1
|
Zheng Y, Sun H, Wang Y, Jin C, Li X, Pang Y, Ge Q, Wang L, Liu B. CsiR-Mediated Signal Transduction Pathway in Response to Low Iron Conditions Promotes Escherichia coli K1 Invasion and Penetration of the Blood-Brain Barrier. J Infect Dis 2024; 230:e807-e817. [PMID: 38531686 PMCID: PMC11481304 DOI: 10.1093/infdis/jiae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Escherichia coli K1 is the leading cause of neonatal gram-negative bacterial meningitis, but the pathogenesis of E coli K1 meningitis remains unclear. Blood-brain barrier (BBB) penetration is a crucial step in E coli meningitis development. Here, we uncovered the crucial role of CsiR, a GntR family regulator, in E coli K1 virulence. During infection, csiR expression was induced due to the derepression by Fur in the blood and human brain microvascular endothelial cells (HBMECs). CsiR positively regulated ilvB expression, which is associated with branched chain amino acid synthesis. Furthermore, we revealed that IlvB activated the FAK/PI3K pathway of HBMECs to induce actin cytoskeleton rearrangements, thereby promoting the bacterial invasion and penetration of the BBB. Overall, this study reveals a CsiR-mediated virulence regulation pathway in E coli K1, which may provide a useful target for the prevention or therapy of E coli meningitis.
Collapse
Affiliation(s)
- Yangyang Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Qianwen Ge
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University,Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Huang G, Yang S, Long T, Gao Y, Lin G. Proteomic analysis of brain tissue from ducks with meningitis caused by Riemerella anatipestifer infection. Poult Sci 2024; 103:104059. [PMID: 39068696 PMCID: PMC11338091 DOI: 10.1016/j.psj.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium that is flagellated, non-budded, and encapsulated, measuring approximately 0.4 μm × 0.7 μm. After infecting ducklings with R. anatipestifer, the hosts exhibited pathological changes, such as bacterial meningitis, fibrinous pericarditis, and fibrinous peripheral hepatitis. The pathogenesis of meningitis caused by R. anatipestifer has not yet been elucidated. To investigate the key molecules or proteins involved in R. anatipestifer's penetration of the blood-brain barrier (BBB) and the subsequent development of duck meningitis, a duck meningitis model was established and characterized. Duckling brain tissues were collected and analyzed using 4D label-free proteomic technology. Differentially expressed proteins were analyzed using a series of bioinformatics methods and verified using RT-qPCR and Western-Blot. The results showed that the differentially expressed proteins were primarily related to intracellular transport, transport protein activity, and transmembrane transport protein activity, and were mainly enriched in pathways associated with reducing intercellular connections and adhesion and increasing cell migration and apoptosis. Thus, it is suggested that R. anatipestifer may penetrate the BBB via transcellular and paracellular pathways, causing neurological diseases such as meningitis. This study is the first to analyze R. anatipestifer-infected duckling brain tissue using proteomics, thus providing a direction for further research into the mechanisms of R. anatipestifer's penetration of the BBB.
Collapse
Affiliation(s)
- Guoliang Huang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Shengmei Yang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ting Long
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Yuhan Gao
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Guozhen Lin
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Sun J, Yang R, Fu J, Huo D, Qu X, Tan C, Chen H, Wang X. TGFβ1-induced hedgehog signaling suppresses the immune response of brain microvascular endothelial cells elicited by meningitic Escherichia coli. Cell Commun Signal 2024; 22:123. [PMID: 38360663 PMCID: PMC10868028 DOI: 10.1186/s12964-023-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFβ1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT In this work, we showed that exogenous TGFβ1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION Our work revealed the effect of TGFβ1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.
Collapse
Affiliation(s)
- Jinrui Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
4
|
Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, Basri H. In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Curr Neuropharmacol 2024; 22:1344-1373. [PMID: 38073104 PMCID: PMC11092920 DOI: 10.2174/1570159x22666231207114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 05/16/2024] Open
Abstract
The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
Collapse
Affiliation(s)
- Ahmad Hussein Badawi
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Centre for Foundation Studies, Lincoln University College, 47301, Petaling Jaya, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Brian Patrick Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Yin H, Wang Z, Wang D, Nuer M, Han M, Ren P, Ma S, Lin C, Chen J, Xian H, Ai D, Li X, Ma S, Lin Z, Pan Y. TIMELESS promotes the proliferation and migration of lung adenocarcinoma cells by activating EGFR through AMPK and SPHK1 regulation. Eur J Pharmacol 2023; 955:175883. [PMID: 37433364 DOI: 10.1016/j.ejphar.2023.175883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has high morbidity and is prone to recurrence. TIMELESS (TIM), which regulates circadian rhythms in Drosophila, is highly expressed in various tumors. Its role in LUAD has gained attention, but the detailed function and mechanism have not been clarified completely at present. METHODS Tumor samples from patients with LUAD patient data from public databases were used to confirm the relationship of TIM expression with lung cancer. LUAD cell lines were used and siRNA of TIM was adopted to knock down TIM expression in LUAD cells, and further cell proliferation, migration and colony formation were analyzed. By using Western blot and qPCR, we detected the influence of TIM on epidermal growth factor receptor (EGFR), sphingosine kinase 1 (SPHK1) and AMP-activated protein kinase (AMPK). With proteomics analysis, we comprehensively inspected the different changed proteins influenced by TIM and did global bioinformatic analysis. RESULTS We found that TIM expression was elevated in LUAD and that this high expression was positively correlated with more advanced tumor pathological stages and shorter overall and disease-free survival. TIM knockdown inhibited EGFR activation and also AKT/mTOR phosphorylation. We also clarified that TIM regulated the activation of SPHK1 in LUAD cells. And with SPHK1 siRNA to knock down the expression level of SPHK1, we found that EGFR activation were inhibited greatly too. Quantitative proteomics techniques combined with bioinformatics analysis clarified the global molecular mechanisms regulated by TIM in LUAD. The results of proteomics suggested that mitochondrial translation elongation and termination were altered, which were closely related to the process of mitochondrial oxidative phosphorylation. We further confirmed that TIM knockdown reduced ATP content and promoted AMPK activation in LUAD cells. CONCLUSIONS Our study revealed that siTIM could inhibit EGFR activation through activating AMPK and inhibiting SPHK1 expression, as well as influencing mitochondrial function and altering the ATP level; TIM's high expression in LUAD is an important factor and a potential key target in LUAD.
Collapse
Affiliation(s)
- Houqing Yin
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Zequn Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Dan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Muhadaisi Nuer
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Mengyuan Han
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Peng Ren
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Shanwu Ma
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Chutong Lin
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Jingjing Chen
- Department of Pharmacology, Changzhi Medical College, Changzhi City, Shanxi Province, 046000, China
| | - Haocheng Xian
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Shaohua Ma
- Peking University Third Hospital Thoracic Surgery Department, China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Qin W, Xie Y, Ren Z, Xu C, Sun MA, Yin Z, Bao W. Integrative ATAC-seq and RNA-seq analyses of IPEC-J2 cells reveals porcine transcription and chromatin accessibility changes associated with Escherichia coli F18ac inhibited by Lactobacillus reuteri. Front Microbiol 2023; 14:1101111. [PMID: 36876070 PMCID: PMC9978113 DOI: 10.3389/fmicb.2023.1101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Escherichia coli is the main cause of postweaning diarrhea in pigs, leading to economic loss. As a probiotic, Lactobacillus reuteri has been used to inhibit E. coli in clinical applications; however, its integrative interactions with hosts remain unclear, especially in pigs. Here, we found that L. reuteri effectively inhibited E. coli F18ac adhering to porcine IPEC-J2 cells, and explored the genome-wide transcription and chromatin accessibility landscapes of IPEC-J2 cells by RNA-seq and ATAC-seq. The results showed that some key signal transduction pathways, such as PI3K-AKT and MAPK signaling pathways, were enriched in the differentially expressed genes (DEGs) between E. coli F18ac treatment with and without L. reuteri groups. However, we found less overlap between RNA-seq and ATAC-seq datasets; we speculated that this might be caused by histones modification through ChIP-qPCR detection. Furthermore, we identified the regulation of the actin cytoskeleton pathway and a number of candidate genes (ARHGEF12, EGFR, and DIAPH3) that might be associated with the inhibition of E. coli F18ac adherence to IPEC-J2 cells by L. reuteri. In conclusion, we provide a valuable dataset that can be used to seek potential porcine molecular markers of E. coli F18ac pathogenesis and L. reuteri antibacterial activity, and to guide the antibacterial application of L. reuteri.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yunxiao Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhanshi Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming-An Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Hcp Proteins of the Type VI Secretion System Promote Avian Pathogenic E. coli DE205B (O2:K1) to Induce Meningitis in Rats. Life (Basel) 2022; 12:life12091353. [PMID: 36143390 PMCID: PMC9503490 DOI: 10.3390/life12091353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.
Collapse
|
10
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
11
|
Yang RC, Huang K, Zhang HP, Li L, Zhang YF, Tan C, Chen HC, Jin ML, Wang XR. SARS-CoV-2 productively infects human brain microvascular endothelial cells. J Neuroinflammation 2022; 19:149. [PMID: 35705998 PMCID: PMC9198209 DOI: 10.1186/s12974-022-02514-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The emergence of the novel, pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global health emergency. SARS-CoV-2 is highly contagious and has a high mortality rate in severe patients. However, there is very limited information on the effect of SARS-CoV-2 infection on the integrity of the blood-brain barrier (BBB). METHODS RNA-sequencing profiling was performed to analyze the transcriptomic changes in human brain microvascular endothelial cells (hBMECs) after SARS-CoV-2 infection. Bioinformatic tools were used for differential analysis. Immunofluorescence, real-time quantitative PCR, and Western blotting analysis were used to explore biological phenotypes. RESULTS A total of 927 differentially expressed genes were identified, 610 of which were significantly upregulated while the remaining 317 were downregulated. We verified the significant induction of cytokines, chemokines, and adhesion molecules in hBMECs by SARS-CoV-2, suggesting an activation of the vascular endothelium in brain. Moreover, we demonstrated that SARS-CoV-2 infection could increase the BBB permeability, by downregulating as well as remodeling the intercellular tight junction proteins. CONCLUSIONS Our findings demonstrated that SARS-CoV-2 infection can cause BBB dysfunction, providing novel insights into the understanding of SARS-CoV-2 neuropathogenesis. Moreover, this finding shall constitute a new approach for future prevention and treatment of SARS-CoV-2-induced CNS infection.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Hui-Peng Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yu-Fei Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Mei-Lin Jin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Yang B, Xu B, Yang R, Fu J, Li L, Huo D, Chen J, Yang X, Tan C, Chen H, Wang X. Long Non-coding Antisense RNA DDIT4-AS1 Regulates Meningitic Escherichia coli-Induced Neuroinflammation by Promoting DDIT4 mRNA Stability. Mol Neurobiol 2022; 59:1351-1365. [PMID: 34985734 PMCID: PMC8882120 DOI: 10.1007/s12035-021-02690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Our previous studies have shown that meningitic Escherichia coli can colonize the brain and cause neuroinflammation. Controlling the balance of inflammatory responses in the host central nervous system is particularly vital. Emerging evidence has shown the important regulatory roles of long non-coding RNAs (lncRNAs) in a wide range of biological and pathological processes. However, whether lncRNAs participate in the regulation of meningitic E. coli-mediated neuroinflammation remains unknown. In the present study, we characterized a cytoplasm-enriched antisense lncRNA DDIT4-AS1, which showed similar concordant expression patterns with its parental mRNA DDIT4 upon E. coli infection. DDIT4-AS1 modulated DDIT4 expression at both mRNA and protein levels. Mechanistically, DDIT4-AS1 promoted the stability of DDIT4 mRNA through RNA duplex formation. DDIT4-AS1 knockdown and DDIT4 knockout both attenuated E. coli-induced NF-κB signaling as well as pro-inflammatory cytokines expression, and DDIT4-AS1 regulated the inflammatory response by targeting DDIT4. In summary, our results show that DDIT4-AS1 promotes E. coli-induced neuroinflammatory responses by enhancing the stability of DDIT4 mRNA through RNA duplex formation, providing potential nucleic acid targets for new therapeutic interventions in the treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Xu B, Yang R, Yang B, Li L, Chen J, Fu J, Qu X, Huo D, Tan C, Chen H, Peng Z, Wang X. Long non-coding RNA lncC11orf54-1 modulates neuroinflammatory responses by activating NF-κB signaling during meningitic Escherichia coli infection. Mol Brain 2022; 15:4. [PMID: 34980188 PMCID: PMC8722204 DOI: 10.1186/s13041-021-00890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli is the most common gram-negative pathogenic bacterium causing meningitis. It penetrates the blood–brain barrier (BBB) and activates nuclear factor kappa B (NF-κB) signaling, which are vital events leading to the development of meningitis. Long non-coding RNAs (lncRNAs) have been implicated in regulating neuroinflammatory signaling, and our previous study showed that E. coli can induce differential expression of lncRNAs, including lncC11orf54-1, in human brain microvascular endothelial cells (hBMECs). The hBMECs constitute the structural and functional basis for the BBB, however, it is unclear whether lncRNAs are involved in the regulation of inflammatory responses of hBMECs during meningitic E. coli infection. In this study, we characterized an abundantly expressed lncRNA, lncC11orf54-1, which was degraded by translocated coilin to produce mgU2-19 and mgU2-30 in hBMECs during E. coli infection. Functionally, lncC11orf54-1-originated non-coding RNA mgU2-30 interacted with interleukin-1 receptor-associated kinase 1 (IRAK1) to induce its oligomerization and autophosphorylation, thus promoting the activation of NF-κB signaling and facilitating the production of pro-inflammatory cytokines. In summary, our study uncovers the involvement of lncC11orf54-1 in IRAK1–NF-κB signaling, and it functions as a positive regulator of inflammatory responses in meningitic E. coli-induced neuroinflammation, which may be a valuable therapeutic and diagnostic target for bacterial meningitis.
Collapse
Affiliation(s)
- Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Peters S, Fohmann I, Rudel T, Schubert-Unkmeir A. A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites. Cells 2021; 10:cells10113201. [PMID: 34831424 PMCID: PMC8623382 DOI: 10.3390/cells10113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Thomas Rudel
- Chair of Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
- Correspondence: ; Tel.: +49-931-31-46721; Fax: +49-931-31-46445
| |
Collapse
|
15
|
Meningitic Escherichia coli α-hemolysin aggravates blood-brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling. Mol Brain 2021; 14:116. [PMID: 34281571 PMCID: PMC8287823 DOI: 10.1186/s13041-021-00826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood–brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.
Collapse
|
16
|
CNS-infecting pathogens Escherichia coli and Cryptococcus neoformans exploit the host Pdlim2 for intracellular traversal and exocytosis in the blood-brain barrier. Infect Immun 2021; 89:e0012821. [PMID: 34228504 DOI: 10.1128/iai.00128-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial penetration of the blood-brain barrier, a prerequisite for development of the central nervous system (CNS) infection, involves microbial invasion, intracellular traversal and exocytosis. Microbial invasion of the blood-brain barrier has been investigated, but the molecular basis for microbial traversal and exit from the blood-brain barrier remains unknown. We performed transcriptome analysis of the human brain microvascular endothelial cell (HBMEC) infected with Escherichia coli and Cryptococcus neoformans, representative bacterial and fungal pathogens common in CNS infection. Among the upregulated targets in response to E. coli and C. neoformans infection, PDLIM2 was knocked down by shRNA in HBMEC for further investigation. We demonstrated that Pdlim2 specifically regulated the microbial traversal and exit from HBMEC by assessing microbial invasion, transcytosis, intracellular multiplication and egression. Additionally, the defective exocytosis of internalized E. coli from the PDLIM2 shRNA knockdown cell was restored by treatment with a calcium ionophore (ionomycin). Moreover, we performed the proximity-dependent biotin labeling with the biotin ligase BioID2 and identified 210 potential Pdlim2-interactors. Among the nine enriched Pdlim2-interactors in response to both E. coli and C. neoformans infection, we selected MPRIP and showed that HBMEC with knockdown of MPRIP mimicked the phenotype of PDLIM2 knockdown cell. These results suggest that the CNS-infecting microbes hijack Pdlim2 and Mprip for intracellular traversal and exocytosis in the blood-brain barrier.
Collapse
|
17
|
Yang R, Lv Y, Miao L, Zhang H, Qu X, Chen J, Xu B, Yang B, Fu J, Tan C, Chen H, Wang X. Resveratrol Attenuates Meningitic Escherichia coli-Mediated Blood-Brain Barrier Disruption. ACS Infect Dis 2021; 7:777-789. [PMID: 33723986 DOI: 10.1021/acsinfecdis.0c00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Meningitic Escherichia coli can infiltrate the central nervous system (CNS), consequently increasing the levels of proinflammatory cytokines and chemokines and deteriorating the integrity of the blood-brain barrier (BBB). Resveratrol has emerged in recent years as a compound with antioxidant and anti-inflammatory properties. However, it is still unknown how resveratrol affects meningitic E. coli-induced CNS dysfunction. Here, by using in vivo and in vitro BBB models, we demonstrated that resveratrol treatment significantly inhibited meningitic E. coli invasion of the BBB, protected the integrity of the BBB, and reduced neuroinflammation and lethality. In mechanism, resveratrol inhibited bacterial penetration of the BBB by attenuating the upregulation of caveolin-1 (CAV-1), a class of lipid rafts maintaining endothelial cell function. Resveratrol treatment also maintained BBB permeability by suppressing the ERK1/2-VEGFA signaling cascade. In vivo treatment of resveratrol decreased the production of inflammatory cytokines and improved the survival rate in mice challenged with meningitic E. coli. These findings collectively indicated that resveratrol could attenuate meningitic E. coli-induced CNS injury, which might constitute a new approach for future prevention and treatment of E. coli meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yujin Lv
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| | - Ling Miao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huipeng Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| |
Collapse
|
18
|
Zhu N, Zhang C, Prakash A, Hou Z, Liu W, She W, Morris A, Sik Kim K. Therapeutic development of group B Streptococcus meningitis by targeting a host cell signaling network involving EGFR. EMBO Mol Med 2021; 13:e12651. [PMID: 33474818 PMCID: PMC7933950 DOI: 10.15252/emmm.202012651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) remains the most common Gram-positive bacterium causing neonatal meningitis and GBS meningitis continues to be an important cause of mortality and morbidity. In this study, we showed that GBS penetration into the brain occurred initially in the meningeal and cortex capillaries, and exploits a defined host cell signaling network comprised of S1P2 , EGFR, and CysLT1. GBS exploitation of such network in penetration of the blood-brain barrier was demonstrated by targeting S1P2 , EGFR, and CysLT1 using pharmacological inhibition, gene knockout and knockdown cells, and gene knockout animals, as well as interrogation of the network (up- and downstream of each other). More importantly, counteracting such targets as a therapeutic adjunct to antibiotic therapy was beneficial in improving the outcome of animals with GBS meningitis. These findings indicate that investigating GBS penetration of the blood-brain barrier provides a novel approach for therapeutic development of GBS meningitis.
Collapse
Affiliation(s)
- Ningyu Zhu
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Chengxian Zhang
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Atish Prakash
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zheng Hou
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Wei Liu
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Weifeng She
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Andrew Morris
- Division of Cardiovascular MedicineThe Gill Heart InstituteUniversity of KentuckyLexingtonKYUSA
| | - Kwang Sik Kim
- Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
19
|
Liu M, Li N, Guo W, Jia L, Jiang H, Li Z, Wang J, Zhang X, Zhu R, Bao C, Huang J, Lei L. RPSA distribution and expression in tissues and immune cells of pathogen-infected mice. Microb Pathog 2021; 152:104609. [PMID: 33217534 DOI: 10.1016/j.micpath.2020.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
AIMS 40S ribosomal protein SA (RPSA), a component of the small ribosomal subunit, is a high-affinity receptor of laminin that is widely expressed in cells and involves in many biological processes. However, it hasn't been reported which tissues and cells may be targeted by RPSA-mediated pathogen regulation. Therefore, in this study, a gram-positive bacterium Streptococcus suis Type 2 (SS2), gram-negative bacterium Actinobacillus pleuropneumoniae (A.pleuropneumoniae), and porcine circovirus Type 2 (PCV2) were used to infect ICR mice. METHODS AND RESULTS The effects of infection with the three pathogens on expression levels of RPSA in mouse tissues and peripheral blood immune cells were analysed by immunohistochemistry and flow cytometry. The results suggested that the pathological changes in mice infected with SS2 were mainly manifested as congestion and inflammatory infiltration in the meninges, lungs, hearts and livers. The mice infected with A.pleuropneumoniae or PCV2 showed lung lesions and mild hepatocyte degeneration, respectively. In uninfected mice, RPSA protein was expressed to various degrees in all tissues except the spleen. After SS2 infection for 3 d, the expression of RPSA in the liver and brain increased, while decreased significantly in the heart and duodenum. These results were corroborated on examining the correlation between RPSA expression and the process of SS2 infection, except that there was no significant difference between the expression levels in the heart at 1 d and 3 d. After A.pleuropneumoniae and PCV2 infection for 3 d, the expression of RPSA decreased in the heart, and brain, respectively. Additionally, under physiological conditions, RPSA expression in CD4+ T cells, CD8+ T cells, neutrophils, and macrophages in the peripheral blood of mice was higher than that in B cells and NK cells. After SS2 infection for 3 d, RPSA expression increased significantly in CD4+ T cells and CD8+ T cells but decreased significantly in macrophages. The expression of RPSA after A.pleuropneumoniae and PCV2 infection were similar, and RPSA expression decreased only in macrophages. CONCLUSIONS The results revealed that RPSA showed different expression levels in tissues and immune cells due to different pathogens causing disease courses, suggesting different target tissues and target cells in RPSA-mediated pathogenesis after infection, which supports the systematic study of the pathogenesis of RPSA in infectious diseases.
Collapse
Affiliation(s)
- Mengmeng Liu
- The Clinical Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Na Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenfei Guo
- The Clinical Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Li Jia
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziheng Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jun Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoguang Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rining Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Huang
- The Clinical Laboratory Department of First Hospital, Jilin University, Changchun, China.
| | - Liancheng Lei
- The Clinical Laboratory Department of First Hospital, Jilin University, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China; College of Animal Sciences, Yangtze University, Jingzhou, China.
| |
Collapse
|
20
|
Li W, Yin Y, Meng Y, Zhou H, Ma Z, Lin H, Fan H. Proteomic analysis of bEnd.3 cells infected with wild-type and stk-deficient strains of Streptococcus suis serotype 2 reveals protein and pathway regulation. J Proteomics 2020; 230:103983. [PMID: 32961345 DOI: 10.1016/j.jprot.2020.103983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen causing meningitis in humans and pigs. However, information on the comparative protein expression of the blood-brain barrier (BBB) following SS2 infection is limited. Deletion of the serine/threonine kinase (stk) gene can decrease the ability of SS2 to invade the BBB. In the present study, bEnd.3 cells were used as the BBB model, and a SILAC comparative quantitative proteomic study of bEnd.3 cells infected with the SS2 ZY05719 or Δstk strain was performed to determine the differences between these strains infections. Compared with ZY05719-infected cells, 241 proteins were highly upregulated, and 81 were significantly downregulated in Δstk-infected cells. The obtained data revealed major changes in the proteins involved in RNA process, host cytoskeleton, tight junction disruption and immune response. Some differentially expressed proteins were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, and western blot analysis was used to validate the changes of some selected proteins at the translational level. The results obtained in this study may be useful to understand the host response to SS2 infection and provide crucial clues to decipher how STK expression in SS2 helps the bacteria penetrate the BBB. SIGNIFICANCE: A SILAC comparative quantitative proteomic assay was performed in bEnd.3 cells infected with the SS2 ZY05719 or Δstk strain. 241 upregulated and 81 downregulated differentially expressed proteins (DEPs) were identified. DEPs are involved in RNA process, host cytoskeleton, tight junction disruption and immune response. Some DEPs were examined by qPCR and western blot assays, which were similar to those of their corresponding proteins in the quantitative proteomics analysis.
Collapse
Affiliation(s)
- Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yifan Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
21
|
Zhu N, Liu W, Prakash A, Zhang C, Kim KS. Targeting E. coli invasion of the blood-brain barrier for investigating the pathogenesis and therapeutic development of E. coli meningitis. Cell Microbiol 2020; 22:e13231. [PMID: 32447809 DOI: 10.1111/cmi.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing neonatal meningitis. Escherichia coli meningitis remains an important cause of mortality and morbidity, but the pathogenesis of E. coli penetration of the blood-brain barrier remains incompletely understood. Escherichia coli entry into the brain occurs in the meningeal and cortex capillaries, not in the choroid plexus, and exploits epidermal growth factor receptor (EGFR) and cysteinyl leukotrienes (CysLTs) for invasion of the blood-brain barrier. The present study examined whether EGFR and CysLTs are inter-related in their contribution to E. coli invasion of the blood-brain barrier and whether counteracting EGFR and CysLTs is a beneficial adjunct to antibiotic therapy of E. coli meningitis. We showed that (a) meningitis isolates of E. coli exploit EGFR and CysLTs for invasion of the blood-brain barrier, (b) the contribution of EGFR is upstream of that of CysLTs, and (c) counteracting EGFR and CysLTs as an adjunctive therapy improved the outcome (survival, neuronal injury and memory impairment) of animals with E. coli meningitis. These findings suggest that investigation of host factors contributing to E. coli invasion of the blood-brain barrier will help in enhancing the pathogenesis and development of new therapeutic targets for E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Ningyu Zhu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Liu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Atish Prakash
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci 2020; 10:brainsci10040234. [PMID: 32295236 PMCID: PMC7226078 DOI: 10.3390/brainsci10040234] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
An increase of multiple sclerosis (MS) incidence has been reported during the last decade, and this may be connected to environmental factors. This review article aims to encapsulate the current advances targeting the study of the gut-brain axis, which mediates the communication between the central nervous system and the gut microbiome. Clinical data arising from many research studies, which have assessed the effects of administered disease-modifying treatments in MS patients to the gut microbiome, are also recapitulated.
Collapse
|
23
|
Kim KS. Investigating Bacterial Penetration of the Blood-Brain Barrier for the Pathogenesis, Prevention, and Therapy of Bacterial Meningitis. ACS Infect Dis 2020; 6:34-42. [PMID: 31805229 DOI: 10.1021/acsinfecdis.9b00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most distressing aspect of bacterial meningitis is limited improvement in the mortality and morbidity despite attributable advances in antimicrobial chemotherapy and supportive care. A major contributing factor to such mortality and morbidity is our incomplete understanding of the pathogenesis of this disease. Microbial penetration of the blood-brain barrier, a prerequisite for the development of bacterial meningitis, exploits specific host and bacterial factors as well as host cell signaling molecules. Determination and characterization of such host and bacterial factors have been instrumental for developing our current knowledge on the pathogenesis of bacterial meningitis. In addition, counteracting such host and microbial factors has been shown to be efficacious in the prevention of bacterial meningitis. Antimicrobial therapy alone has limited efficacy in improving the outcome of bacterial meningitis. Recent studies suggest that counteracting targets contributing to bacterial penetration of the blood-brain barrier are a beneficial therapeutic adjunct to antimicrobial therapy in improving the outcome of bacterial meningitis. Taken together, these findings indicate that the elucidation of host and bacterial factors contributing to microbial penetration of the blood-brain barrier provides a novel strategy for investigating the pathogenesis, prevention, and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, Maryland 21287, United States
| |
Collapse
|
24
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, Lv YJ, Amjad N, Tan C, Kim KS, Chen HC, Wang XR. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation 2019; 16:101. [PMID: 31092253 PMCID: PMC6521501 DOI: 10.1186/s12974-019-1497-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. Methods The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan’s blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. Results We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. Conclusions Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin-Yi Qu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Si-Yu Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liang Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo-Jie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kwang Sik Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Li Y, Li Y, Jing X, Liu Y, Liu B, She Q. Sphingosine 1-phosphate induces epicardial progenitor cell differentiation into smooth muscle-like cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:402-410. [PMID: 30877755 DOI: 10.1093/abbs/gmz017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Epicardial progenitor cells (EpiCs) which are derived from the proepicardium have the potential to differentiate into coronary vascular smooth muscle cells during development. Whether sphingosine 1-phosphate (S1P), a highly hydrophobic zwitterionic lysophospholipid in signal transduction, induces the differentiation of EpiCs is unknown. In the present study, we demonstrated that S1P significantly induced the expression of smooth muscle cell specific markers α-smooth muscle actin and myosin heavy chain 11 in the EpiCs. And the smooth muscle cells differentiated from the EpiCs stimulated by S1P were further evaluated by gel contraction assay. To further confirm the major subtype of sphingosine 1-phosphate receptors (S1PRs) involved in the differentiation of EpiCs, we used the agonists and antagonists of different S1PRs. The results showed that the S1P1/S1P3 antagonist VPC23019 and the S1P2 antagonist JTE013 significantly attenuated EpiCs differentiation, while the S1P1 agonist SEW2871 and antagonist W146 did not affect EpiCs differentiation. These results collectively suggested that S1P, principally through its receptor S1P3, increases EpiCs differentiation into VSMCs and thus indicated the importance of S1P signaling in the embryonic coronary vasculature, while S1P2 plays a secondary role.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingrui Li
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Epidermal growth factor receptor promotes cerebral and retinal invasion by Toxoplasma gondii. Sci Rep 2019; 9:669. [PMID: 30679495 PMCID: PMC6345933 DOI: 10.1038/s41598-018-36724-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
Little is known about strategies used by pathogens to facilitate CNS invasion. Toxoplasma gondii reaches the CNS by circulating in blood within leukocytes or as extracellular tachyzoites. T. gondii induces EGFR signaling in vitro during invasion of mammalian cells. We examined the effects of endothelial cell EGFR on CNS invasion. Transgenic mice whose endothelial cells expressed a dominant negative (DN) EGFR (inhibits EGFR signaling) exhibited diminished parasite load and histopathology in the brain and retina after T. gondii infection. I.V. administration of infected leukocytes or extracellular tachyzoites led to reduced parasite loads in mice with DN EGFR. This was not explained by enhanced immunity or reduced leukocyte recruitment. Endothelial cell infection is key for CNS invasion. Parasite foci in brain endothelial cells were reduced by DN EGFR. DN EGFR in these cells led to recruitment of the autophagy protein LC3 around T. gondii and spontaneous parasite killing dependent on the autophagy protein ULK1 and lysosomal enzymes. The autophagy inhibitor 3-MA prevented DN EGFR mice from exhibiting reduced CNS invasion. Altogether, EGFR is a novel regulator of T. gondii invasion of neural tissue, enhancing invasion likely by promoting survival of the parasite within endothelial cells.
Collapse
|
28
|
Liu R, Wu C, Li L, Chi F, Zhang T, Xu Y, Ji L, Chen Z, Hu H, Zhang X, Huang S, Wang L. CD48 and α7 Nicotinic Acetylcholine Receptor Synergistically Regulate FimH-Mediated Escherichia coli K1 Penetration and Neutrophil Transmigration Across Human Brain Microvascular Endothelial Cells. J Infect Dis 2019; 219:470-479. [PMID: 30202861 PMCID: PMC6325351 DOI: 10.1093/infdis/jiy531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
FimH-mediated bacterial invasion and polymorphonuclear neutrophil (PMN) transmigration across human brain microvascular endothelial cells (HBMECs) are required for the pathogenesis of Escherichia coli meningitis. However, the underlying mechanism remains unclear. This study demonstrated that the TnphoA mutant (22A33) and FimH-knockout mutant (ΔFimH) of E coli strain E44, which resulted in inactivation of FimH, were less invasive and less effective in promoting PMN transmigration than their wild-type strain. FimH protein induced PMN transmigration, whereas calmodulin inhibitor significantly blocked this effect. Moreover, immunofluorescence and co-immunoprecipitation analysis indicated that colocalized CD48 and α7 nAChR formed a complex on the surface of HBMECs that is associated with increased cofilin dephosphorylation, which could be remarkably enhanced by FimH+ E44. Our study concluded that FimH-induced E coli K1 invasion and PMN migration across HBMECs may be mediated by the CD48-α7nAChR complex in lipid rafts of HBMEC via Ca2+ signaling and cofilin dephosphorylation.
Collapse
Affiliation(s)
- Rui Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
- Department of Human Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Chao Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, China
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
| | - Feng Chi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, China
| | - Yating Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Lulu Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Zhiguo Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Hanyang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Xiaoli Zhang
- Department of Ultrasound Imaging, Zhongnan Hospital of Wuhan University, China
| | - Shenghe Huang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou, China
| | - Lin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
29
|
Fu J, Li L, Yang X, Yang R, Amjad N, Liu L, Tan C, Chen H, Wang X. Transactivated Epidermal Growth Factor Receptor Recruitment of α-actinin-4 From F-actin Contributes to Invasion of Brain Microvascular Endothelial Cells by Meningitic Escherichia coli. Front Cell Infect Microbiol 2019; 8:448. [PMID: 30687645 PMCID: PMC6333852 DOI: 10.3389/fcimb.2018.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial penetration of the blood-brain barrier requires its successful invasion of brain microvascular endothelial cells (BMECs), and host actin cytoskeleton rearrangement in these cells is a key prerequisite for this process. We have reported previously that meningitic Escherichia coli can induce the activation of host's epidermal growth factor receptor (EGFR) to facilitate its invasion of BMECs. However, it is unknown how EGFR specifically functions during this invasion process. Here, we identified an important EGFR-interacting protein, α-actinin-4 (ACTN4), which is involved in maintaining and regulating the actin cytoskeleton. We observed that transactivated-EGFR competitively recruited ACTN4 from intracellular F-actin fibers to disrupt the cytoskeleton, thus facilitating bacterial invasion of BMECs. Strikingly, this mechanism operated not only for meningitic E. coli, but also for infections with Streptococcus suis, a Gram-positive meningitis-causing bacterial pathogen, thus revealing a common mechanism hijacked by these meningitic pathogens where EGFR competitively recruits ACTN4. Ever rising levels of antibiotic-resistant bacteria and the emergence of their extended-spectrum antimicrobial-resistant counterparts remind us that EGFR could act as an alternative non-antibiotic target to better prevent and control bacterial meningitis.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Nouman Amjad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
30
|
Yang R, Xu B, Yang B, Fu J, Liu L, Amjad N, Cai A, Tan C, Chen H, Wang X. Circular RNA Transcriptomic Analysis of Primary Human Brain Microvascular Endothelial Cells Infected with Meningitic Escherichia coli. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:651-664. [PMID: 30497055 PMCID: PMC6258830 DOI: 10.1016/j.omtn.2018.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 09/20/2018] [Accepted: 10/20/2018] [Indexed: 01/16/2023]
Abstract
With their essential regulatory roles in gene expression and high abundance in the brain, circular RNAs (circRNAs) have recently attracted considerable attention. Many studies have shown that circRNAs play important roles in the pathology of CNS diseases, but whether circRNAs participate in E. coli-induced bacterial meningitis is unclear. We used high-throughput sequencing to analyze the transcriptional profiles of host circRNAs in primary brain microvascular endothelial cells in response to meningitic E. coli. A total of 308 circRNAs were significantly altered, including 140 upregulated and 168 downregulated ones (p < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology enrichment of the parental genes of these altered circRNAs indicated that they are likely to be involved in diverse biological processes via influencing the expression of their parental genes. Coupled with our previous mRNA and microRNA sequencing data, a competing endogenous RNA analysis was performed, and the potential regulatory network was preliminarily constructed and validated. By revealing the transcriptional profiles of the host circRNAs involved in E. coli meningitis, it is envisaged that the novel insight gained into the regulatory mechanisms of circRNAs in the development of bacterial meningitis will lead to better understanding of how to prevent and treat bacterial CNS infections.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lu Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aoling Cai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
31
|
Liu WT, Lv YJ, Yang RC, Fu JY, Liu L, Wang H, Cao Q, Tan C, Chen HC, Wang XR. New insights into meningitic Escherichia coli infection of brain microvascular endothelial cells from quantitative proteomics analysis. J Neuroinflammation 2018; 15:291. [PMID: 30340642 PMCID: PMC6195690 DOI: 10.1186/s12974-018-1325-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial meningitis remains a big threat to the integrity of the central nervous system (CNS), despite the advancements in antimicrobial reagents. Escherichia coli is a bacterial pathogen that can disrupt the CNS function, especially in neonates. E. coli meningitis occurs after bacteria invade the brain microvascular endothelial cells (BMECs) that form a direct and essential barrier restricting the entry of circulating microbes and toxins to the brain. Previous studies have reported on several cellular proteins that function during meningitic E. coli infections; however, more comprehensive investigations to elucidate the potential targets involved in E. coli meningitis are essential to better understand this disease and discover new treatments for it. Methods The isobaric tags for relative and absolute quantification (iTRAQ) approach coupled with LC-MS/MS were applied to compare and characterize the different proteomic profiles of BMECs in response to meningitic or non-meningitic E. coli strains. KEGG and gene ontology annotations, ingenuity pathways analysis, and functional experiments were combined to identify the key host molecules involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammatory responses. Results A total of 13 cellular proteins were found to be differentially expressed by meningitic E. coli strains PCN033 and RS218, including one that was also affected by HB101, a non-meningitic E. coli strain. Through bioinformatics analysis, we identified the macrophage migration inhibitory factor (MIF), granzyme A, NF-κB signaling, and mitogen-activated protein kinase (MAPK) pathways as being biologically involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammation. Functionally, we showed that MIF facilitated meningitic E. coli-induced production of cytokines and chemokines and also helped to disrupt the blood-brain barrier by decreasing the expression of tight junction proteins like ZO-1, occludin. Moreover, we demonstrated the significant activation of NF-κB and MAPK signaling in BMECs in response to meningitic E. coli strains, which dominantly determined the generation of the proinflammatory cytokines including IL-6, IL-8, TNF-α, and IL-1β. Conclusions Our work identified 12 host cellular targets that are affected by meningitic E. coli strains and revealed MIF to be an important contributor to meningitic E. coli-induced cytokine production and tight junction disruption, and also the NF-κB and MAPK signaling pathways that are mainly involved in the infection-induced cytokines production. Characterization of these distinct proteins and pathways in BMECs will facilitate further elucidation of meningitis-causing mechanisms in humans and animals, thereby enabling the development of novel preventative and therapeutic strategies against infection with meningitic E. coli. Electronic supplementary material The online version of this article (10.1186/s12974-018-1325-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Tong Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lu Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huan Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qi Cao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
32
|
Li J, Bai TR, Gao S, Zhou Z, Peng XM, Zhang LS, Dou DL, Zhang ZS, Li LY. Human rhomboid family-1 modulates clathrin coated vesicle-dependent pro-transforming growth factor α membrane trafficking to promote breast cancer progression. EBioMedicine 2018; 36:229-240. [PMID: 30279141 PMCID: PMC6197618 DOI: 10.1016/j.ebiom.2018.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) signalling is critical in epithelial cancer development. Human rhomboid family-1 (RHBDF1) facilitates the secretion of TGFα, an EGFR ligand, in breast cancer; however, the underlying mechanism remains unclear. We evaluated the role for RHBDF1 in clathrin-coated vesicle (CCV)-dependent pro-TGFα membrane trafficking in breast cancer cells upon stimulation by G-protein coupled receptor (GPCR) agonists. METHODS RHBDF1 was silenced in various breast cancer cells using shRNA. TGFα levels, subcellular localization, and secretion were evaluated using ELISA, immunofluorescent staining, and coimmunoprecipitation. Phosphorylation and expression of relevant proteins were measured by western blotting. RHBDF1-dependent cell viability and invasion were measured. FINDINGS RHBDF1 mediates GPCR agonist-induced EGFR phosphorylation by promoting TGFα secretion in various types of breast cancer cells. RHBDF1 not only mediates ADAM17-dependent shedding of TGFα, but is essential in membrane trafficking of pro-TGFα. RHBDF1 silencing results in blocking of clathrin uncoating from CCV, a crucial step for the plasma membrane release of pro-TGFα. Interaction of RHBDF1 with auxilin-2, a CCV protein, determines the recruitment of HSC70 to CCV to facilitate clathrin uncoating. RHBDF1 function is required for the proliferation and mobility of breast cancer cells upon stimulation by Sphingosine 1 Phosphate (S1P), a GPCR agonist. We demonstrate a significant correlation between RHBDF1 overexpression and EGFR activation in breast cancer tissues. INTERPRETATION RHBDF1 is an indispensable component of the protein trafficking machinery involved in GPCR-mediated EGFR transactivation, and is an attractive therapeutic target for cancer. FUND: National Natural Science Foundation of China (81,672,740 to ZSZ, 81,272,356 and 81,330,029 to LYL).
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Tai-Ran Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhuan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xue-Mei Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dao-Lei Dou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China.; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Abstract
Mucormycosis is a life-threatening, invasive fungal infection that is caused by various species belonging to the order Mucorales. Rhizopus species are the most common cause of the disease, responsible for approximately 70% of all cases of mucormycosis. During pulmonary mucormycosis, inhaled Rhizopus spores must adhere to and invade airway epithelial cells in order to establish infection. The molecular mechanisms that govern this interaction are poorly understood. We performed an unbiased survey of the host transcriptional response during early stages of Rhizopus arrhizus var. delemar (R. delemar) infection in a murine model of pulmonary mucormycosis using transcriptome sequencing (RNA-seq). Network analysis revealed activation of the host’s epidermal growth factor receptor (EGFR) signaling. Consistent with the RNA-seq results, EGFR became phosphorylated upon in vitro infection of human alveolar epithelial cells with several members of the Mucorales, and this phosphorylated, activated form of EGFR colocalized with R. delemar spores. Inhibition of EGFR signaling with cetuximab or gefitinib, specific FDA-approved inhibitors of EGFR, significantly reduced the ability of R. delemar to invade and damage airway epithelial cells. Furthermore, gefitinib treatment significantly prolonged survival of mice with pulmonary mucormycosis, reduced tissue fungal burden, and attenuated the activation of EGFR in response to pulmonary mucormycosis. These results indicate EGFR represents a novel host target to block invasion of alveolar epithelial cells by R. delemar, and inhibition of EGFR signaling provides a novel approach for treating mucormycosis by repurposing an FDA-approved drug. Mucormycosis is an increasingly common, highly lethal fungal infection with very limited treatment options. Using a combination of in vivo animal models, transcriptomics, cell biology, and pharmacological approaches, we have demonstrated that Mucorales fungi activate EGFR signaling to induce fungal uptake into airway epithelial cells. Inhibition of EGFR signaling with existing FDA-approved drugs significantly increased survival following R. arrhizus var. delemar infection in mice. This study enhances our understanding of how Mucorales fungi invade host cells during the establishment of pulmonary mucormycosis and provides a proof-of-concept for the repurposing of FDA-approved drugs that target EGFR function.
Collapse
|
34
|
Threshold level of Riemerella anatipestifer crossing blood-brain barrier and expression profiles of immune-related proteins in blood and brain tissue from infected ducks. Vet Immunol Immunopathol 2018; 200:26-31. [DOI: 10.1016/j.vetimm.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/11/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
|
35
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important pathogens in humans and certain animals. Molecular epidemiological analyses of ExPEC are based on structured observations of E. coli strains as they occur in the wild. By assessing real-world phenomena as they occur in authentic contexts and hosts, they provide an important complement to experimental assessment. Fundamental to the success of molecular epidemiological studies are the careful selection of subjects and the use of appropriate typing methods and statistical analysis. To date, molecular epidemiological studies have yielded numerous important insights into putative virulence factors, host-pathogen relationships, phylogenetic background, reservoirs, antimicrobial-resistant strains, clinical diagnostics, and transmission pathways of ExPEC, and have delineated areas in which further study is needed. The rapid pace of discovery of new putative virulence factors and the increasing awareness of the importance of virulence factor regulation, expression, and molecular variation should stimulate many future molecular epidemiological investigations. The growing sophistication and availability of molecular typing methodologies, and of the new computational and statistical approaches that are being developed to address the huge amounts of data that whole genome sequencing generates, provide improved tools for such studies and allow new questions to be addressed.
Collapse
Affiliation(s)
| | - Thomas A Russo
- VA Western New York Healthcare System, Department of Medicine, Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University of Buffalo, Buffalo, NY 14214
| |
Collapse
|
36
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
37
|
Vutukuri R, Brunkhorst R, Kestner RI, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 2017; 144:172-185. [PMID: 29023711 DOI: 10.1111/jnc.14236] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Septic encephalopathy with confusion and agitation occurs early during sepsis and contributes to the severity of the disease. A decrease in the sphingosine-1-phosphate (S1P) blood levels has been shown in patients and in animal models of sepsis. The lipid mediator S1P is known to be involved in endothelial barrier function in a context-dependent manner. We utilized lipopolysaccharide (LPS)-injected mice as a model for septic encephalopathy and first performed tracer permeability assays to assess the blood-brain barrier (BBB) breakdown in vivo. At time points corresponding to the BBB breakdown post LPS injection, we aimed to characterize the regulation of the sphingolipid signaling pathway at the BBB during sepsis. We measured sphingolipid concentrations in blood, in mouse brain microvessels (MBMVs), and brain tissue. We also analyzed the expression of S1P receptors, transporters, and metabolizing enzymes in MBMVs and brain tissue. Primary mouse brain microvascular endothelial cells (MBMECs) were isolated to evaluate the effects of LPS on transendothelial electrical resistance (TEER) as a measure of permeability in vitro. We observed a relevant decrease in S1P levels after LPS injection in all three compartments (blood, MBMVs, brain tissue) that was accompanied by an increased expression of the S1P receptor type 1 and of sphingosine kinase 1 on one hand and of the S1P degrading enzymes lipid phosphate phosphatase 1 (LPP1) and S1P phosphatase 1 on the other hand, as well as a down-regulation of sphingosine kinase 2. Application of LPS to a monolayer of primary MBMECs did not alter TEER, but serum from LPS-treated mice lead to a breakdown of the barrier compared to serum from vehicle-treated mice. We observed profound alterations of the sphingolipid metabolism at the BBB after LPS injection that point toward a therapeutic potential of drugs interfering with this pathway as novel approach for the detrimental overwhelming immune response in sepsis. Read the Editorial Highlight for this article on page 115. Cover Image for this Issue: doi. 10.1111/jnc.14161.
Collapse
Affiliation(s)
- Rajkumar Vutukuri
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Robert Brunkhorst
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| | - Roxane-Isabelle Kestner
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| | - Lena Hansen
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Pharmazentrum Frankfurt, Institute for Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Kavi Devraj
- Pharmazentrum Frankfurt, Institute for General Pharmacology and Toxicology, Goethe University, Frankfurt, Germany.,Edinger Institute of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt, Germany
| |
Collapse
|
38
|
EGFR conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Sci Rep 2017; 7:15654. [PMID: 29142206 PMCID: PMC5688137 DOI: 10.1038/s41598-017-15939-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence indicates that Fascin-1 (FSCN1) may possess a causal role in the development of several types of cancers and serves as a novel biomarker of aggressiveness in certain carcinomas. However, the regulatory mechanism of FSCN1 in triple-negative breast cancer (TNBC) cell invasion and migration is still largely unknown. In our study, we observed that the FSCN1 expression rates were significantly higher in invasive ductal carcinoma, compared with both usual ductal hyperplasia and ductal carcinoma in situ. FSCN1 expression was significantly higher in cases of TNBC compared with the non-TNBC subtype. Overexpression of FSCN1 promoted TNBC cell migration and invasion. Epidermal growth factor induced the expression of FSCN1 through activation of MAPK, which subsequently promoted cell migration and invasion. A significant decrease in FSCN1 expression following the co-treatment of FSCN1 siRNA and Gefitinib, compared with the separate treatment of FSCN1 siRNA or Gefitinib. Furthermore, we found that there was a significant association between FSCN1 expression and poor relapse-free survival and overall survival. Therefore, we suggest that co-targeting epidermal growth factor receptor and FSCN1 dual biomarker may be used as a novel therapeutic strategy for TNBC.
Collapse
|
39
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
40
|
Liu F, Fu J, Liu C, Chen J, Sun M, Chen H, Tan C, Wang X. Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033. Microbiol Res 2016; 196:69-79. [PMID: 28164791 DOI: 10.1016/j.micres.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/30/2016] [Accepted: 11/26/2016] [Indexed: 01/09/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize multiple extraintestinal tissues and can cause a wide range of infections; however the mechanisms of its pathogenicity are not well understood. Flagella contribute to the infection of E. coli strains by mediating adhesion and invasion. Our previous bioinformatic analysis revealed two flagella gene clusters in the genome of an ExPEC isolate, PCN033. One encodes the conventional flagellum system (Flag-1) and the other encodes the Flag-2 system, whose function is uncharacterized. Here we aimed to characterize these two flagellum systems and determine their contributions to the flagellum formation and certain pathogenicity-associated phenotypes. Our observations support the involvement of Flag-1 system, but not Flag-2 system, in the synthesis and maturation of the flagellum structure, and in mediating bacterial swimming and swarming. Moreover, flgD, which encodes a flagellar-hook scaffolding protein in the Flag-1 system, is required for flagellum assembly by influencing the production of FliC (flagellin). Deletion of flgD attenuated ExPEC strain PCN033 invasion and colonization in vivo, probably by affecting bacterial adhesion and invasion, and by reducing resistance to phagocytosis by circulating monocytes. In contrast, these phenotypes were not observed in the strain with deletion of lfgD, encoding the FlgD-like protein in the Flag-2 system. Taken together, these findings indicate that Flag-1 flagellum system is the determinative component of bacterial flagella that contributes to the infection.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Canying Liu
- Department of Veterinary Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minhua Sun
- Guangdong Lab for Animal Diseases/Guangdong Open Laboratory of Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|