into the pET-28a expression vector. Rabbit anti-rBoTRAP2-1 polyclonal antibody was produced by immunizing three rabbits. Western blot analysis was used to identify the native form and immunogenicity of BoTRAP2. The localization of BoTRAP2 was identified by indirect fluorescence assay (IFA). RESULTS The amplified genes of BoTRAP2 are 2817 bp in length, encoding a functional domain of about 938 aa with two vWFA domains, one TSP domain and one transmembrane domain. The amino acid sequence of BoTRAP2 has a high similarity with that of B. bovis and B. gibsoni. The predicted tertiary structure of truncated BoTRAP2-1 confirmed that BoTRAP2 contains two vWFA domains and a TSP domain, the main functional areas of the protein. The native BoTRAP2 was identified from B. orientalis lysate by using rabbit polyclonal anti-rBoTRAP2-1. A band corresponding to rBoTRAP2-1 was detected by reaction with serum from a B. orientalis-infected water buffalo, indicating that the protein has a high immunogenicity. IFA showed that BoTRAP2 is mainly localized on the apical end of parasites by rabbit anti-rBoTRAP2-1 polyclonal serum. CONCLUSIONS The rBoTRAP2 could differentiate serum from B. orientalis-infected water buffalo and normal water buffalo, implicating that BoTRAP2 has high immunogenicity and could serve as a candidate antigen for diagnosis of B. orientalis infection in buffalo.
Collapse
Affiliation(s)
- Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Junwei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
31
|
Dubois DJ, Soldati-Favre D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol 2019; 21:e13018. [PMID: 30791192 DOI: 10.1111/cmi.13018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane.
Collapse
Affiliation(s)
- David J Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| |
Collapse
|
32
|
Obrova K, Cyrklaff M, Frank R, Mair GR, Mueller AK. Transmission of the malaria parasite requires ferlin for gamete egress from the red blood cell. Cell Microbiol 2019; 21:e12999. [PMID: 30597708 DOI: 10.1111/cmi.12999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
Abstract
Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.
Collapse
Affiliation(s)
- Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ann-Kristin Mueller
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infectious Diseases (DZIF), Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Klug D, Kehrer J, Frischknecht F, Singer M. A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. J Cell Sci 2018; 131:jcs.210971. [PMID: 30237220 DOI: 10.1242/jcs.210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gene expression of malaria parasites is mediated by the apicomplexan Apetala2 (ApiAP2) transcription factor family. Different ApiAP2s control gene expression at distinct stages in the complex life cycle of the parasite, ensuring timely expression of stage-specific genes. ApiAP2s recognize short cis-regulatory elements that are enriched in the upstream/promoter region of their target genes. This should, in principle, allow the generation of 'synthetic' promoters that drive gene expression at desired stages of the Plasmodium life cycle. Here we test this concept by combining cis-regulatory elements of two genes expressed successively within the mosquito part of the life cycle. Our tailored 'synthetic' promoters, named Spooki 1.0 and Spooki 2.0, activate gene expression in early and late mosquito stages, as shown by the expression of a fluorescent reporter. We used these promoters to address the specific functionality of two related adhesins that are exclusively expressed either during the early or late mosquito stage. By modifying the expression profile of both adhesins in absence of their counterpart we were able to test for complementary functions in gliding and invasion. We discuss the possible advantages and drawbacks of our approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
35
|
Kehrer J, Kuss C, Andres-Pons A, Reustle A, Dahan N, Devos D, Kudryashev M, Beck M, Mair GR, Frischknecht F. Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Sci Rep 2018; 8:11249. [PMID: 30050042 PMCID: PMC6062611 DOI: 10.1038/s41598-018-29590-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Claudia Kuss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Reustle
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Noa Dahan
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Damien Devos
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Centro Andaluz de Biología del Desarrollo CABD, Universidad Pablo de Olavide-CSIC, Carretera de Utrera, 41013, Sevilla, Spain
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,Iowa State University, Biomedical Sciences, College of Veterinary Medicine, 1800 Christensen Drive, Ames, IA, 50011, USA.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Hammoudi PM, Maco B, Dogga SK, Frénal K, Soldati-Favre D. Toxoplasma gondiiTFP1 is an essential transporter family protein critical for microneme maturation and exocytosis. Mol Microbiol 2018; 109:225-244. [DOI: 10.1111/mmi.13981] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| |
Collapse
|
37
|
Hallée S, Thériault C, Gagnon D, Kehrer J, Frischknecht F, Mair GR, Richard D. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum. Cell Microbiol 2018; 20:e12843. [PMID: 29579782 DOI: 10.1111/cmi.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages.
Collapse
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Catherine Thériault
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dominic Gagnon
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jessica Kehrer
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dave Richard
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
38
|
Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr Opin Hematol 2017; 24:208-214. [PMID: 28306665 DOI: 10.1097/moh.0000000000000334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Malaria parasites invade and multiply in diverse host cells during their complex life cycle. Some blood stage parasites transform into male and female gametocytes that are transmitted by female anopheline mosquitoes. The gametocytes are activated in the mosquito midgut to form male and female gametes, which egress from RBCs to mate and form a zygote. Here, we will review our current understanding of the molecular mechanisms that mediate invasion and egress by malaria parasites at different life cycle stages. RECENT FINDINGS A number of key effector molecules such as parasite protein ligands for receptor-engagement during invasion as well as proteases and perforin-like proteins that mediate egress have been identified. Interestingly, these parasite-encoded effectors are located in internal, vesicular organelles and are secreted in a highly regulated manner during invasion and egress. Here, we will review our current understanding of the functional roles of these effectors as well as the signaling pathways that regulate their timely secretion with accurate spatiotemporal coordinates. SUMMARY Understanding the molecular basis of key processes such as host cell invasion and egress by malaria parasites could provide novel targets for development of inhibitors to block parasite growth and transmission.
Collapse
|
39
|
Hart RJ, Abraham A, Aly ASI. Genetic Characterization of Coenzyme A Biosynthesis Reveals Essential Distinctive Functions during Malaria Parasite Development in Blood and Mosquito. Front Cell Infect Microbiol 2017; 7:260. [PMID: 28676844 PMCID: PMC5476742 DOI: 10.3389/fcimb.2017.00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
Coenzyme A (CoA) is an essential universal cofactor for all prokaryotic and eukaryotic cells. In nearly all non-photosynthetic cells, CoA biosynthesis depends on the uptake and phosphorylation of vitamin B5 (pantothenic acid or pantothenate). Recently, putative pantothenate transporter (PAT) and pantothenate kinases (PanKs) were functionally characterized in P. yoelii. PAT and PanKs were shown to be dispensable for blood stage development, but they were essential for mosquito stages development. Yet, little is known about the cellular functions of the other enzymes of the CoA biosynthesis pathway in malaria parasite life cycle stages. All enzymes of this pathway were targeted for deletion or deletion/complementation analyses by knockout/knock-in plasmid constructs to reveal their essential roles in P. yoelii life cycle stages. The intermediate enzymes PPCS (Phosphopantothenylcysteine Synthase), PPCDC (Phosphopantothenylcysteine Decarboxylase) were shown to be dispensable for asexual and sexual blood stage development, but they were essential for oocyst development and the production of sporozoites. However, the last two enzymes of this pathway, PPAT (Phosphopantetheine Adenylyltransferase) and DPCK (Dephospho-CoA Kinase), were essential for blood stage development. These results indicate alternative first substrate requirement for the malaria parasite, other than the canonical pantothenate, for the synthesis of CoA in the blood but not inside the mosquito midgut. Collectively, our data shows that CoA de novo biosynthesis is essential for both blood and mosquito stages, and thus validates the enzymes of this pathway as potential antimalarial targets.
Collapse
Affiliation(s)
- Robert J Hart
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| | - Amanah Abraham
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| | - Ahmed S I Aly
- Department of Tropical Medicine, Tulane UniversityNew Orleans, LA, United States
| |
Collapse
|
40
|
Santos JM, Egarter S, Zuzarte-Luís V, Kumar H, Moreau CA, Kehrer J, Pinto A, da Costa M, Franke-Fayard B, Janse CJ, Frischknecht F, Mair GR. Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. eLife 2017; 6:e24109. [PMID: 28525314 PMCID: PMC5438254 DOI: 10.7554/elife.24109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Saskia Egarter
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Hirdesh Kumar
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Catherine A Moreau
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Mário da Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
41
|
Klug D, Frischknecht F. Motility precedes egress of malaria parasites from oocysts. eLife 2017; 6. [PMID: 28115054 PMCID: PMC5262382 DOI: 10.7554/elife.19157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI:http://dx.doi.org/10.7554/eLife.19157.001 Malaria is caused by a parasite transmitted by certain types of mosquito. The parasite lives in different organs within its vertebrate animal and insect hosts and to cope with these different environments it has a complex life cycle with several highly specialized life stages. To move from an infected mosquito into vertebrates the parasite produces spore-like cells called sporozoites that are able to enter different tissues and move very fast. These cells develop inside parasite-made structures called oocysts, which form at the stomach wall of the mosquito. After emerging from the oocyst, sporozoites float through the mosquito’s circulatory system and eventually enter the salivary glands where they can be transmitted to vertebrates when the mosquito bites. Efforts to develop malaria treatments and vaccines have focused on understanding the parasite’s life cycle and identifying ways to control or eradicate key stages. Most researchers focus on the stage where the parasite is living in the vertebrate and actively causing disease, while the events in the mosquito are less intensely investigated. While several parasite proteins have been shown to be important for the release of sporozoites from oocysts, the molecular events leading to this release have not yet been fully resolved. Klug and Frischknecht used time-lapse microscopy to film the release of the sporozoites of a malaria parasite known as Plasmodium berghei. The experiments show that the sporozoites can leave oocysts in several different ways. Furthermore, Klug and Frischknecht identified a new parasite protein named TRP1 that is essential for the sporozoites to leave oocysts and invade the salivary glands. Sporozoites lacking TRP1 were not able to move and they were unable to leave the oocyst or invade the salivary glands. Klug and Frischknecht propose a new working model of the molecular events that govern sporozoite release in which TRP1 is required for sporozoites to move prior to their exit from oocysts. In the future, using the same techniques to analyze genetically modified parasites will help to reveal more details about sporozoite release. DOI:http://dx.doi.org/10.7554/eLife.19157.002
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
42
|
Abstract
Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.
Collapse
|