1
|
Chen Y, Egawa N, Zheng K, Doorbar J. How can HPV E6 manipulate host cell differentiation process to maintain the reservoir of infection. Tumour Virus Res 2025; 19:200313. [PMID: 39832674 PMCID: PMC11847044 DOI: 10.1016/j.tvr.2025.200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Yuwen Chen
- Department of Pathology, University of Cambridge, UK.
| | | | - Ke Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - John Doorbar
- Department of Pathology, University of Cambridge, UK.
| |
Collapse
|
2
|
Kathleen W. Too many cooks in the kitchen: HPV driven carcinogenesis - The result of collaboration or competition? Tumour Virus Res 2024; 19:200311. [PMID: 39733972 PMCID: PMC11753912 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleen
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire, Centre de biologie intégrative, 1 rue Laurent Fries, Illkirch-Graffenstaden, BP 10142, 67404, France.
| |
Collapse
|
3
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
4
|
Maueia C, Carulei O, Murahwa AT, Taku O, Manjate A, Mussá T, Williamson AL. Identification of HPV16 Lineages in South African and Mozambican Women with Normal and Abnormal Cervical Cytology. Viruses 2024; 16:1314. [PMID: 39205288 PMCID: PMC11360388 DOI: 10.3390/v16081314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Human papillomavirus 16 (HPV16) is an oncogenic virus responsible for the majority of invasive cervical cancer cases worldwide. Due to genetic modifications, some variants are more oncogenic than others. We analysed the HPV16 phylogeny in HPV16-positive cervical Desoxyribonucleic Acid (DNA) samples collected from South African and Mozambican women to detect the circulating lineages. METHODS Polymerase chain reaction (PCR) amplification of the long control region (LCR) and 300 nucleotides of the E6 region was performed using HPV16-specific primers on HPV16-positive cervical samples collected in women from South Africa and Mozambique. HPV16 sequences were obtained through Next Generation Sequencing (NGS) methods. Geneious prime and MEGA 11 software were used to align the sequences to 16 HPV16 reference sequences, gathering the A, B, C, and D lineages and generating the phylogenetic tree. Single nucleotide polymorphisms (SNPs) in the LCR and E6 regions were analysed and the phylogenetic tree was generated using Geneious Prime software. RESULTS Fifty-eight sequences were analysed. Of these sequences, 79% (46/58) were from women who had abnormal cervical cytology. Fifteen SNPs in the LCR and eight in the E6 region were found to be the most common in all sequences. The phylogenetic analysis determined that 45% of the isolates belonged to the A1 sublineage (European variant), 34% belonged to the C1 sublineage (African 1 variant), 16% belonged to the B1 and B2 sublineage (African 2 variant), two isolates belonged to the D1-3 sublineages (Asian-American variant), and one to the North American variant. CONCLUSIONS The African and European HPV16 variants were the most common circulating lineages in South African and Mozambican women. A high-grade squamous intraepithelial lesion (HSIL) was the most common cervical abnormality observed and linked to European and African lineages. These findings may contribute to understanding molecular HPV16 epidemiology in South Africa and Mozambique.
Collapse
Affiliation(s)
- Cremildo Maueia
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
- Instituto Nacional de Saúde, Maputo 3943, Mozambique
| | - Olivia Carulei
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Alltalents T. Murahwa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Ongeziwe Taku
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Alice Manjate
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
| | - Tufária Mussá
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- SAMRC Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
5
|
Santos LABDO, Feitosa TDAL, Batista MVDA. Comparative structural studies on Bovine papillomavirus E6 oncoproteins: Novel insights into viral infection and cell transformation from homology modeling and molecular dynamics simulations. Genet Mol Biol 2024; 47:e20230346. [PMID: 39136577 PMCID: PMC11320664 DOI: 10.1590/1678-4685-gmb-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Bovine papillomavirus (BPV) infects cattle cells worldwide, leading to hyperproliferative lesions and the potential development of cancer, driven by E5, E6, and E7 oncoproteins along with other cofactors. E6 oncoprotein binds experimentally to various proteins, primarily paxillin and MAML1, as well as hMCM7 and CBP/p300. However, the molecular and structural mechanisms underlying BPV-induced malignant transformation remain unclear. Therefore, we have modeled the E6 oncoprotein structure from non-oncogenic BPV-5 and compared them with oncogenic BPV-1 to assess the relationship between structural features and oncogenic potential. Our analysis elucidated crucial structural aspects of E6, highlighting both conserved elements across genotypes and genotype-specific variations potentially implicated in the oncogenic process, particularly concerning primary target interactions. Additionally, we predicted the location of the hMCM7 binding site on the N-terminal of BPV-5 E6. This study enhances our understanding of the structural characteristics of BPV E6 oncoproteins and their interactions with host proteins, clarifying structural differences and similarities between high and low-risk BPVs. This is important to understand better the mechanisms involved in cell transformation in BPV infection, which could be used as a possible target for therapy.
Collapse
Affiliation(s)
- Lucas Alexandre Barbosa de Oliveira Santos
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| | - Tales de Albuquerque Leite Feitosa
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| | - Marcus Vinicius de Aragão Batista
- Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Laboratório de Genética Molecular e Biotecnologia (GMBio), São Cristóvão, SE, Brazil
| |
Collapse
|
6
|
Broniarczyk J, Trejo-Cerro O, Massimi P, Kavčič N, Myers MP, Banks L. HPV-18 E6 enhances the interaction between EMILIN2 and SNX27 to promote WNT signaling. J Virol 2024; 98:e0073524. [PMID: 38874360 PMCID: PMC11265340 DOI: 10.1128/jvi.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.
Collapse
Affiliation(s)
- Justyna Broniarczyk
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nežka Kavčič
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Lulić L, Šimić I, Božinović K, Pešut E, Manojlović L, Grce M, Dediol E, Sabol I, Tomaić V. Moderate SCRIB Expression Levels Correlate with Worse Prognosis in OPSCC Patients Regardless of HPV Status. Cells 2024; 13:1002. [PMID: 38920638 PMCID: PMC11201649 DOI: 10.3390/cells13121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.
Collapse
Affiliation(s)
- Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivana Šimić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ena Pešut
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Luka Manojlović
- Department of Pathology and Cytology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
10
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
11
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. Protein Sci 2023; 32:e4611. [PMID: 36851847 PMCID: PMC10022582 DOI: 10.1002/pro.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Protein-protein interactions that involve recognition of short peptides are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are a family of peptide-binding domains located in several intracellular signaling and trafficking pathways. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had marginal effects on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jadon M. Blount
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Sophie N. Jackson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nicholas P. Gill
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Sarah N. Smith
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nick J. Pederson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | | | - Iain G. P. Mackley
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Dean R. Madden
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
12
|
Viral subversion of the cell polarity regulator Scribble. Biochem Soc Trans 2023; 51:415-426. [PMID: 36606695 PMCID: PMC9987997 DOI: 10.1042/bst20221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Scribble is a scaffolding protein that regulates key events such as cell polarity, tumorigenesis and neuronal signalling. Scribble belongs to the LAP family which comprise of 16 Leucine Rich Repeats (LRR) at the N-terminus, two LAP Specific Domains (LAPSD) and four PSD-95/Discs-large/ZO-1 (PDZ) domains at the C-terminus. The four PDZ domains have been shown to be key for a range of protein-protein interactions and have been identified to be crucial mediators for the vast majority of Scribble interactions, particularly via PDZ Binding Motifs (PBMs) often found at the C-terminus of interacting proteins. Dysregulation of Scribble is associated with poor prognosis in viral infections due to subversion of multiple cell signalling pathways by viral effector proteins. Here, we review the molecular details of the interplay between Scribble and viral effector proteins that provide insight into the potential modes of regulation of Scribble mediated polarity signalling.
Collapse
|
13
|
Vats A, Thatte JV, Banks L. Molecular dissection of the E6 PBM identifies essential residues regulating Chk1 phosphorylation and subsequent 14-3-3 recognition. Tumour Virus Res 2023; 15:200257. [PMID: 36775199 PMCID: PMC10009279 DOI: 10.1016/j.tvr.2023.200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
Previous studies have shown that the high-risk HPV E6 oncoprotein PDZ binding motifs (PBMs) can interact with PDZ proteins or members of the 14-3-3 family, depending upon the E6 phosphorylation status. However, different HPV E6 oncoproteins are subjected to phosphorylation by different cellular kinases. We have therefore been interested in determining whether we can dissect E6's PDZ and 14-3-3 interactions at the molecular level. Using HPV-18 E6, we have found that its Chk1 phosphorylation requires residues both upstream and downstream of the phospho-acceptor site, in addition to the Chk1 consensus recognition motif. Furthermore, we demonstrate that different high-risk HPV E6 types are differentially phosphorylated by Chk1 kinases, potentially due to the differences in their carboxy-terminal residues, as they are critical for kinase recognition. Moreover, differences in the E6 phosphorylation levels of different HR HPV types directly link to their ability to interact with different 14-3-3 isoforms, based on their phospho-status. Interestingly, 14-3-3 recognition appears to be less dependent upon the precise sequence constraints of the E6 carboxy terminal region, whilst minor amino acid variations have a major impact upon PDZ recognition. These results demonstrate that changes in E6 phospho-status during the life cycle or during malignant progression will modulate E6 interactions and, potentially, inversely regulate the levels of PDZ and 14-3-3 proteins.
Collapse
Affiliation(s)
- Arushi Vats
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy.
| | - Jayashree V Thatte
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99-34149, Trieste, Italy
| |
Collapse
|
14
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522388. [PMID: 36711692 PMCID: PMC9881875 DOI: 10.1101/2022.12.31.522388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-protein interactions that include recognition of short sequences of amino acids, or peptides, are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are an example of a peptide-binding domain located in several intracellular signaling and trafficking pathways, which form interactions critical for the regulation of receptor endocytic trafficking, tight junction formation, organization of supramolecular complexes in neurons, and other biological systems. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had a marginal effect on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Jadon M. Blount
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Sophie N. Jackson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Melody Gao
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nicholas P. Gill
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sarah N. Smith
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nick J. Pederson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Simone N. Rumph
- Department of Biochemistry, Bowdoin College, Brunswick, ME, USA
| | | | - Iain G. P. Mackley
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Dean R. Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeanine F. Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
15
|
Stewart BZ, Caria S, Humbert PO, Kvansakul M. Structural analysis of human papillomavirus E6 interactions with Scribble PDZ domains. FEBS J 2023. [PMID: 36609831 DOI: 10.1111/febs.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
The cell polarity regulator Scribble has been shown to be a critical regulator of the establishment and development of tissue architecture, and its dysregulation promotes or suppresses tumour development in a context-dependent manner. Scribble activity is subverted by numerous viruses. This includes human papillomaviruses (HPVs), who target Scribble via the E6 protein. Binding of E6 from high-risk HPV strains to Scribble via a C-terminal PDZ-binding motif leads to Scribble degradation in vivo. However, the precise molecular basis for Scribble-E6 interactions remains to be defined. We now show that Scribble PDZ1 and PDZ3 are the major interactors of HPV E6 from multiple high-risk strains, with each E6 protein displaying a unique interaction profile. We then determined crystal structures of Scribble PDZ1 and PDZ3 domains in complex with the PDZ-binding motif (PBM) motifs of E6 from HPV strains 16, 18 and 66. Our findings reveal distinct interaction patterns for each E6 PBM motif from a given HPV strain, suggesting that a complex molecular interplay exists that underpins the overt Scribble-HPV E6 interaction and controls E6 carcinogenic potential.
Collapse
Affiliation(s)
- Bryce Z Stewart
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Sofia Caria
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, VIC, 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Abstract
Human papillomavirus (HPV) E7 plays a major role in HPV-induced malignancy, perturbing cell cycle regulation, and driving cell proliferation. Major targets of cancer-causing HPV E7 proteins are the pRB family of tumor suppressors, which E7 targets for proteasome-mediated degradation and whose interaction is promoted through an acidic patch, downstream of the LXCXE motif in E7, that is subject to phosphorylation by casein kinase II (CKII). In this study we show that HPV-16 E7 targets the AP2-complex, which plays a critical role in cargo recognition in clathrin-mediated endocytosis. Intriguingly, HPV-16 E7 contains a specific amino acid sequence for AP2 recognition, and this overlaps the pRb LXCXE recognition sequence but involves completely different amino acid residues. HPV-16 E7 does this by binding to the AP2-μ2 adaptor protein subunit via residues 25-YEQL-28 within the LXCXE motif. Point mutations at Y25 within 22-LYCYE-26 suggest that the interaction of E7 with AP2-μ2 is independent from pRB binding. In cells, this interaction is modulated by acidic residues downstream of LXCXE, with the binding being facilitated by CKII-phosphorylation of the serines at positions 31 and 32. Finally, we also show that association of HPV-16 E7 with the AP2 adaptor complex can contribute to cellular transformation under low-nutrient conditions, which appears to be mediated, in part, through inhibition of AP2-mediated internalization of epidermal growth factor receptor (EGFR). This indicates that E7 can modulate endocytic transport pathways, with one such component, EGFR, most likely contributing toward the ability of E7 to induce cell transformation and malignancy. These studies define a new and unexpected role for HPV-16 E7 in targeting clathrin-mediated endocytosis. IMPORTANCE Despite being a very small protein, HPV-E7 has a wide range of functions within the infected cell, many of which can lead to cell transformation. High-risk HPV-E7 deregulates the function of many cellular proteins, perturbing cellular homeostasis. We show that a novel target of HPV-E7 is the clathrin-adaptor protein 2 complex (AP2) μ2 subunit, interacting via residues within E7's pRB-binding region. Mutational studies show that an AP2 recognition motif is present in the CR2 region and is conserved in >50 HPV types, suggesting a common function for this motif in HPV biology. Mutational analysis suggests that this motif is important for cellular transformation, potentially modulating endocytosis of growth factor receptors such as EGFR, and thus being a novel activity of E7 in modulating clathrin-mediated endocytosis and cargo selection. This study has important implications for the molecular basis of E7 function in modulating protein trafficking at the cell surface.
Collapse
|
17
|
HPV-18E6 Inhibits Interactions between TANC2 and SNX27 in a PBM-Dependent Manner and Promotes Increased Cell Proliferation. J Virol 2022; 96:e0136522. [PMID: 36326272 PMCID: PMC9683006 DOI: 10.1128/jvi.01365-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While a great deal is known about the role of the E6 PDZ binding motif (PBM) in modulating the cellular proteins involved in regulating cell polarity, much less is known about the consequences of E6's interactions with SNX27 and the endocytic sorting machinery. We reasoned that a potential consequence of such interactions could be to affect the fate of multiple SNX27 endosomal partners, such as transmembrane proteins or soluble accessory proteins.
Collapse
|
18
|
Saponaro C, Galati L, Gheit T, Pappagallo SA, Zambetti M, Zito FA, Cardone RA, Reshkin SJ, Tommasino M. Alteration of Na/H exchange regulatory factor-1 protein levels in anogenital lesions positive for mucosal high-risk human papillomavirus type 16. Virology 2022; 576:69-73. [PMID: 36179457 DOI: 10.1016/j.virol.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Mucosal high-risk (HR) human papillomaviruses (HPV) are associated with anogenital carcinogenesis. The products of two early genes, E6 and E7, act as major viral oncoproteins. Functional studies in experimental models showed that HPV16 E6 induces degradation of the PDZ protein, the Na+/H+ exchanger regulatory factor-1 (NHERF-1). Here, we determined NHERF-1 protein levels by immunohistochemistry (IHC) in (i) benign anogenital warts (n = 8) (ii) premalignant lesions (L-SIL and H-SIL) (n = 43) and (iii) invasive cervical squamous cell carcinomas (SCC) (n = 17). A decrease of NHERF-1 protein level was not observed in genital warts in comparison to healthy epithelium. Conversely, a clearly decrease in NHERF-1 protein levels was observed in HPV16-positive pre-malignant and malignant lesions, while the phenomenon was much attenuated in lesions induced by other HR HPV types. In conclusion, these findings show that mucosal HPV types differently impact on NHERF-1 protein level in benign and malignant anogenital lesions.
Collapse
Affiliation(s)
- Concetta Saponaro
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124, Bari, Italy
| | - Luisa Galati
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Milena Zambetti
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124, Bari, Italy
| | | | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Massimo Tommasino
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124, Bari, Italy.
| |
Collapse
|
19
|
Dizanzo MP, Bugnon Valdano M, Basukala O, Banks L, Gardiol D. Novel effect of the high risk-HPV E7 CKII phospho-acceptor site on polarity protein expression. BMC Cancer 2022; 22:1015. [PMID: 36153517 PMCID: PMC9509620 DOI: 10.1186/s12885-022-10105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Oncogenic Human Papillomaviruses (HPVs) base their transforming potential on the action of both E6 and E7 viral oncoproteins, which perform cooperative or antagonistic actions and thus interfere with a variety of relevant cellular targets. Among them, the expression of some PDZ-containing polarity proteins, as DLG1 and hScrib, is altered during the HPV life cycle and the consequent malignant transformation. Together with the well-established interference of E6 with PDZ proteins, we have recently shown that E7 viral oncoprotein is also responsible for the changes in abundance and localization of DLG1 observed in HPV-associated lesions. Given that the mechanisms involved remained only partially understood, we here thoroughly analyse the contribution of a crucial E7 post-translational modification: its CKII-dependent phosphorylation. Moreover, we extended our studies to hScrib, in order to investigate possible conserved regulatory events among diverse PDZ targets of HPV. Methods We have acutely analysed the expression of DLG1 and hScrib in restrictive conditions for E7 phosphorylation by CKII in epithelial culture cells by western blot and confocal fluorescence microscopy. We made use of genome-edited HPV-positive cells, specific inhibitors of CKII activity and transient expression of the viral oncoproteins, including a mutant version of E7. Results We here demonstrate that the functional phosphorylation of E7 oncoprotein by the CKII cellular kinase, a key regulatory event for its activities, is also crucial to counteract the E6-mediated degradation of the PDZ-polarity protein DLG1 and to promote its subcellular redistribution. Moreover, we show that the CKII-dependent phosphorylation of E7 is able to control the expression of another PDZ target of HPV: hScrib. Remarkably, we found this is a shared feature among different oncogenic HPV types, suggesting a common path towards viral pathogenesis. Conclusions The present study sheds light into the mechanisms behind the misexpression of PDZ-polarity proteins during HPV infections. Our findings stress the relevance of the CKII-mediated regulation of E7 activities, providing novel insights into the joint action of HPV oncoproteins and further indicating a conserved and most likely crucial mechanism during the viral life cycle and the associated transformation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10105-5.
Collapse
|
20
|
Gogl G, Zambo B, Kostmann C, Cousido-Siah A, Morlet B, Durbesson F, Negroni L, Eberling P, Jané P, Nominé Y, Zeke A, Østergaard S, Monsellier É, Vincentelli R, Travé G. Quantitative fragmentomics allow affinity mapping of interactomes. Nat Commun 2022; 13:5472. [PMID: 36115835 PMCID: PMC9482650 DOI: 10.1038/s41467-022-33018-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human protein networks have been widely explored but most binding affinities remain unknown, hindering quantitative interactome-function studies. Yet interactomes rely on minimal interacting fragments displaying quantifiable affinities. Here, we measure the affinities of 65,000 interactions involving PDZ domains and their target PDZ-binding motifs (PBM) within a human interactome region particularly relevant for viral infection and cancer. We calculate interactomic distances, identify hot spots for viral interference, generate binding profiles and specificity logos, and explain selected cases by crystallographic studies. Mass spectrometry experiments on cell extracts and literature surveys show that quantitative fragmentomics effectively complements protein interactomics by providing affinities and completeness of coverage, putting a full human interactome affinity survey within reach. Finally, we show that interactome hijacking by the viral PBM of human papillomavirus E6 oncoprotein substantially impacts the host cell proteome beyond immediate E6 binders, illustrating the complex system-wide relationship between interactome and function. Protein networks have been widely explored but most binding affinities remain unknown, limiting the quantitative interpretation of interactomes. Here the authors measure affinities of 65,000 interactions involving human PDZ domains and target sequence motifs relevant for viral infection and cancer.
Collapse
|
21
|
Molecular basis of Tick Born encephalitis virus NS5 mediated subversion of apico-basal cell polarity signalling. Biochem J 2022; 479:1303-1315. [PMID: 35670457 PMCID: PMC9317960 DOI: 10.1042/bcj20220037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The Scribble (Scrib) protein is a conserved cell polarity regulator with anti-tumorigenic properties. Viruses like the Tick-born encephalitis virus (TBEV) target Scribble to establish a cellular environment supporting viral replication, which is ultimately associated with poor prognosis upon infection. The TBEV NS5 protein has been reported to harbour both an internal as well as a C-terminal PDZ binding motif (PBM), however only the internal PBM was shown to be an interactor with Scribble, with the interaction being mediated via the Scribble PDZ4 domain to antagonize host interferon responses. We examined the NS5 PBM motif interactions with all Scribble PDZ domains using isothermal titration calorimetry, which revealed that the proposed internal PBM did not interact with any Scribble PDZ domains. Instead, the C-terminal PBM of NS5 interacted with Scrib PDZ3. We then established the structural basis of these interactions by determining crystal structures of Scrib PDZ3 bound to the NS5 C-terminal PBM. Our findings provide a structural basis for Scribble PDZ domain and TBEV NS5 interactions and provide a platform to dissect the pathogenesis of TBEV and the role of cell polarity signalling using structure guided approaches.
Collapse
|
22
|
Long T, Burk RD, Chan PKS, Chen Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 2022; 18:e1010444. [PMID: 35333912 PMCID: PMC8986119 DOI: 10.1371/journal.ppat.1010444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.
Collapse
Affiliation(s)
- Teng Long
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, New York city, New York, United States of America
- * E-mail: (RDB); (ZC)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail: (RDB); (ZC)
| |
Collapse
|
23
|
Araujo-Arcos LE, Montaño S, Bello-Rios C, Garibay-Cerdenares OL, Leyva-Vázquez MA, Illades-Aguiar B. Molecular insights into the interaction of HPV-16 E6 variants against MAGI-1 PDZ1 domain. Sci Rep 2022; 12:1898. [PMID: 35115618 PMCID: PMC8814009 DOI: 10.1038/s41598-022-05995-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Oncogenic protein E6 from Human Papilloma Virus 16 (HPV-16) mediates the degradation of Membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1), throughout the interaction of its protein binding motif (PBM) with the Discs-large homologous regions 1 (PDZ1) domain of MAG1-1. Generic variation in the E6 gene that translates to changes in the protein’s amino acidic sequence modifies the interaction of E6 with the cellular protein MAGI-1. MAGI-1 is a scaffolding protein found at tight junctions of epithelial cells, where it interacts with a variety of proteins regulating signaling pathways. MAGI-1 is a multidomain protein containing two WW (rsp-domain-9), one guanylate kinase-like, and six PDZ domains. PDZ domains played an important role in the function of MAGI-1 and served as targets for several viral proteins including the HPV-16 E6. The aim of this work was to evaluate, with an in silico approach, employing molecular dynamics simulation and protein–protein docking, the interaction of the intragenic variants E-G350 (L83V), E-C188/G350 (E29Q/L83V), E-A176/G350 (D25N/L83V), E6-AAa (Q14H/H78Y/83V) y E6-AAc (Q14H/I27RH78Y/L83V) and E6-reference of HPV-16 with MAGI-1. We found that variants E-G350, E-C188/G350, E-A176/G350, AAa and AAc increase their affinity to our two models of MAGI-1 compared to E6-reference.
Collapse
Affiliation(s)
- Lilian Esmeralda Araujo-Arcos
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, 80030, Culiacán Sinaloa, CP, México.
| | - Ciresthel Bello-Rios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.,CONACyT-Universidad Autónoma de Guerrero, 39087, Chilpancingo, CP, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.
| |
Collapse
|
24
|
Doorbar J, Zheng K, Aiyenuro A, Yin W, Walker CM, Chen Y, Egawa N, Griffin HM. Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Curr Opin Virol 2021; 51:96-105. [PMID: 34628359 DOI: 10.1016/j.coviro.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion. These lesions may be considered as self-regulating homeostatic structures, with epithelial cells of the hair follicles and sweat glands, which are proposed targets of the Beta and Mu papillomaviruses, showing similar restrictions to their expansion across the epithelium as a whole. In the absence of immune control, which facilitates deregulated viral gene expression, such lesions can expand, leading to problematic papillomatosis in afflicted individuals. By contrast, he high-risk Alpha HPV types can undergo deregulated viral gene expression in immunocompetent hosts at a number of body sites, including the cervical transformation zone (TZ) where they can drive the formation of neoplasia. Homeostasis at the TZ is poorly understood, but involves two adjacent epithelial cell population, one of which has the potential to stratify and to produce a multilayed squamous epithelium. This process of metaplasia involves a specialised cell type known as the reserve cell, which has for several decades been considered as the cell of origin of cervical cancer. It is becoming clear that during evolution, HPV gene products have acquired functions directly linked to their requirements to modify the normal processes of epithelial homestasis at their various sites of infection. These protein functions are beginning to provide new insight into homeostasis regulation at different body sites, and are likely to be central to our understanding of HPV epithelial tropisms.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom.
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Caroline M Walker
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Yuwen Chen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Heather M Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| |
Collapse
|
25
|
Wang J, Liu G, Liu M, Cai Q, Yao C, Chen H, Song N, Yuan C, Tan D, Hu Y, Xiang Y, Xiang T. High-Risk HPV16 E6 Activates the cGMP/PKG Pathway Through Glycosyltransferase ST6GAL1 in Cervical Cancer Cells. Front Oncol 2021; 11:716246. [PMID: 34745942 PMCID: PMC8564291 DOI: 10.3389/fonc.2021.716246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in glycosylation regulate fundamental molecular and cellular processes of cancer, serving as important biomarkers and therapeutic targets. However, the potential association and regulatory mechanisms of E6 oncoprotein on glycosylation of cervical cancer cells are still unclear. Here, we evaluated the glycomic changes via using Lectin microarray and determined the corresponding enzymes associated with endogenous high-risk HPV16 E6 expression in cervical cancer cells. α-2,6 sialic acids and the corresponding glycosyltransferase ST6GAL1 were significantly increased in E6 stable-expressing HPV- cervical cancer C33A cells. Clinical validation further showed that the expression of ST6GAL1 was significantly increased in patients infected with high-risk HPV subtypes and showed a positive association with E6 in cervical scraping samples. Interfering ST6GAL1 expression markedly blocked the oncogenic effects of E6 on colony formulation, proliferation, and metastasis. Importantly, ST6GAL1 overexpression enhanced tumorigenic activities of both E6-positive and E6-negative cells. Mechanistical investigations revealed that E6 depended on activating YAP1 to stimulate ST6GAL1 expression, as verteporfin (inhibitor of YAP1) significantly suppressed the E6-induced ST6GAL1 upregulation. E6/ST6GAL1 triggered the activation of downstream cGMP/PKG signaling pathway and ODQ (inhibitor of GMP production) simultaneously suppressed the oncogenic activities of both E6 and ST6GAL1 in cervical cancer cells. Taken together, these findings indicate that ST6GAL1 is an important mediator for oncogenic E6 protein to activate the downstream cGMP/PKG signaling pathway, which represents a novel molecular mechanism and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| | - Mei Liu
- Department of Laboratory Medicine, Wuhan Hankou Hospital, Wuhan, China
| | - Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cong Yao
- Health Care Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Neng Song
- Department of Laboratory Medicine, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Decai Tan
- Department of Science and Education, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| | - Yuhai Hu
- Department of Laboratory Medicine, Wuhan Hankou Hospital, Wuhan, China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tian Xiang
- Department of Laboratory Medicine, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| |
Collapse
|
26
|
Thomas M, Banks L. The biology of papillomavirus PDZ associations: what do they offer papillomaviruses? Curr Opin Virol 2021; 51:119-126. [PMID: 34655911 DOI: 10.1016/j.coviro.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023]
Abstract
The high-risk α-type papillomaviruses have a C-terminal PDZ-binding motif (PBM) on one of the two major oncoproteins E6 or E7; the vast majority on E6. The PBM is essential for the high-risk HPV life cycle, for episomal maintenance of the virus genome, and for maintaining the mitotic stability of the infected cell. The question is why only these viruses have PBMs - are there specific constraints imposed by the mucosal epithelium in which these viruses replicate? However the low-risk α-HPVs, such as HPV-6 and HPV-11 replicate extremely efficiently without a PBM, while viruses of the alpha8 group, such as HPV-40, replicate well with a very primitive PBM. So what does PDZ-binding capacity contribute to the fitness of the virus?
Collapse
Affiliation(s)
- Miranda Thomas
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy.
| | - Lawrence Banks
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
27
|
Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data. Molecules 2021; 26:molecules26196034. [PMID: 34641578 PMCID: PMC8512817 DOI: 10.3390/molecules26196034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.
Collapse
|
28
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
29
|
Yang Z, Liu H, Song R, Lu W, Wang H, Gu S, Cao X, Chen Y, Liang J, Qin Q, Yang X, Feng D, He J. Reduced MAGI3 level by HPV18E6 contributes to Wnt/β-catenin signaling activation and cervical cancer progression. FEBS Open Bio 2021; 11:3051-3062. [PMID: 34510826 PMCID: PMC8564337 DOI: 10.1002/2211-5463.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus type 18 (HPV18) has high carcinogenic power in invasive cervical cancer (ICC) development. However, the underlying mechanism remains elusive. The carcinogenic properties of HPV18 require the PDZ‐binding motif of its E6 oncoprotein (HPV18 E6) to degrade its target PSD95/Dlg/ZO‐1 (PDZ) proteins. In this study, we demonstrated that the PDZ protein membrane‐associated guanylate kinase, WW and PDZ domain containing 3 (MAGI3) inhibited the Wnt/β‐catenin pathway, and subsequently cervical cancer (CC) cell migration and invasion, via decreasing β‐catenin levels. By reducing MAGI3 protein levels, HPV18 E6 promoted CC cell migration and invasion through activation of Wnt/β‐catenin signaling. Furthermore, HPV18 rather than HPV16 was preferentially associated with the downregulation of MAGI3 and activation of the Wnt/β‐catenin pathway in CC. These findings shed light on the mechanism that gives HPV18 its high carcinogenic potential in CC progression.
Collapse
Affiliation(s)
- Zhuoli Yang
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Hua Liu
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Ran Song
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Wenxiu Lu
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Haibo Wang
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Siyu Gu
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Xuedi Cao
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Yibin Chen
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Jihuan Liang
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Qiong Qin
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Xiaomei Yang
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| | - Duiping Feng
- Department of Interventional RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Junqi He
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory for Tumor Invasion and MetastasisCapital Medical UniversityBeijingChina
| |
Collapse
|
30
|
Messa L, Celegato M, Bertagnin C, Mercorelli B, Alvisi G, Banks L, Palù G, Loregian A. The Dimeric Form of HPV16 E6 Is Crucial to Drive YAP/TAZ Upregulation through the Targeting of hScrib. Cancers (Basel) 2021; 13:cancers13164083. [PMID: 34439242 PMCID: PMC8393709 DOI: 10.3390/cancers13164083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Understanding the mechanisms of action of HPV oncoproteins is pivotal for the rationale development of anti-cancer drugs to treat HPV-related malignancies. The aim of the present study was to explore more in detail the mechanism of action of the HPV16 oncoprotein E6 that directly fosters the YAP/TAZ signaling pathway, a conserved cascade highly active in HPV-related cancers. We confirmed previous evidence about the importance of the PDZ-protein targeting in this process, highlighting here the importance of hScrib degradation, and discovered that the targeting of the Scribble module involves the dimeric form of HPV16 E6. The findings here presented extend our knowledge about the mechanism through which the oncoprotein E6 targets a PDZ-host factor to degradation in cancer cells. Abstract Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein–protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Marta Celegato
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
- Correspondence: ; Tel.: +39-049-8272363
| |
Collapse
|
31
|
Cobos ES, Sánchez IE, Chemes LB, Martinez JC, Murciano-Calles J. A Thermodynamic Analysis of the Binding Specificity between Four Human PDZ Domains and Eight Host, Viral and Designed Ligands. Biomolecules 2021; 11:biom11081071. [PMID: 34439737 PMCID: PMC8393326 DOI: 10.3390/biom11081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023] Open
Abstract
PDZ domains are binding modules mostly involved in cell signaling and cell–cell junctions. These domains are able to recognize a wide variety of natural targets and, among the PDZ partners, viruses have been discovered to interact with their host via a PDZ domain. With such an array of relevant and diverse interactions, PDZ binding specificity has been thoroughly studied and a traditional classification has grouped PDZ domains in three major specificity classes. In this work, we have selected four human PDZ domains covering the three canonical specificity-class binding mode and a set of their corresponding binders, including host/natural, viral and designed PDZ motifs. Through calorimetric techniques, we have covered the entire cross interactions between the selected PDZ domains and partners. The results indicate a rather basic specificity in each PDZ domain, with two of the domains that bind their cognate and some non-cognate ligands and the two other domains that basically bind their cognate partners. On the other hand, the host partners mostly bind their corresponding PDZ domain and, interestingly, the viral ligands are able to bind most of the studied PDZ domains, even those not previously described. Some viruses may have evolved to use of the ability of the PDZ fold to bind multiple targets, with resulting affinities for the virus–host interactions that are, in some cases, higher than for host–host interactions.
Collapse
Affiliation(s)
- Eva S. Cobos
- Departamento Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (E.S.C.); (J.C.M.)
| | - Ignacio E. Sánchez
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, 1428 Buenos Aires, Argentina;
| | - Lucía B. Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, 1650 Buenos Aires, Argentina;
| | - Jose C. Martinez
- Departamento Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (E.S.C.); (J.C.M.)
| | - Javier Murciano-Calles
- Departamento Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (E.S.C.); (J.C.M.)
- Correspondence:
| |
Collapse
|
32
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
33
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
34
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
35
|
Umnajvijit W, Sangthong J, Loison F, Vaeteewoottacharn K, Ponglikitmongkol M. An internal class III PDZ binding motif in HPV16 E6* protein is required for Dlg degradation activity. Biochim Biophys Acta Gen Subj 2021; 1865:129850. [PMID: 33486056 DOI: 10.1016/j.bbagen.2021.129850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND A splice product of the E6 oncoprotein, E6*, is found in cells infected with HPV associated with a high-risk for cervical cancer. Both E6* and E6 promote Dlg degradation, considered a contributing factor for the tumorigenic potential of high-risk HPVs. The full-length E6 utilizes a conserved PDZ binding motif (PBM) at the extreme C-terminus to promote Dlg degradation. In contrast, this PBM is absent in E6*. METHODS We performed western blot analysis, site-directed mutagenesis and co-immunoprecipitation to identify the key elements required for Dlg degradation activity of high-risk HPVE6*, using HPV16E6* as a model. RESULTS Our data indicate that only one of the two internal putative class III PBMs, located between amino acids 24-27 (HDII) of HPV16E6*, was required to facilitate degradation of Dlg protein. Substitution of the two consensus residues in this region (D25 and I27) to glycine greatly diminished activity. Whereas substitution of the two conserved residues in the putative internal class I PBM (amino acids 16-19) or the second putative class III PBM (amino acids 28-31) was without effect. Interestingly, HPV66E6* which does not promote Dlg degradation can be converted into a form capable of facilitating Dlg degradation through the insertion of nine amino acids (20-28) containing the class III PBM from HPV16E6*. HPV16E6*-induced Dlg degradation appeared independent of E6AP. CONCLUSIONS The internal class III PBM of HPV16E6*I required for Dlg degradation is identified. GENERAL SIGNIFICANCE This study highlights that a novel class III PBM as the domain responsible for Dlg degradation activity in high-risk HPVE6*.
Collapse
Affiliation(s)
- Wareerat Umnajvijit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jariya Sangthong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
36
|
Dual Specificity PDZ- and 14-3-3-Binding Motifs: A Structural and Interactomics Study. Structure 2020; 28:747-759.e3. [DOI: 10.1016/j.str.2020.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
|
37
|
MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog 2020; 16:e1008624. [PMID: 32555725 PMCID: PMC7326282 DOI: 10.1371/journal.ppat.1008624] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide. They are the aetiological agents of almost all cervical cancers as well as a sub-set of other anogenital and head and neck cancers. Hijacking of host cellular pathways is essential for virus pathogenesis; however, a major challenge remains to identify key host targets and to define their contribution to HPV-driven malignancy. The Hippo pathway regulates epithelial homeostasis by down-regulating the function of the transcription factor YAP. Increased YAP expression has been observed in cervical cancer but the mechanisms driving this increase remain unclear. We found significant down-regulation of the master Hippo regulatory kinase STK4 (also termed MST1) in cervical disease samples and cervical cancer cell lines compared with healthy controls. Re-introduction of STK4 inhibited the proliferation of HPV positive cervical cells and this corresponded with decreased YAP nuclear localization and decreased YAP-dependent gene expression. The HPV E6 and E7 oncoproteins maintained low STK4 expression in cervical cancer cells by upregulating the oncomiR miR-18a, which directly targeted the STK4 mRNA 3’UTR. Interestingly, miR-18a knockdown increased STK4 expression and activated the Hippo pathway, significantly reducing cervical cancer cell proliferation. Our results identify STK4 as a key cervical cancer tumour suppressor, which is targeted via miR-18a in HPV positive tumours. Our study indicates that activation of the Hippo pathway may offer a therapeutically beneficial option for cervical cancer treatment. HPVs are the causative agents of ~5% of human cancers. Better understanding of the mechanisms by which these viruses deregulate cellular signalling pathways may offer therapeutic options for HPV-associated malignancies. The transcription factor YAP is active in cervical cancer but the mechanisms controlling its activation remain unclear. YAP is negatively regulated and sequestered in the cytoplasm through activation of the Hippo pathway. We discovered that expression of the master Hippo kinase, STK4 (also termed MST1), is reduced in HPV positive cervical cell lines and cervical disease samples. Low STK4 levels were maintained by the HPV oncogenes through up-regulation of miR-18a, which targeted the STK4 mRNA 3’UTR. Re-introduction of STK4 or bypassing miR-18a-dependent regulation de-activated YAP-driven transcription and reduced cell proliferation. Thus, our study identifies a novel interplay between HPV oncogenes and the STK4 tumour suppressor and identifies the Hippo pathway as a target for therapeutic intervention in HPV-associated malignancies.
Collapse
|
38
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
39
|
Santoni MJ, Kashyap R, Camoin L, Borg JP. The Scribble family in cancer: twentieth anniversary. Oncogene 2020; 39:7019-7033. [PMID: 32999444 PMCID: PMC7527152 DOI: 10.1038/s41388-020-01478-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Among the more than 160 PDZ containing proteins described in humans, the cytoplasmic scaffold Scribble stands out because of its essential role in many steps of cancer development and dissemination. Its fame has somehow blurred the importance of homologous proteins, Erbin and Lano, all belonging to the LRR and PDZ (LAP) protein family first described twenty years ago. In this review, we will retrace the history of LAP family protein research and draw attention to their contribution in cancer by detailing the features of its members at the structural and functional levels, and highlighting their shared-but also different-implication in the tumoral process.
Collapse
Affiliation(s)
- Marie-Josée Santoni
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Rudra Kashyap
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.5596.f0000 0001 0668 7884Cellular and Molecular Medicine, Katholisch University of Leuven, Leuven, Belgium
| | - Luc Camoin
- grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
40
|
PDZ Domain-Containing Protein NHERF-2 Is a Novel Target of Human Papillomavirus 16 (HPV-16) and HPV-18. J Virol 2019; 94:JVI.00663-19. [PMID: 31597772 DOI: 10.1128/jvi.00663-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer-causing human papillomavirus (HPV) E6 oncoproteins have a class I PDZ-binding motif (PBM) on their C termini, which play critical roles that are related to the HPV life cycle and HPV-induced malignancies. E6 oncoproteins use these PBMs to interact with, to target for proteasome-mediated degradation, a plethora of cellular substrates that contain PDZ domains and that are involved in the regulation of various cellular pathways. In this study, we show that both HPV-16 and HPV-18 E6 oncoproteins can interact with Na+/H+ exchange regulatory factor 2 (NHERF-2), a PDZ domain-containing protein, which among other cellular functions also behaves as a tumor suppressor regulating endothelial proliferation. The interaction between the E6 oncoproteins and NHERF-2 is PBM dependent and results in proteasome-mediated degradation of NHERF-2. We further confirmed this effect in cells derived from HPV-16- and HPV-18-positive cervical tumors, where we show that NHERF-2 protein turnover is increased in the presence of E6. Finally, our data indicate that E6-mediated NHERF-2 degradation results in p27 downregulation and cyclin D1 upregulation, leading to accelerated cellular proliferation. To our knowledge, this is the first report to demonstrate that E6 oncoproteins can stimulate cell proliferation by indirectly regulating p27 through targeting a PDZ domain-containing protein.IMPORTANCE This study links HPV-16 and HPV-18 E6 oncoproteins to the modulation of cellular proliferation. The PDZ domain-containing protein NHERF-2 is a tumor suppressor that has been shown to regulate endothelial proliferation; here, we demonstrate that NHERF-2 is targeted by HPV E6 for proteasome-mediated degradation. Interestingly, this indirectly affects p27, cyclin D1, and CDK4 protein levels and, consequently, affects cell proliferation. Hence, this study provides information that will improve our understanding of the molecular basis for HPV E6 function, and it also highlights the importance of the PDZ domain-containing protein NHERF-2 and its tumor-suppressive role in regulating cell proliferation.
Collapse
|
41
|
ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size. Int J Mol Sci 2019; 20:ijms20174128. [PMID: 31450555 PMCID: PMC6747478 DOI: 10.3390/ijms20174128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
ZO-2 is a cytoplasmic protein of tight junctions (TJs). Here, we describe ZO-2 involvement in the formation of the apical junctional complex during early development and in TJ biogenesis in epithelial cultured cells. ZO-2 acts as a scaffold for the polymerization of claudins at TJs and plays a unique role in the blood–testis barrier, as well as at TJs of the human liver and the inner ear. ZO-2 movement between the cytoplasm and nucleus is regulated by nuclear localization and exportation signals and post-translation modifications, while ZO-2 arrival at the cell border is triggered by activation of calcium sensing receptors and corresponding downstream signaling. Depending on its location, ZO-2 associates with junctional proteins and the actomyosin cytoskeleton or a variety of nuclear proteins, playing a role as a transcriptional repressor that leads to inhibition of cell proliferation and transformation. ZO-2 regulates cell architecture through modulation of Rho proteins and its absence induces hypertrophy due to inactivation of the Hippo pathway and activation of mTOR and S6K. The interaction of ZO-2 with viral oncoproteins and kinases and its silencing in diverse carcinomas reinforce the view of ZO-2 as a tumor regulator protein.
Collapse
|
42
|
Khan Z, Terrien E, Delhommel F, Lefebvre-Omar C, Bohl D, Vitry S, Bernard C, Ramirez J, Chaffotte A, Ricquier K, Vincentelli R, Buc H, Prehaud C, Wolff N, Lafon M. Structure-based optimization of a PDZ-binding motif within a viral peptide stimulates neurite outgrowth. J Biol Chem 2019; 294:13755-13768. [PMID: 31346033 DOI: 10.1074/jbc.ra119.008238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
Protection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth. Here, we designed peptides derived from the native viral protein to increase the affinity of these peptides for the MAST2-PDZ domain. Our strategy involved modifying the length and flexibility of the noninteracting sequence linking the two subsites anchoring the peptide to the PDZ domain. Three peptides, Neurovita1 (NV1), NV2, and NV3, were selected, and we found that they all had increased affinities for the MAST2-PDZ domain, with Kd values decreasing from 1300 to 60 nm, while target selectivity was maintained. A parallel biological assay evaluating neurite extension and branching in cell cultures revealed that the NV peptides gradually improved neural activity, with the efficacies of these peptides for stimulating neurite outgrowth mirroring their affinities for MAST2-PDZ. We also show that NVs can be delivered into the cytoplasm of neurons as a gene or peptide. In summary, our findings indicate that virus-derived peptides targeted to MAST2-PDZ stimulate neurite outgrowth in several neuron types, opening up promising avenues for potentially using NVs in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zakir Khan
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Elouan Terrien
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Florent Delhommel
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Cynthia Lefebvre-Omar
- Institut du Cerveau et de la Moelle Epinière, ICM, U1127 INSERM, UMR 7225 CNRS, Sorbonne Université, Paris 75013, France
| | - Delphine Bohl
- Institut du Cerveau et de la Moelle Epinière, ICM, U1127 INSERM, UMR 7225 CNRS, Sorbonne Université, Paris 75013, France
| | - Sandrine Vitry
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Clara Bernard
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Juan Ramirez
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Alain Chaffotte
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Kevin Ricquier
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Renaud Vincentelli
- Unité Mixte de Recherche 7257, CNRS Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13009, France
| | - Henri Buc
- Institut Pasteur, Paris 75015, France
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| | - Nicolas Wolff
- Institut Pasteur, Unité de RMN des Biomolécules, UMR 3528, CNRS, Paris 75015, France
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris 75015, France
| |
Collapse
|
43
|
Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog 2019; 15:e1007835. [PMID: 31226168 PMCID: PMC6608985 DOI: 10.1371/journal.ppat.1007835] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is the leading cause of cervical cancer. Although the fundamental link between HPV infection and oncogenesis is established, the specific mechanisms of virus-mediated transformation are not fully understood. We previously demonstrated that the HPV encoded E6 protein increases the activity of the proto-oncogenic transcription factor STAT3 in primary human keratinocytes; however, the molecular basis for STAT3 activation in cervical cancer remains unclear. Here, we show that STAT3 phosphorylation in HPV positive cervical cancer cells is mediated primarily via autocrine activation by the pro-inflammatory cytokine Interleukin 6 (IL-6). Antibody-mediated blockade of IL-6 signalling in HPV positive cells inhibits STAT3 phosphorylation, whereas both recombinant IL-6 and conditioned media from HPV positive cells leads to increased STAT3 phosphorylation within HPV negative cervical cancer cells. Interestingly, we demonstrate that activation of the transcription factor NFκB, involving the small GTPase Rac1, is required for IL-6 production and subsequent STAT3 activation. Our data provides new insights into the molecular re-wiring of cancer cells by HPV E6. We reveal that activation of an IL-6 signalling axis drives the autocrine and paracrine phosphorylation of STAT3 within HPV positive cervical cancers cells and that activation of this pathway is essential for cervical cancer cell proliferation and survival. Greater understanding of this pathway provides a potential opportunity for the use of existing clinically approved drugs for the treatment of HPV-mediated cervical cancer.
Collapse
|
44
|
Genera M, Samson D, Raynal B, Haouz A, Baron B, Simenel C, Guerois R, Wolff N, Caillet-Saguy C. Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein. Sci Rep 2019; 9:7438. [PMID: 31092861 PMCID: PMC6520365 DOI: 10.1038/s41598-019-43932-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.
Collapse
Affiliation(s)
- Mariano Genera
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France.,Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Damien Samson
- RMN des biomolécules, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie, Institut Pasteur UMR 3528, CNRS, F-75724, Paris, France
| | - Bruno Baron
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Catherine Simenel
- RMN des biomolécules, Institut Pasteur, UMR 3528, CNRS, F-75724, Paris, France
| | - Raphael Guerois
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, Cedex, France
| | - Nicolas Wolff
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France
| | - Célia Caillet-Saguy
- Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, F-75724, Paris, France.
| |
Collapse
|
45
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
46
|
Sarabia-Vega V, Banks L. Acquisition of a phospho-acceptor site enhances HPV E6 PDZ-binding motif functional promiscuity. J Gen Virol 2019; 101:954-962. [PMID: 30810519 DOI: 10.1099/jgv.0.001236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
All cancer-causing human papillomavirus (HPV) E6 oncoproteins have a C-terminal PDZ-binding motif (PBM), which correlates with oncogenic potential. Nonetheless, several HPVs with little or no oncogenic potential also have an E6 PBM, with minor sequence differences affecting PDZ protein selectivity. Furthermore, certain HPV types have a phospho-acceptor site embedded within the PBM. We therefore compared HPV-18, HPV-66 and HPV-40 E6 proteins to examine the possible link between the ability to target multiple PDZ proteins and the acquisition of a phospho-acceptor site. The mutation of essential residues in HPV-18E6 reduces its phosphorylation, and fewer PDZ substrates are bound. In contrast, the generation of consensus phospho-acceptor sites in HPV-66 and HPV-40 E6 PBMs increases the PDZ proteins recognized. Thus, although phosphorylation of the E6 PBM and PDZ protein recognition are mutually exclusive, they are closely linked, with the acquisition of a phospho-acceptor site also contributing to an expansion in the number of PDZ proteins bound.
Collapse
Affiliation(s)
- Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
47
|
Crystal structure of the human Scribble
PDZ
1 domain bound to the
PDZ
‐binding motif of
APC. FEBS Lett 2019; 593:533-542. [DOI: 10.1002/1873-3468.13329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 02/01/2023]
|
48
|
Nasal virome of dogs with respiratory infection signs include novel taupapillomaviruses. Virus Genes 2019; 55:191-197. [PMID: 30632017 PMCID: PMC7088604 DOI: 10.1007/s11262-019-01634-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 11/24/2022]
Abstract
Using viral metagenomics, we characterized the mammalian virome of nasal swabs from 57 dogs with unexplained signs of respiratory infection showing mostly negative results using the IDEXX Canine Respiratory Disease RealPCR™ Panel. We identified canine parainfluenza virus 5, canine respiratory coronavirus, carnivore bocaparvovirus 3, canine circovirus and canine papillomavirus 9. Novel canine taupapillomaviruses (CPV21-23) were also identified in 3 dogs and their complete genome sequenced showing L1 nucleotide identity ranging from 68.4 to 70.3% to their closest taupapillomavirus relative. Taupapillomavirus were the only mammalian viral nucleic acids detected in two affected dogs, while a third dog was coinfected with low levels of canine parainfluenza 5. A role for these taupapillomavirues in canine respiratory disease remains to be determined.
Collapse
|
49
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
50
|
Wang Q, Song R, Zhao C, Liu H, Yang Y, Gu S, Feng D, He J. HPV16 E6 promotes cervical cancer cell migration and invasion by downregulation of NHERF1. Int J Cancer 2018; 144:1619-1632. [PMID: 30230542 DOI: 10.1002/ijc.31876] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/29/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
HPV16 is the predominant type of HPV causing invasive cervical cancer. However, the underlying molecular mechanism of the unparalleled carcinogenic power of HPV16 compared to other types of high-risk (HR)-HPV including HPV18 remains elusive. The PDZ binding motif (PBM) of high-risk HPV E6 plays an important role in neoplasia and progression of cervical cancer. HPV16 E6 rather than HPV18 E6, interacted with NHERF1 by its PBM region, and induced degradation of NHERF1. NHERF1 retarded the assembly of cytoskeleton by downregulation of ACTN4, thereby inhibited the migration and invasion of cervical cancer cells in both cell and mouse model. HPV16 E6 was confirmed to enhance actin polymerization with increased ACTN4 level by downregulation of NHERF1, and result in enhanced migration and invasion of cervical cancer cells. GSEA analysis of cervical cancer specimens also showed that HPV16 E6 rather than HPV18 E6, was significantly associated with actin cytoskeleton assembly. That downregulation of NHERF1 by HPV16 E6 promoted cytoskeleton assembly and cell invasion, was an important cause in cervical cancer carcinogenesis. These findings provided the differential mechanism between HPV16 E6 and HPV18 E6 in the development and progression of cervical cancer, which may partially explain the differences of carcinogenic power between these two types of HR-HPVs.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Ran Song
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Chunjuan Zhao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Hua Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, People's Republic of China
| | - Siyu Gu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Duiping Feng
- Department of Interventional Radiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|