1
|
Shoaib M, Tariq A, Liu Y, Yang M, Qu L, Yang L, Song J. Recent update on the development of HPV16 inhibitors for cervical cancer. Crit Rev Oncol Hematol 2025; 210:104703. [PMID: 40107437 DOI: 10.1016/j.critrevonc.2025.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Persistent infection with human papillomavirus (HPV) can lead to cervical cancer (CC), which is the fourth most commonly diagnosed cancer in women globally. In this review, we have explained the HPV genome and the development of CC. Additionally, we summarized recently discovered small molecules that act as inhibitors of HPV-16. These molecules were identified through experimental and in-silico studies aimed at preventing or treating CC. HPV-16 and HPV-18 are the most common subtypes of HPV that cause CC globally. E6 oncoprotein of HPV-16 is considered the primary cause of CC progression. Therefore, E6 is the most focused targeted protein for developing specific and novel therapeutic inhibitors to treat HPV-related cancers. In recent years, various HPV inhibitors have been identified by means of experimental and in-silico studies. In addition, artificial intelligence-based medical diagnostic tools have grown more popular as they are capable of screening and diagnosing HPV-related cancer.
Collapse
Affiliation(s)
- Muhammad Shoaib
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Amina Tariq
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanchen Liu
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mingwei Yang
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lingbo Qu
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China; Institute of Chemistry, Henan Academy of Science, Zhengzhou, Henan 450046, China
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jinshuai Song
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Kenny S, Iyer S, Gabel CA, Tegenfeldt N, DeMarco AG, Hall MC, Chang L, Davisson VJ, Pol SV, Das C. Structure of E6AP in complex with HPV16-E6 and p53 reveals a novel ordered domain important for E3 ligase activation. Structure 2025; 33:504-516.e4. [PMID: 39818213 DOI: 10.1016/j.str.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function. The structure reveals that the N-terminal ordered domain (NOD) in E6AP has a terminal alpha helix that mediates the interaction of the NOD with the HECT domain of E6AP and protects the HPV-E6 protein from ubiquitination. In addition, this NOD helix is required for E6AP ligase function by contributing to the affinity of the E6-E6AP association, modulating E6 substrate recognition, while displacing UbcH7.
Collapse
Affiliation(s)
- Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Clinton A Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Natalia Tegenfeldt
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Kathleen W. Too many cooks in the kitchen: HPV driven carcinogenesis - The result of collaboration or competition? Tumour Virus Res 2024; 19:200311. [PMID: 39733972 PMCID: PMC11753912 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleen
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire, Centre de biologie intégrative, 1 rue Laurent Fries, Illkirch-Graffenstaden, BP 10142, 67404, France.
| |
Collapse
|
4
|
Pei B, Liu P, Peng S, Zhou F. Mendelian randomization analyses support causal relationships between HPV infection and colorectal cancer. Discov Oncol 2024; 15:795. [PMID: 39692780 DOI: 10.1007/s12672-024-01639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Human Papillomavirus (HPV) infections leading to a variety of diseases are a global public health issue.Despite the well-established link between HPV infection and cervical and anogenital cancers, there is ongoing debate regarding the relationship between HPV infection and colorectal cancer (CRC). METHODS We evaluated the causal connection between HPV infection and CRC utilizing five Mendelian randomization (MR) methods. Genome-wide association studies (GWAS) datasets for HPV were obtained from the IEU Open GWAS project. A large summary of colorectal adenocarcinoma and colorectal cancer data from the FinnGen database was used as the outcome. RESULTS Our analysis revealed a significant association between genetically predicted HPV-16 infection and the risk of paternal colorectal adenocarcinoma (HPV-16: OR 1.058, 95% CI 1.013-1.102; p = 0.011), as well as CRC (HPV-16: OR 1.045, 95% CI 1.005-1.085; p = 0.025). CONCLUSION These findings provide compelling evidence for a causal effect of HPV infection on the development of CRC. Further investigations into the underlying mechanisms and elucidation of this association are necessary to identify viable interventions for the prevention and treatment of HPV-associated CRC.
Collapse
Affiliation(s)
- Bo Pei
- Department of Oncology, Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Shixuan Peng
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, 411101, Hunan, China
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Fuxiang Zhou
- Department of Oncology, Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
de Oliveira Santos LAB, Batista MVDA. Structure-based virtual screening and drug repurposing studies indicate potential inhibitors of bovine papillomavirus E6 oncoprotein. Microbiol Immunol 2024; 68:414-426. [PMID: 39467039 DOI: 10.1111/1348-0421.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Bovine papillomavirus type 1 (BPV1) is an oncogenic virus that causes lesions and cancer in infected cattle. Despite being one of the most studied genotypes in the family and occurring in herds worldwide, there are currently no vaccines or drugs for its control. The viral E6 oncoprotein plays a crucial role in infection by this virus, making it a promising target for the development of new therapies. In this regard, we integrated structure-based virtual screening approaches, drug repositioning, and molecular dynamics to identify approved drugs with the potential to inhibit BPV1 E6. Our results reveal that Lumacaftor and MK-3207 are promising candidates for controlling BPV1 infection. The findings of this study may contribute to the development of E6 oncoprotein blockers in an accelerated and cost-effective manner.
Collapse
Affiliation(s)
- Lucas Alexandre Barbosa de Oliveira Santos
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
6
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
7
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
8
|
Romero-Masters J. mSphere of Influence: MmuPV1-a dual tropic papillomavirus, red herring, or novel insight into HPV pathogenesis. mSphere 2024; 9:e0017724. [PMID: 38920397 PMCID: PMC11288039 DOI: 10.1128/msphere.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
James Romero-Masters works in the field of tumor virology, focusing on the role of the human papillomavirus oncogenes in pathogenesis. In this mSphere of Influence article, they reflect on how the article "Mouse papillomavirus infection persists in mucosal tissues of an immunocompetent mouse strain and progresses to cancer" impacted them, informing their research strategies, and what it means for the mouse papillomavirus model.
Collapse
Affiliation(s)
- James Romero-Masters
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Zhang P, Ye X, Wang JCK, Baddock HT, Jensvold Z, Foe IT, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Reversibly Reactive Affinity Selection-Mass Spectrometry Enables Identification of Covalent Peptide Binders. J Am Chem Soc 2024; 146:15627-15639. [PMID: 38771982 DOI: 10.1021/jacs.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John C K Wang
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Hannah T Baddock
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Zena Jensvold
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ian T Foe
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dan L Eaton
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Qi Hao
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Aaron H Nile
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Sun J, Xiang J, An Y, Xu J, Xiong Y, Wang S, Xia Q. Unveiling the Association between HPV and Pan-Cancers: A Bidirectional Two-Sample Mendelian Randomization Study. Cancers (Basel) 2023; 15:5147. [PMID: 37958321 PMCID: PMC10650873 DOI: 10.3390/cancers15215147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION More and more studies have focused on the associations between human papillomavirus (HPV) infection and pan-cancers. However, current evidence is largely based on retrospective studies, which are susceptible to confounding factors and do not enable the establishment of causal relationships. METHODS A bidirectional two-sample Mendelian randomization (MR) design was employed to thoroughly evaluate the causal relationships between HPV and 12 site-specific cancers except cervical cancer. Single nucleoside polymers (SNPs) with strong evidence from genome-wide association studies (GWAS) were selected from HPV exposure datasets and used as instrumental variables (IVs) in this study. For the MR analysis results, MR-Egger's intercept P test, MR-PRESSO global test, Cochran's Q test and a leave-one-out test were applied for sensitivity analysis. Using HPVTIMER, we also performed immune infiltration analyses in head and neck squamous cell carcinoma (HNSCC), oropharyngeal squamous cell carcinoma (OPSCC) and vulval squamous cell carcinoma (VSCC) to evaluate the tumor-immune microenvironment. RESULTS Based on the evidence of MR analysis, our study conclusively identified HPV16 as a risk factor implicated in the development of bladder cancer, colorectal cancer, and breast cancer, while HPV18 was identified as a risk factor for prostate cancer, ovarian cancer, lung cancer and breast cancer. The MR results also showed that HPV16 may be a protective factor for prostate cancer, anal cancer, lung cancer and oropharyngeal cancer, while HPV18 may be a protective factor for vaginal cancer. CONCLUSION An HPV infection may modulate the immune microenvironment and therefore has a potential inhibitory effect on the development of certain cancers. These conclusions provided new insights into the potential mechanisms of carcinogenesis and needed further research for validation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; (J.S.); (J.X.); (Y.A.); (J.X.); (Y.X.)
| | - Qidong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; (J.S.); (J.X.); (Y.A.); (J.X.); (Y.X.)
| |
Collapse
|
12
|
Lozar T, Keske A, Dube Mandishora RS, Yu Q, Bailey A, Xu J, Tommasino M, McGregor SM, Lambert PF, Gheit T, Fitzpatrick MB. Betapapillomaviruses in p16-Negative Vulvar Intraepithelial Lesions Associated with Squamous Cell Carcinoma. Viruses 2023; 15:1950. [PMID: 37766356 PMCID: PMC10537070 DOI: 10.3390/v15091950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are risk factors for cutaneous squamous cell carcinoma (cSCC) and may be related to carcinomas originating in other cutaneous sites such as the vulva. In this study, we investigate the presence of β-HPVs, with an emphasis on p16-negative squamous lesions adjacent to vSCC. We subjected 28 vulvar squamous intraepithelial lesions adjacent to vSCC for comprehensive HPV genotyping, p16 and p53 immunohistochemistry, and consensus morphology review. Selected cases were subjected to qPCR and RNA in situ hybridization. Clinical data were obtained from medical records. β-HPV DNA was detected in eight of ten p16-negative lesions and three of fourteen p16-positive high-grade squamous intraepithelial lesions. The HPV DNA loads in vulvar squamous intraepithelial lesions ranged between less than 1 HPV DNA copy per cell to more than 100 HPV DNA copies per cell. This is, to the best of our knowledge, the first report of the association of p16-negative vulvar intraepithelial squamous lesions with detection of β-HPVs. These findings expand possible etiologic mechanisms that may contribute to p16-negative lesions of the vulva.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Racheal S. Dube Mandishora
- Center for Immunization and Infection Research in Cancer (CIIRC), Moffit Cancer Center, Tampa, FL 33612, USA
- Medical Microbiology Unit, University of Zimbabwe Faculty of Health Sciences, Harare P.O. Box A178, Zimbabwe
| | - Qiqi Yu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Adam Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | | | - Stephanie M. McGregor
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Tarik Gheit
- International Agency for Research on Cancer, 69007 Lyon, France
| | - Megan B. Fitzpatrick
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
13
|
Li Y, Xiao M, Zhang Y, Li Z, Bai S, Su H, Peng R, Wang G, Hu X, Song X, Li X, Tang C, Lu G, Yin F, Zhang P, Du J. Identification of two novel papillomaviruses in belugas. Front Microbiol 2023; 14:1165839. [PMID: 37564289 PMCID: PMC10411887 DOI: 10.3389/fmicb.2023.1165839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.
Collapse
Affiliation(s)
- Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zihan Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijie Bai
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Su
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, China
| | - Xin Li
- Qingdao Polar Haichang Ocean Park, Qingdao, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Yin W, Egawa N, Zheng K, Griffin H, Tian P, Aiyenuro A, Bornstein J, Doorbar J. HPV E6 inhibits E6AP to regulate epithelial homeostasis by modulating keratinocyte differentiation commitment and YAP1 activation. PLoS Pathog 2023; 19:e1011464. [PMID: 37379354 DOI: 10.1371/journal.ppat.1011464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Human papillomaviruses (HPV) cause persistent infections by modulating epithelial homeostasis in cells of the infected basal layer. Using FUCCI and cell-cell competition assays, we have identifed regulatory roles for E6AP and NHERF1, which are the primary HPV11 E6 cellular targets, as well as being targets of the high-risk E6 proteins, in processes governing epithelial homeostasis (i.e. cell density, cell cycle entry, commitment to differentiation and basal layer delamination). Depletion of E6AP, or expression of HPV11 or 16E6 increased keratinocyte cell density and cell cycle activity, and delayed the onset of differentiation; phenotypes which were conspicuously present in HPV11 and 16 infected patient tissue. In line with proposed E6 functions, in HPV11 condyloma tissue, E6AP and NHERF1 were significantly reduced when compared to uninfected epithelium. In experimental systems, loss of HPV11 E6/E6AP binding abolished 11E6's homeostasis regulatory functions, while loss of E6/NHERF1 binding reduced the cell density threshold at which differentiation was triggered. By contrast, a NHERF1-binding mutant of 16E6 was not compromised in its homeostasis functions, while E6AP appeared essential. RNA sequencing revealed similar transcriptional profiles in both 11 and 16E6-expressing cells and E6AP-/- cells, with YAP target genes induced, and keratinocyte differentiation genes being downregulated. HPV11 E6-mediated Yap activation was observed in 2D and 3D (organotypic raft) cell culture systems and HPV-infected lesions, with both NHERF1, which is a regulator of the Hippo and Wnt pathways, and E6AP, playing an important role. As the conserved binding partner of Alpha group HPV E6 proteins, the precise role of E6AP in modulating keratinocyte phenotype and associated signalling pathways has not previously been defined. Our study suggests a model in which the preserved functions of the low and high-risk Alpha E6 proteins modulate epithelial homeostasis via E6AP activity, and lead to alteration of multiple downstream pathways, including those involving NHERF1 and YAP.
Collapse
Affiliation(s)
- Wen Yin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Pu Tian
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob Bornstein
- Gynecologist & Obstetrician, Colposcopy, Azrieli Faculty of Medicine of Bar-Ilan University, and Galilee Medical Center-Nahariya
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
17
|
Lim J, Frecot DI, Stubenrauch F, Iftner T, Simon C. Cottontail rabbit papillomavirus E6 proteins: Interaction with MAML1 and modulation of the Notch signaling pathway. Virology 2022; 576:52-60. [PMID: 36155393 DOI: 10.1016/j.virol.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Animal models are necessary to study how cutaneous human papillomaviruses (HPVs) are associated with carcinogenesis. The cottontail rabbit papillomavirus (CRPV) induces papilloma in the -cutaneous skin of rabbits and serves as an established animal model for HPVlinked carcinogenesis where viral E6 proteins play crucial roles. Several studies have reported the dysregulation of the Notch signaling pathway by cutaneous beta HPV, bovine PV and mouse PV E6 via their association with Mastermind-like 1 protein (MAML1), thus interfering with cell proliferation and differentiation. However, the CRPV E6 gene encodes an elongated E6 protein (long E6, LE6) and an N-terminally truncated product (short E6, SE6) making it unique from other E6 proteins. Here, we describe the interaction between both CRPV E6 proteins and MAML1 and their ability to downregulate the Notch signaling pathway which could be a way CRPV infection induces carcinogenesis similar to beta HPV.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
18
|
Long T, Burk RD, Chan PKS, Chen Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 2022; 18:e1010444. [PMID: 35333912 PMCID: PMC8986119 DOI: 10.1371/journal.ppat.1010444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.
Collapse
Affiliation(s)
- Teng Long
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, New York city, New York, United States of America
- * E-mail: (RDB); (ZC)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail: (RDB); (ZC)
| |
Collapse
|
19
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Doorbar J, Zheng K, Aiyenuro A, Yin W, Walker CM, Chen Y, Egawa N, Griffin HM. Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Curr Opin Virol 2021; 51:96-105. [PMID: 34628359 DOI: 10.1016/j.coviro.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion. These lesions may be considered as self-regulating homeostatic structures, with epithelial cells of the hair follicles and sweat glands, which are proposed targets of the Beta and Mu papillomaviruses, showing similar restrictions to their expansion across the epithelium as a whole. In the absence of immune control, which facilitates deregulated viral gene expression, such lesions can expand, leading to problematic papillomatosis in afflicted individuals. By contrast, he high-risk Alpha HPV types can undergo deregulated viral gene expression in immunocompetent hosts at a number of body sites, including the cervical transformation zone (TZ) where they can drive the formation of neoplasia. Homeostasis at the TZ is poorly understood, but involves two adjacent epithelial cell population, one of which has the potential to stratify and to produce a multilayed squamous epithelium. This process of metaplasia involves a specialised cell type known as the reserve cell, which has for several decades been considered as the cell of origin of cervical cancer. It is becoming clear that during evolution, HPV gene products have acquired functions directly linked to their requirements to modify the normal processes of epithelial homestasis at their various sites of infection. These protein functions are beginning to provide new insight into homeostasis regulation at different body sites, and are likely to be central to our understanding of HPV epithelial tropisms.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom.
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Caroline M Walker
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Yuwen Chen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Heather M Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| |
Collapse
|
21
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
22
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
23
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
24
|
Ramsauer AS, Wachoski-Dark GL, Fraefel C, Ackermann M, Brandt S, Grest P, Knight CG, Favrot C, Tobler K. Establishment of a Three-Dimensional In Vitro Model of Equine Papillomavirus Type 2 Infection. Viruses 2021; 13:v13071404. [PMID: 34372610 PMCID: PMC8310375 DOI: 10.3390/v13071404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
There is growing evidence that equine papillomavirus type 2 (EcPV2) infection is etiologically associated with the development of genital squamous cell carcinoma (SCC) and precursor lesions in equids. However, the precise mechanisms underlying neoplastic progression remain unknown. To allow the study of EcPV2-induced carcinogenesis, we aimed to establish a primary equine cell culture model of EcPV2 infection. Three-dimensional (3D) raft cultures were generated from equine penile perilesional skin, plaques and SCCs. Using histological, molecular biological and immunohistochemical methods, rafts versus corresponding natural tissue sections were compared with regard to morphology, presence of EcPV2 DNA, presence and location of EcPV2 gene transcripts and expression of epithelial, mesenchymal and tumor/proliferation markers. Raft cultures from perilesional skin harboring only a few EcPV2-positive (EcPV2+) cells accurately recapitulated the differentiation process of normal skin, whilst rafts from EcPV2+ penile plaques were structurally organized but showed early hyperplasia. Rafts from EcPV2+ SCCs exhibited pronounced hyperplasia and marked dysplasia. Raft levels of EcPV2 oncogene transcription (E6/E7) and expression of tumor/proliferation markers p53, Ki67 and MCM7 expression positively correlated with neoplastic progression, again reflecting the natural situation. Three-dimensional raft cultures accurately reflected major features of corresponding ex vivo material, thus constituting a valuable new research model to study EcPV2-induced carcinogenesis.
Collapse
Affiliation(s)
- Anna Sophie Ramsauer
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (C.F.); (M.A.); (K.T.)
- Dermatology Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Internal Medicine, University Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
- Correspondence: ; Tel.: +43-6646-0257-5564
| | - Garrett Louis Wachoski-Dark
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.L.W.-D.); (C.G.K.)
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (C.F.); (M.A.); (K.T.)
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (C.F.); (M.A.); (K.T.)
| | - Sabine Brandt
- Research Group Oncology, University Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Cameron Greig Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.L.W.-D.); (C.G.K.)
| | - Claude Favrot
- Dermatology Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Kurt Tobler
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (C.F.); (M.A.); (K.T.)
| |
Collapse
|
25
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
26
|
Chitsike L, Duerksen-Hughes PJ. PPI Modulators of E6 as Potential Targeted Therapeutics for Cervical Cancer: Progress and Challenges in Targeting E6. Molecules 2021; 26:molecules26103004. [PMID: 34070144 PMCID: PMC8158384 DOI: 10.3390/molecules26103004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced cervical cancer is primarily managed using cytotoxic therapies, despite evidence of limited efficacy and known toxicity. There is a current lack of alternative therapeutics to treat the disease more effectively. As such, there have been more research endeavors to develop targeted therapies directed at oncogenic host cellular targets over the past 4 decades, but thus far, only marginal gains in survival have been realized. The E6 oncoprotein, a protein of human papillomavirus origin that functionally inactivates various cellular antitumor proteins through protein–protein interactions (PPIs), represents an alternative target and intriguing opportunity to identify novel and potentially effective therapies to treat cervical cancer. Published research has reported a number of peptide and small-molecule modulators targeting the PPIs of E6 in various cell-based models. However, the reported compounds have rarely been well characterized in animal or human subjects. This indicates that while notable progress has been made in targeting E6, more extensive research is needed to accelerate the optimization of leads. In this review, we summarize the current knowledge and understanding of specific E6 PPI inhibition, the progress and challenges being faced, and potential approaches that can be utilized to identify novel and potent PPI inhibitors for cervical cancer treatment.
Collapse
|
27
|
Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6/E6AP/p53 Complex Formation. J Virol 2020; 95:JVI.00730-20. [PMID: 33115863 DOI: 10.1128/jvi.00730-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity (∼67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.
Collapse
|
28
|
Zema S, Pelullo M, Nardozza F, Felli MP, Screpanti I, Bellavia D. A Dynamic Role of Mastermind-Like 1: A Journey Through the Main (Path)ways Between Development and Cancer. Front Cell Dev Biol 2020; 8:613557. [PMID: 33425921 PMCID: PMC7787167 DOI: 10.3389/fcell.2020.613557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/β-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways. Accordingly, despite its original identification as a component of the Notch signaling pathway, several recent reports suggest a more articulated role for MAML1 protein, showing that it is able to sustain/empower Wnt/β-catenin, Hh and Hippo pathways, in a Notch-independent manner. For this reason, MAML1 may be associated to a molecular “switch”, with the function to control the activation of major signaling pathways, triggering in this way critical biological processes during embryonic and post-natal life. In this review, we summarize the current knowledge about the pleiotropic role played by MAML proteins, in particular MAML1, and we recapitulate how it takes part actively in physiological and pathological signaling networks. On this point, we also discuss the contribution of MAML proteins to malignant transformation. Accordingly, genetic alterations or impaired expression of MAML proteins may lead to a deregulated crosstalk among the pathways, culminating in a series of pathological disorders, including cancer development. Given their central role, a better knowledge of the molecular mechanisms that regulate the interplay of MAML proteins with several signaling pathways involved in tumorigenesis may open up novel opportunities for an attractive molecular targeted anticancer therapy.
Collapse
Affiliation(s)
- Sabrina Zema
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
29
|
Minoni L, Romero-Medina MC, Venuti A, Sirand C, Robitaille A, Altamura G, Le Calvez-Kelm F, Viarisio D, Zanier K, Müller M, Accardi R, Tommasino M. Transforming Properties of Beta-3 Human Papillomavirus E6 and E7 Proteins. mSphere 2020; 5:e00398-20. [PMID: 32669468 PMCID: PMC7364212 DOI: 10.1128/msphere.00398-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The beta human papillomaviruses (HPVs) are subdivided into 5 species (beta-1 to beta-5), and they were first identified in the skin. However, the beta-3 species appears to be more highly represented in the mucosal epithelia than in the skin. Functional studies have also highlighted that beta-3 HPV49 shares some functional similarities with mucosal high-risk (HR) HPV16. Here, we describe the characterization of the in vitro transforming properties of the entire beta-3 species, which includes three additional HPV types: HPV75, HPV76, and HPV115. HPV49, HPV75, and HPV76 E6 and E7 (E6/E7), but not HPV115 E6 and E7, efficiently inactivate the p53 and pRb pathways and immortalize or extend the life span of human foreskin keratinocytes (HFKs). As observed for HR HPV16, cell cycle deregulation mediated by beta-3 HPV E6/E7 expression leads to p16INK4a accumulation, whereas no p16INK4a was detected in beta-2 HPV38 E6/E7 HFKs. As shown for HPV49 E6, HPV75 and HPV76 E6s degrade p53 by an E6AP/proteasome-mediated mechanism. Comparative analysis of cellular gene expression patterns of HFKs containing E6 and E7 from HR HPV16, beta-3 HPV types, and beta-2 HPV38 further highlights the functional similarities of HR HPV16 and beta-3 HPV49, HPV75, and HPV76. The expression profiles of these four HPV HFKs show some similarities and diverge substantially from those of beta-3 HPV115 E6/E7 and beta-2 HPV38 E6/E7 HFKs. In summary, our data show that beta-3 HPV types share some mechanisms with HR HPV types and pave the way for additional studies aiming to evaluate their potential role in human pathologies.IMPORTANCE Human papillomaviruses are currently classified in different genera. Mucosal HPVs belonging to the alpha genus have been clearly associated with carcinogenesis of the mucosal epithelium at different sites. Beta HPV types have been classified as cutaneous. Although findings indicate that some beta HPVs from species 1 and 2 play a role, together with UV irradiation, in skin cancer, very little is known about the transforming properties of most of the beta HPVs. This report shows the transforming activity of E6 and E7 from beta-3 HPV types. Moreover, it highlights that beta-3 HPVs share some biological properties more extensively with mucosal high-risk HPV16 than with beta-2 HPV38. This report provides new paradigms for a better understanding of the biology of the different HPV types and their possible association with lesions at mucosal and/or cutaneous epithelia.
Collapse
Affiliation(s)
- Lucia Minoni
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | | | - Katia Zanier
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Martin Müller
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
30
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
31
|
Drews CM, Brimer N, Vande Pol SB. Multiple regions of E6AP (UBE3A) contribute to interaction with papillomavirus E6 proteins and the activation of ubiquitin ligase activity. PLoS Pathog 2020; 16:e1008295. [PMID: 31971989 PMCID: PMC6999913 DOI: 10.1371/journal.ppat.1008295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 12/25/2019] [Indexed: 12/23/2022] Open
Abstract
The HECT domain E3 ubiquitin ligase E6AP (UBE3A) is critical for the development of human papillomavirus (HPV) associated cancers, the neurodevelopment disorder Angelman Syndrome, and some cases of autism spectrum disorders. How E6AP recognizes its cellular targets and how its ubiquitin ligase activity is triggered remain poorly understood, and HPV E6 proteins are models for these processes. We examined diverse E6 proteins from human and non-human papillomaviruses and identified two different modes of interaction between E6 and E6AP. In Type I interactions, E6 can interact directly with the LXXLL peptide motif alone of E6AP (isolated from the rest of E6AP), and then recruit cellular substrates such as p53. In Type II interactions, E6 proteins require additional auxiliary regions of E6AP in either the amino terminus or in the carboxy-terminal HECT domain to interact with the LXXLL peptide motif of E6AP. A region of E6AP amino-terminal to the LXXLL peptide motif both augments association with E6 proteins and is required for E6 proteins to trigger ubiquitin ligase activity in the carboxy-terminal HECT ubiquitin ligase domain of E6AP. In Type I interactions, E6 can associate with E6AP and recruit p53, but a Type II interaction is required for the degradation of p53 or NHERF1. Interestingly, different E6 proteins varied in E6AP auxiliary regions that contributed to enhanced association, indicating evolutionary drift in the formation of Type II interactions. This classification of E6-E6AP interaction types and identification of a region in the E6AP amino terminus that is important for both E6 association and stimulation of ubiquitin ligase activity will inform future structural data of the E6-E6AP complex and future studies aiming to interfere with the activity of the E6-E6AP complex.
Collapse
Affiliation(s)
- Camille M. Drews
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott B. Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Pyeon D, Rojas VK, Price L, Kim S, Singh M, Park IW. HIV-1 Impairment via UBE3A and HIV-1 Nef Interactions Utilizing the Ubiquitin Proteasome System. Viruses 2019; 11:v11121098. [PMID: 31783587 PMCID: PMC6950590 DOI: 10.3390/v11121098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Molecular basis of HIV-1 life cycle regulation has thus far focused on viral gene stage-specificity, despite the quintessence of post-function protein elimination processes in the virus life cycle and consequent pathogenesis. Our studies demonstrated that a key pathogenic HIV-1 viral protein, Nef, interacted with ubiquitin (Ub)-protein ligase E3A (UBE3A/E6AP), suggesting that interaction between Nef and UBE3A is integral to regulation of viral and cellular protein decay and thereby the competing HIV-1 and host cell survivals. In fact, Nef and UBE3A degraded reciprocally, and UBE3A-mediated degradation of Nef was significantly more potent than Nef-triggered degradation of UBE3A. Further, UBE3A degraded not only Nef but also HIV-1 structural proteins, Gag, thus significantly inhibiting HIV-1 replication in Jurkat T cells only in the presence of Nef, indicating that interaction between Nef and UBE3Awas pivotal for UBE3A-mediated degradation of the viral proteins. Mechanistic study showed that Nef and UBE3A were specific and antagonistic to each other in regulating proteasome activity and ubiquitination of cellular proteins in general, wherein specific domains of Nef overlapping with the long terminal repeat (LTR) were essential for the observed actions. Further, Nef itself reduced the level of intracellular Gag by degrading a cardinal transcription regulator, Tat, demonstrating a broad role for Nef in the regulation of the HIV-1 life cycle. Taken together, these data demonstrated that the Nef and UBE3A complex plays a crucial role in coordinating viral protein degradation and hence HIV-1 replication, providing insights as to the nature of pathobiologic and defense strategies of HIV-1 and HIV-infected host cells.
Collapse
Affiliation(s)
- Dohun Pyeon
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Vivian K. Rojas
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
| | - Lenore Price
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
| | - Seongcheol Kim
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (M.S.)
| | - Meharvan Singh
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (M.S.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
- Correspondence: ; Tel.: +(817)-735-5115; Fax: +(817)-735-2610
| |
Collapse
|
33
|
Zhao J, Zhu J, Guo J, Zhu T, Zhong J, Liu M, Ruan Y, Liao S, Li F. Genetic variability and functional implication of HPV16 from cervical intraepithelial neoplasia in Shanghai women. J Med Virol 2019; 92:372-381. [PMID: 31670402 DOI: 10.1002/jmv.25618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
Abstract
Human papillomavirus (HPV)16 gene mutation is usually associated with persistent HPV infection and cervical intraepithelial neoplasia (CIN). However, the functional implications of HPV16 mutations remain poorly understood.145 LCR/E6/E7 of the HPV16 isolates were amplified and sequenced, and HPV16 integration status was detected. In total, 89 SNPs (68 in the LCR, 13 in E6, 8 in E7) were discovered, 11 of which were nonsynonymous mutations (8 in E6, 3 in E7). The H85Y and E120D variants in E6 were significantly reduced in the high-grade squamous intraepithelial lesion (HSIL) group compared to the <HSIL group (P = .046 and .005), conversely the N29S in E7(P = .01). Amino acid substitutions (D32N/E, E36Q, H85Y, and E120D in E6 and N29H/S and R77C in E7) were predicted to have an effect on conserved structural and functional residues, and five amino acid substitutions (H85Y, E36Q, I34L, and D32E in E6; R77C in E7) would potentially change the secondary structure. "6329G>T," a potential binding site for TATA-binding protein, is the most common in LCR variants. A4 (Asian) was associated with an increased risk of HSIL compared to A1-3(P = .009). The H85/E120 in E6 and N29 in HPV16 E7 might play a critical role in carcinogenesis by disrupting p53 and Rb degradation due to affecting their interaction, respectively. In a word, the findings in this study provide preventative and therapeutic interventions of HPV16 -related cervical lesions/cancer.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiacheng Zhu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Maternal and Child Health Research Institute, BGI-Shenzhen, Shenzhen, China
| | - Junhan Guo
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tailin Zhu
- School of Physics HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Jixing Zhong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Min Liu
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shujie Liao
- Shujie Liao Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Notch signalling in cervical cancer. Exp Cell Res 2019; 385:111682. [PMID: 31634483 DOI: 10.1016/j.yexcr.2019.111682] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
The initial discovery of key developmental signalling pathways, largely using classical genetic approaches in model organisms, was followed by an intense burst of characterisation of the molecular components. Studies also began demonstrating a role for these pathways in oncogenesis. Patterns of mutations in Notch pathway components, such as those reported in subsets of hematological malignancies, have been easier to study, and the cumulative information is leading to potentially new therapies. However, it has been more challenging to clearly define the role of the Notch pathway in human solid tumours, given the absence of widespread specific activating or repressive mutations in key components of the pathway. In this review, we trace more than two decades of work looking at the role of Notch signalling in human cervical cancer progression. We document the contrasting reports on a tumour suppressive role and pro-oncogenic role in cervical cancers. However, an analysis of recent genomic data strikingly shows both widespread features of Notch expression and genetic changes that largely amplify positive regulators and delete negative controllers of the Notch pathway. This analysis reinforces a largely pro-oncogenic role for Notch signalling and lays the foundation for a nuanced exploration of synergistic and targeted therapies. Lastly, we further trace some of the complex challenges in advanced cervical cancer progression, including issues of cancer stem cells and metastasis.
Collapse
|
35
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
36
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
E6 proteins from high-risk HPV, low-risk HPV, and animal papillomaviruses activate the Wnt/β-catenin pathway through E6AP-dependent degradation of NHERF1. PLoS Pathog 2019; 15:e1007575. [PMID: 31002735 PMCID: PMC6493770 DOI: 10.1371/journal.ppat.1007575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/01/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 proteins associate with the cellular ubiquitin ligase E6-Associated Protein (E6AP), and then recruit both p53 and certain cellular PDZ proteins for ubiquitination and degradation by the proteasome. Low-risk HPV E6 proteins also associate with E6AP, yet fail to recruit p53 or PDZ proteins; their E6AP-dependent targets have so far been uncharacterized. We found a cellular PDZ protein called Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) is targeted for degradation by both high and low-risk HPV E6 proteins as well as E6 proteins from diverse non-primate mammalian species. NHERF1 was degraded by E6 in a manner dependent upon E6AP ubiquitin ligase activity but independent of PDZ interactions. A novel structural domain of E6, independent of the p53 recognition domain, was necessary to associate with and degrade NHERF1, and the NHERF1 EB domain was required for E6-mediated degradation. Degradation of NHERF1 by E6 activated canonical Wnt/β-catenin signaling, a key pathway that regulates cell growth and proliferation. Expression levels of NHERF1 increased with increasing cell confluency. This is the first study in which a cellular protein has been identified that is targeted for degradation by both high and low-risk HPV E6 as well as E6 proteins from diverse animal papillomaviruses. This suggests that NHERF1 plays a role in regulating squamous epithelial growth and further suggests that the interaction of E6 proteins with NHERF1 could be a common therapeutic target for multiple papillomavirus types. Papillomaviruses cause benign squamous epithelial tumors through the action of virally encoded oncoproteins termed E6 and E7, which are classified as either high or low-risk based upon the propensity of the tumor to evolve into cancer. E6 proteins from both high and low-risk HPVs interact with a cellular ubiquitin ligase called E6AP. High-risk E6 proteins hijack E6AP ubiquitin ligase activity to target p53 for degradation. Degradation targets of the low-risk E6 proteins in complex with E6AP have not been described. Here, we describe a protein called NHERF1 that is targeted for degradation by both high and low-risk E6 proteins, as well as E6 proteins from diverse animal species. Degradation of NHERF1 resulted in activation of an oncogenic cellular signaling pathway called Wnt. Identification of NHERF1 as a highly conserved E6 degradation target could inform therapies directed against both low-risk HPVs and cancer-inducing high-risk HPVs.
Collapse
|
38
|
Rollison DE, Viarisio D, Amorrortu RP, Gheit T, Tommasino M. An Emerging Issue in Oncogenic Virology: the Role of Beta Human Papillomavirus Types in the Development of Cutaneous Squamous Cell Carcinoma. J Virol 2019; 93:e01003-18. [PMID: 30700603 PMCID: PMC6430537 DOI: 10.1128/jvi.01003-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence suggests that beta human papillomaviruses (HPVs), together with ultraviolet radiation, contribute to the development of cutaneous squamous cell carcinoma. Beta HPVs appear to be not the main drivers of carcinogenesis but rather facilitators of the accumulation of ultraviolet-induced DNA mutations. Beta HPVs are promoters of skin carcinogenesis, although they are dispensable for the maintenance of the malignant phenotype. Therefore, beta HPV represents a target for skin cancer prevention, especially in high-risk populations.
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Daniele Viarisio
- Infection and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
39
|
Bonhoure A, Demenge A, Kostmann C, San José L, De la Cal E, Armisen P, Nominé Y, Travé G. One-step affinity purification of fusion proteins with optimal monodispersity and biological activity: application to aggregation-prone HPV E6 proteins. Microb Cell Fact 2018; 17:191. [PMID: 30501645 PMCID: PMC6271572 DOI: 10.1186/s12934-018-1039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bacterial expression and purification of recombinant proteins under homogeneous active form is often challenging. Fusion to highly soluble carrier proteins such as Maltose Binding Protein (MBP) often improves their folding and solubility, but self-association may still occur. For instance, HPV E6 oncoproteins, when produced as MBP-E6 fusions, are expressed as mixtures of biologically inactive oligomers and active monomers. While a protocol was previously developed to isolate MBP-E6 monomers for structural studies, it allows the purification of only one MBP-E6 construct at the time. Here, we explored a parallelizable strategy more adapted for biophysical assays aiming at comparing different E6 proteins. RESULTS In this study, we took advantage of the distinct size and diffusion properties of MBP-E6 monomers and oligomers to separate these two species using a rapid batch preparation protocol on affinity resins. We optimized resin reticulation, contact time and elution method in order to maximize the proportion of monomeric MBP-E6 in the final sample. Analytical size-exclusion chromatography was used to quantify the different protein species after purification. Thus, we developed a rapid, single-step protocol for the parallel purification of highly monomeric MBP-E6 samples. MBP-fused HPV16 E6 samples obtained by this approach were validated by testing the binding to their prototypical peptide targets (the LXXLL motif from ubiquitine ligase E6AP) by BIAcore-SPR assay. CONCLUSIONS We have designed a rapid single-step batch affinity purification approach to isolate biologically active monomers of MBP-fused E6 proteins. This protocol should be generalizable to isolate the monomer (or the minimal biologically active oligomer) of other proteins prone to self-association.
Collapse
Affiliation(s)
- Anna Bonhoure
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Auguste Demenge
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Leticia San José
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Eva De la Cal
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Pilar Armisen
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| |
Collapse
|
40
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
41
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|