1
|
Ishii M, Ohata S. Small GTPase Rac promotes hyphal formation and microconidiogenesis in Trichophyton rubrum. Small GTPases 2024; 15:1-8. [PMID: 40320710 PMCID: PMC12054376 DOI: 10.1080/21541248.2025.2498174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Morphogenesis plays a pivotal role in the infection process of Trichophyton rubrum, a primary aetiological agent of dermatophytosis that inhabits superficial human tissues. T. rubrum proliferates by extending filamentous structures, or hyphae, which are composed of highly polarized cells. In response to environmental stimuli, T. rubrum also produces asexual spores called microconidia, consisting of individual cells. Although these dynamic morphological changes are critical for T. rubrum proliferation and environmental adaptation, the molecular mechanisms underlying these processes remain poorly understood. In previous research, we demonstrated that repressing Cdc24, a guanine nucleotide exchange factor (GEF) for the small GTPases Rac and Cdc42, disrupts fungal cell polarity and impairs hyphal formation in T. rubrum. In this study, we show that Rac deficiency in the Δrac strain minimally affects hyphal formation, as indicated by the cell polarity index (the ratio of a cell's long to short diameter in hyphae). However, simultaneous Rac deficiency and Cdc42 repression in the Δrac/Pctr4 cdc42 strain significantly disrupted cell polarity, suggesting that Rac and Cdc42 perform overlapping functions in hyphal morphogenesis. Interestingly, Rac deficiency inhibited microconidia formation, whereas cdc42 repression had no detectable impact. Furthermore, adding cysteine, a radical scavenger abundant in keratins, to the growth medium reduced microconidia production in the wild-type strain but not in the Δrac strain. These findings suggest that cysteine in host tissues inhibits Rac-mediated microconidia formation. Overall, this study identifies Rac as a key regulator of T. rubrum morphogenesis, with specific roles in both hyphal development and microconidia formation.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| |
Collapse
|
2
|
Miura A, Imano S, Ashida A, Sato I, Chiba S, Tanaka A, Camagna M, Takemoto D. Draft genome sequences of Epichloë bromicola strains isolated from Elymus ciliaris. Microbiol Resour Announc 2024; 13:e0031724. [PMID: 39248521 PMCID: PMC11465769 DOI: 10.1128/mra.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Epichloë species are endophytic fungi that systemically colonize grass species. Here, we report the genome sequences of Epichloë bromicola strains HS and DP isolated for the first time from Elymus ciliaris in Nagoya, Japan.
Collapse
Affiliation(s)
- Atsushi Miura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayaka Imano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Shi L, Wang Z, Chen JH, Qiu H, Liu WD, Zhang XY, Martin FM, Zhao MW. LbSakA-mediated phosphorylation of the scaffolding protein LbNoxR in the ectomycorrhizal basidiomycete Laccaria bicolor regulates NADPH oxidase activity, ROS accumulation and symbiosis development. THE NEW PHYTOLOGIST 2024; 243:381-397. [PMID: 38741469 DOI: 10.1111/nph.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ju Hong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Dong Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Yan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
4
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. Targeting dermatophyte Cdc42 and Rac GTPase signaling to hinder hyphal elongation and virulence. iScience 2024; 27:110139. [PMID: 38952678 PMCID: PMC11215307 DOI: 10.1016/j.isci.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The development of antifungal drugs requires novel molecular targets due to limited treatment options and drug resistance. Through chemical screening and establishment of a novel genetic technique to repress gene expression in Trichophyton rubrum, the primary causal fungus of dermatophytosis, we demonstrated that fungal Cdc42 and Rac GTPases are promising antifungal drug targets. Chemical inhibitors of these GTPases impair hyphal formation, which is crucial for growth and virulence in T. rubrum. Conditional repression of Cdc24, a guanine nucleotide exchange factor for Cdc42 and Rac, led to hyphal growth defects, abnormal cell morphology, and cell death. EHop-016 inhibited the promotion of the guanine nucleotide exchange reaction in Cdc42 and Rac by Cdc24 as well as germination and growth on the nail fragments of T. rubrum and improved animal survival in an invertebrate infection model of T. rubrum. Our results provide a novel antifungal therapeutic target and a potential lead compound.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2–522–1 Noshio, Kiyose, Tokyo 204–8588, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo 192-0395, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo 173-0003, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
5
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
6
|
Dautt-Castro M, Rebolledo-Prudencio OG, Estrada-Rivera M, Islas-Osuna MA, Jijón-Moreno S, Casas-Flores S. Trichoderma virens Big Ras GTPase-1, a molecular switch for transforming a mutualistic fungus to plants in a deleterious microbe. Microbiol Res 2024; 278:127508. [PMID: 37864916 DOI: 10.1016/j.micres.2023.127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Trichoderma spp. are ascomycete filamentous fungi widely distributed worldwide that establish mutualistic relationships with plants by antagonizing phytopathogens in the rhizosphere and colonizing the plant roots, hence, promoting plant growth and triggering the systemic resistance against phytopathogens. During the first stages of root colonization by Trichoderma, plants recognize the fungus as an invader by inducing the plant defense system, including the production of reactive oxygen species (ROS). Some members of the small Ras GTPases regulate NADPH oxidases and, therefore, ROS production. However, their role in mutualistic microorganisms that colonize plant roots is poorly understood. It has been demonstrated that Trichoderma virens strains lacking TBRG-1, a member of a new family of the Ras GTPases, impair their biocontrol capability and behave like a pathogen on tomato seeds and seedlings. Here, we found that TBRG-1 is essential in T. virens to maintain the mutualistic relationship with plants because a mutant-lacking tbrg-1 gen could not induce plant growth in Arabidopsis and tomatoes. Furthermore, treatment of Arabidopsis seedlings with Δtbrg-1 induced strongly PR-1a, the systemic acquired resistance (SAR) marker gene at early times of the interaction, which correlated with enhanced foliar damage by Botrytis cinerea, resembling the behavior of a biotrophic phytopathogen. Additionally, leaves of plants treated with either T. virens wild-type (wt) or Δtbrg-1 and challenged or not with Botrytis showed ROS production to a different extent, as well as differential expression of cell detoxification-related genes, CAT1, and APX1. Root colonization assays of sid-2 and jar1 mutant lines affected in SAR and induced systemic resistance (ISR) by Δtbrg-1 and the wt strain, suggest an important role of both pathways in the recognition of the fungus and that TBRG-1 plays a pivotal role in root colonization. Furthermore, we found that TBRG-1 is a negative regulator of NoxR expression, which may impact the mutualistic interaction.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Oscar G Rebolledo-Prudencio
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Magnolia Estrada-Rivera
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - María A Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Saúl Jijón-Moreno
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
7
|
Bastías DA, Ueno AC, Gundel PE. Global Change Factors Influence Plant- Epichloë Associations. J Fungi (Basel) 2023; 9:446. [PMID: 37108902 PMCID: PMC10145611 DOI: 10.3390/jof9040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
There is an increasing interest in determining the influence of global change on plant-microorganism interactions. We review the results of experiments that evaluated the effects of the global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon dioxide levels and low temperatures differentially influenced the growth of plants and endophytes, which could compromise the symbioses. Furthermore, we summarise the plant stage in which the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just a few of them. While only studied in response to ozone and drought, evidence showed that the effects of these factors on symbiotic plants persisted trans-generationally. We also identified the putative mechanisms that would explain the effects of the factors on plant-endophyte associations. These mechanisms included the increased contents of reactive oxygen species and defence-related phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants, reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and photosynthesis levels. Knowledge gaps regarding the effects of global change on plant-endophyte associations were identified and discussed.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Andrea C. Ueno
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Talca 3480094, Chile
| | - Pedro E. Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Facultad de Agronomía, IFEVA, CONICET, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
8
|
Bastías DA, Gundel PE. Plant stress responses compromise mutualisms with Epichloë endophytes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:19-23. [PMID: 36309896 PMCID: PMC9786834 DOI: 10.1093/jxb/erac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
| | - Pedro E Gundel
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Bastías DA, Balestrini R, Pollmann S, Gundel PE. Environmental interference of plant-microbe interactions. PLANT, CELL & ENVIRONMENT 2022; 45:3387-3398. [PMID: 36180415 PMCID: PMC9828629 DOI: 10.1111/pce.14455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch LimitedGrasslands Research CentrePalmerston NorthNew Zealand
| | | | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro E. Gundel
- IFEVA, CONICET, Universidad de Buenos AiresFacultad de AgronomíaBuenos AiresArgentina
- Centro de Ecología Integrativa, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
| |
Collapse
|
10
|
Hassing B, Candy A, Eaton CJ, Fernandes TR, Mesarich CH, Di Pietro A, Scott B. Localisation of phosphoinositides in the grass endophyte Epichloë festucae and genetic and functional analysis of key components of their biosynthetic pathway in E. festucae symbiosis and Fusarium oxysporum pathogenesis. Fungal Genet Biol 2022; 159:103669. [PMID: 35114379 DOI: 10.1016/j.fgb.2022.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
Phosphoinositides (PI) are essential components of eukaryotic membranes and function in a large number of signaling processes. While lipid second messengers are well studied in mammals and yeast, their role in filamentous fungi is poorly understood. We used fluorescent PI-binding molecular probes to localize the phosphorylated phosphatidylinositol species PI[3]P, PI[3,5]P2, PI[4]P and PI[4,5]P2 in hyphae of the endophyte Epichloë festucae in axenic culture and during interaction with its grass host Lolium perenne. We also analysed the roles of the phosphatidylinositol-4-phosphate 5-kinase MssD and the predicted phosphatidylinositol-3,4,5-triphosphate 3-phosphatase TepA, a homolog of the mammalian tumour suppressor protein PTEN. Deletion of tepA in E. festucae and in the root-infecting tomato pathogen Fusarium oxysporum had no impact on growth in culture or the host interaction phenotype. However, this mutation did enable the detection of PI[3,4,5]P3 in septa and mycelium of E. festucae and showed that TepA is required for chemotropism in F. oxysporum. The identification of PI[3,4,5]P3 in ΔtepA strains suggests that filamentous fungi are able to generate PI[3,4,5]P3 and that fungal PTEN homologs are functional lipid phosphatases. The F. oxysporum chemotropism defect suggests a conserved role of PTEN homologs in chemotaxis across protists, fungi and mammals.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Alyesha Candy
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Tania R Fernandes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carl H Mesarich
- Bio-Protection Research Centre, New Zealand; School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand.
| |
Collapse
|
11
|
Wang J, Zhang J, Ma J, Liu L, Li J, Shen T, Tian Y. The major component of cinnamon oil as a natural substitute against
Fusarium solani
on
Astragalus membranaceus. J Appl Microbiol 2022; 132:3125-3141. [DOI: 10.1111/jam.15458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jianglai Wang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinxiu Ma
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jiajia Li
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Tong Shen
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
12
|
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0175921. [PMID: 35019695 PMCID: PMC8754127 DOI: 10.1128/spectrum.01759-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nematode-trapping (NT) fungi can form unique infection structures (traps) to capture and kill free-living nematodes and, thus, can play a potential role in the biocontrol of nematodes. Arthrobotrys oligospora is a representative species of NT fungi. Here, we performed a time course transcriptome sequencing (RNA-seq) analysis of transcriptomes to understand the global gene expression levels of A. oligospora during trap formation and predation. We identified 5,752 unique differentially expressed genes, among which the rac gene was significantly upregulated. Alternative splicing events occurred in 2,012 genes, including the rac and rho2 gene. Furthermore, we characterized three Rho GTPases (Rho2, Rac, and Cdc42) in A. oligospora using gene disruption and multiphenotypic analysis. Our analyses showed that AoRac and AoCdc42 play an important role in mycelium growth, lipid accumulation, DNA damage, sporulation, trap formation, pathogenicity, and stress response in A. oligospora. AoCdc42 and AoRac specifically interacted with components of the Nox complex, thus regulating the production of reactive oxygen species. Moreover, the transcript levels of several genes associated with protein kinase A, mitogen-activated protein kinase, and p21-activated kinase were also altered in the mutants, suggesting that Rho GTPases might function upstream from these kinases. This study highlights the important role of Rho GTPases in A. oligospora and provides insights into the regulatory mechanisms of signaling pathways in the trap morphogenesis and lifestyle transition of NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are widely distributed in terrestrial and aquatic ecosystems. Their broad adaptability and flexible lifestyles make them ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a model species employed for understanding the interaction between fungi and nematodes. Here, we revealed that alternative splicing events play a crucial role in the trap development and lifestyle transition in A. oligospora. Furthermore, Rho GTPases exert differential effects on the growth, development, and pathogenicity of A. oligospora. In particular, AoRac is required for sporulation and trap morphogenesis. In addition, our analysis showed that Rho GTPases regulate the production of reactive oxygen species and function upstream from several kinases. Collectively, these results expand our understanding of gene expression and alternative splicing events in A. oligospora and the important roles of Rho GTPases in NT fungi, thereby providing a foundation for exploring their potential application in the biocontrol of pathogenic nematodes.
Collapse
|
13
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021. [PMID: 34835312 DOI: 10.1007/10.3390/microorganisms9112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021; 9:2186. [PMID: 34835312 PMCID: PMC8623577 DOI: 10.3390/microorganisms9112186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
15
|
Noorifar N, Savoian MS, Ram A, Lukito Y, Hassing B, Weikert TW, Moerschbacher BM, Scott B. Chitin Deacetylases Are Required for Epichloë festucae Endophytic Cell Wall Remodeling During Establishment of a Mutualistic Symbiotic Interaction with Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1181-1192. [PMID: 34058838 DOI: 10.1094/mpmi-12-20-0347-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network and also grows as an epiphyte. However, little is known about the cell wall-remodeling mechanisms required to avoid host defense and maintain intercalary growth within the host. Here, we use a suite of molecular probes to show that the E. festucae cell wall is remodeled by conversion of chitin to chitosan during infection of L. perenne seedlings, as the hyphae switch from free-living to endophytic growth. When hyphae transition from endophytic to epiphytic growth, the cell wall is remodeled from predominantly chitosan to chitin. This conversion from chitin to chitosan is catalyzed by chitin deacetylase. The genome of E. festucae encodes three putative chitin deacetylases, two of which (cdaA and cdaB) are expressed in planta. Deletion of either of these genes results in disruption of fungal intercalary growth in the intercellular spaces of plants infected with these mutants. These results establish that these two genes are required for maintenance of the mutualistic symbiotic interaction between E. festucae and L. perenne.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Tobias W Weikert
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität, Münster, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
16
|
Kim H, Lee YH. Spatiotemporal Assembly of Bacterial and Fungal Communities of Seed-Seedling-Adult in Rice. Front Microbiol 2021; 12:708475. [PMID: 34421867 PMCID: PMC8375405 DOI: 10.3389/fmicb.2021.708475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Seeds harbor not only genetic information about plants but also microbial communities affecting plants’ vigor. Knowledge on the movement and formation of seed microbial communities during plant development remains insufficient. Here, we address this knowledge gap by investigating endophytic bacterial and fungal communities of seeds, seedlings, and adult rice plants. We found that seed coats act as microbial niches for seed bacterial and fungal communities. The presence or absence of the seed coat affected taxonomic composition and diversity of bacterial and fungal communities associated with seeds and seedlings. Ordination analysis showed that niche differentiation between above- and belowground compartments leads to compositional differences in endophytic bacterial and fungal communities originating from seeds. Longitudinal tracking of the composition of microbial communities from field-grown rice revealed that bacterial and fungal communities originating from seeds persist in the leaf, stem, and root endospheres throughout the life cycle. Our study provides ecological insights into the assembly of the initial endophytic microbial communities of plants from seeds.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Kowalewski GP, Wildeman AS, Bogliolo S, Besold AN, Bassilana M, Culotta VC. Cdc42 regulates reactive oxygen species production in the pathogenic yeast Candida albicans. J Biol Chem 2021; 297:100917. [PMID: 34181946 PMCID: PMC8329510 DOI: 10.1016/j.jbc.2021.100917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Across eukaryotes, Rho GTPases such as Rac and Cdc42 play important roles in establishing cell polarity, which is a key feature of cell growth. In mammals and filamentous fungi, Rac targets large protein complexes containing NADPH oxidases (NOX) that produce reactive oxygen species (ROS). In comparison, Rho GTPases of unicellular eukaryotes were believed to signal cell polarity without ROS, and it was unclear whether Rho GTPases were required for ROS production in these organisms. We document here the first example of Rho GTPase-mediated post-transcriptional control of ROS in a unicellular microbe. Specifically, Cdc42 is required for ROS production by the NOX Fre8 of the opportunistic fungal pathogen Candida albicans. During morphogenesis to a hyphal form, a filamentous growth state, C. albicans FRE8 mRNA is induced, which leads to a burst in ROS. Fre8-ROS is also induced during morphogenesis when FRE8 is driven by an ectopic promoter; hence, Fre8 ROS production is in addition controlled at the post-transcriptional level. Using fluorescently tagged Fre8, we observe that the majority of the protein is associated with the vacuolar system. Interestingly, much of Fre8 in the vacuolar system appears inactive, and Fre8-induced ROS is only produced at sites near the hyphal tip, where Cdc42 is also localized during morphogenesis. We observe that Cdc42 is necessary to activate Fre8-mediated ROS production during morphogenesis. Cdc42 regulation of Fre8 occurs without the large NOX protein complexes typical of higher eukaryotes and therefore represents a novel form of ROS control by Rho GTPases.
Collapse
Affiliation(s)
- Griffin P Kowalewski
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Asia S Wildeman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stéphanie Bogliolo
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Angelique N Besold
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
19
|
Villalobos-Escobedo JM, Esparza-Reynoso S, Pelagio-Flores R, López-Ramírez F, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella A. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2178-2192. [PMID: 32578269 DOI: 10.1111/tpj.14891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, C. P. 58240, México
| | - Fabiola López-Ramírez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| |
Collapse
|
20
|
Tanaka A, Kamiya S, Ozaki Y, Kameoka S, Kayano Y, Saikia S, Akano F, Uemura A, Takagi H, Terauchi R, Maruyama J, Hammadeh HH, Fleissner A, Scott B, Takemoto D. A nuclear protein NsiA from
Epichloë festucae
interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion. Mol Microbiol 2020; 114:626-640. [DOI: 10.1111/mmi.14568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Shota Kamiya
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yoshino Ozaki
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Shinichi Kameoka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka Kayano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Sanjay Saikia
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Fumitake Akano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center Kitakami Japan
| | | | | | | | - Hamzeh Haj Hammadeh
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - André Fleissner
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - Barry Scott
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
21
|
Bharadwaj R, Jagadeesan H, Kumar SR, Ramalingam S. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 2020; 36:92. [PMID: 32562008 DOI: 10.1007/s11274-020-02868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.
Collapse
Affiliation(s)
- R Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - H Jagadeesan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S R Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
22
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
23
|
Dautt-Castro M, Estrada-Rivera M, Olguin-Martínez I, Rocha-Medina MDC, Islas-Osuna MA, Casas-Flores S. TBRG-1 a Ras-like protein in Trichoderma virens involved in conidiation, development, secondary metabolism, mycoparasitism, and biocontrol unveils a new family of Ras-GTPases. Fungal Genet Biol 2019; 136:103292. [PMID: 31730908 DOI: 10.1016/j.fgb.2019.103292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
Abstract
Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp. are filamentous saprophytic fungi, widely distributed along all latitudes, characterized by their rapid growth and metabolic diversity. Many species of this genus interact with other fungi, animals or plants. Furthermore, these fungi are used as biocontrol agents due to their ability to antagonize phytopathogenic fungi and oomycetes, through competence, antibiosis, and parasitism. However, the genetic and molecular regulation of these processes is scarcely described in these fungi. In this work, we investigated the role of the gene tbrg-1 product (GenBank accession number XP_013956100; JGI ID: Tv_70852) of T. virens during its interaction with other fungi and plants. Sequence analyses predicted that TBRG-1 bears the characteristic domains of Ras-GTPases; however, its size (1011 aa) is 3- to 4-times bigger compared with classical GTPases. Interestingly, phylogenetic analyses grouped the TBRG-1 protein with hypothetical proteins of similar sizes, sharing conserved regions; whereas other known Ras-GTPases were perfectly grouped with their respective families. These facts led us to classify TBRG-1 into a new family of Ras-GTPases, the Big Ras-GTPases (BRG). Therefore, the gene was named tbrg-1 (TrichodermaBigRas-GTPase-1). Quantification of conidia and scanning electron microscopy showed that the mutants-lacking tbrg-1 produced less conidia, as well as a delayed conidiophore development compared to the wild-type (wt). Moreover, a deregulation of conidiation-related genes (con-10, con-13, and stuA) was observed in tbrg-1-lacking strains, which indicates that TBRG-1 is necessary for proper conidiophore and conidia development. Furthermore, the lack of tbrg-1 affected positively the antagonistic capability of T. virens against the phytopathogens Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum, which was consistent with the expression patterns of mycoparasitism-related genes, sp1 and cht1, that code for a protease and for a chitinase, respectively. Furthermore, the antibiosis effect of mycelium-free culture filtrates of Δtbrg-1 against R. solani was considerably enhanced. The expression of secondary metabolism-related genes, particularly gliP, showed an upregulation in Δtbrg-1, which paralleled an increase in gliotoxin production as compared to the wt. These results indicate that TBRG-1 plays a negative role in secondary metabolism and antagonism. Unexpectedly, the biocontrol activity of Δtbrg-1 was ineffective to protect the tomato seeds and seedlings against R. solani. On the contrary, Δtbrg-1 behaved like a plant pathogen, indicating that TBRG-1 is probably implicated in the recognition process for establishing a beneficial relationship with plants.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Magnolia Estrada-Rivera
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Ignacio Olguin-Martínez
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico
| | - Ma Del Carmen Rocha-Medina
- IPICYT, Laboratorio Nacional de Biotecnología Agrícola, Médica y Ambiental, San Luis Potosí, S.L.P., Mexico
| | - María A Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas. Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
24
|
Tian X, Wang D, Mao Z, Pan L, Liao J, Cai Z. Infection of Plasmodiophora brassicae changes the fungal endophyte community of tumourous stem mustard roots as revealed by high-throughput sequencing and culture-dependent methods. PLoS One 2019; 14:e0214975. [PMID: 31188828 PMCID: PMC6561537 DOI: 10.1371/journal.pone.0214975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
Abstract
Diverse fungal endophytes live in plants and are shaped by some abiotic and biotic stresses. Plant disease as particular biotic stress possibly gives an impact on the communities of fungal endophytes. In this study, clubroot disease caused by an obligate biotroph protist, Plasmodiophora brassicae, was considered to analyze its influence on the fungal endophyte community using an internal transcribed spacer (ITS) through high-throughput sequencing and culture-dependent methods. The results showed that the diversity of the endophyte community in the healthy roots was much higher than the clubroots. Ascomycota was the dominant group of endophytes (Phoma, Mortierella, Penicillium, etc.) in the healthy roots while P. brassicae was the dominant taxon in the clubroots. Hierarchical clustering, principal component analysis (PCA), principal coordinates analysis (PCoA) and analysis of similarities (ANOSIM) indicated significant differences between the endophyte communities in the healthy roots and clubroots. Linear discriminant analysis effect size (LefSe) analysis showed that the dominant genera could be regarded as potential biomarkers. The endophyte community in the healthy roots had a more complex network compared with the clubroots. Also, many plant pathogenic Fusarium were isolated from the clubroots by the culture-dependent method. The outcome of this study illustrates that P. brassicae infection may change the fungal endophyte community associated with the roots of tumourous stem mustard and facilitates the entry of soil pathogen into the roots.
Collapse
Affiliation(s)
- Xueliang Tian
- Henan institute of science and technology, Xinxiang, Henan, China
| | | | - Zhenchuan Mao
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Pan
- Yangtze Normal University, Fuling, Chongqing, China
| | | | - Zhaoming Cai
- Yangtze Normal University, Fuling, Chongqing, China
| |
Collapse
|
25
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
26
|
Mizuno Y, Ohtsu M, Shibata Y, Tanaka A, Camagna M, Ojika M, Mori H, Sato I, Chiba S, Kawakita K, Takemoto D. Nicotiana benthamiana RanBP1-1 Is Involved in the Induction of Disease Resistance via Regulation of Nuclear-Cytoplasmic Transport of Small GTPase Ran. FRONTIERS IN PLANT SCIENCE 2019; 10:222. [PMID: 30906303 PMCID: PMC6418045 DOI: 10.3389/fpls.2019.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/08/2019] [Indexed: 06/07/2023]
Abstract
Plant cells enhance the tolerances to abiotic and biotic stresses via recognition of the stress, activation and nuclear import of signaling factors, up-regulation of defense genes, nuclear export of mRNA and translation of defense proteins. Nuclear pore-mediated transports should play critical roles in these processes, however, the regulatory mechanisms of nuclear-cytoplasmic transport during stress responses are largely unknown. In this study, a regulator of nuclear export of RNA and proteins, NbRanBP1-1 (Ran-binding protein1-1), was identified as an essential gene for the resistance of Nicotiana benthamiana to potato blight pathogen Phytophthora infestans. NbRanBP1-1-silenced plants showed delayed accumulation of capsidiol, a sesquiterpenoid phytoalexin, in response to elicitor treatment, and reduced resistance to P. infestans. Abnormal accumulation of mRNA was observed in NbRanBP1-1-silenced plants, indicating that NbRanBP1-1 is involved in the nuclear export of mRNA. In NbRanBP1-1-silenced plants, elicitor-induced expression of defense genes, NbEAS and NbWIPK, was not affected in the early stage of defense induction, but the accumulation of NbWIPK protein was reduced. Nuclear export of the small G-protein NbRan1a was activated during the induction of plant defense, whereas this process was compromised in NbRanBP1-1-silenced plants. Silencing of genes encoding the nuclear pore proteins, Nup75 and Nup160, also caused abnormal nuclear accumulation of mRNA, defects in the nuclear export of NbRan1a, and reduced production of capsidiol, resulting in decreased resistance to P. infestans. These results suggest that nuclear export of NbRan is a key event for defense induction in N. benthamiana, and both RanBP1-1 and nucleoporins play important roles in the process.
Collapse
|
27
|
Scott B, Green K, Berry D. The fine balance between mutualism and antagonism in the Epichloë festucae-grass symbiotic interaction. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:32-38. [PMID: 29454183 DOI: 10.1016/j.pbi.2018.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
Epichloë endophytes form mutualistic symbiotic associations with aerial tissues of temperate grasses. Intercalary growth of hyphae within the leaves enables fungal growth to be synchronized with host leaf growth, leading to formation of a highly structured and tightly regulated symbiotic network. Mutations in fungal genes that disrupt cell-cell fusion and other key signalling pathways lead to an antagonistic interaction characterized by unregulated growth of endophytic hyphae and detrimental effects on host growth. Transcriptome analysis of these mutant associations provides key insights into the regulation of the symbiosis. In nature a similar switch in growth occurs when hyphae transition into the sexual cycle forming stromata that abort host inflorescences. Endophyte infection of the grass host leads to a major reprogramming of host metabolism and alters host development. Changes in endophyte cell wall structure and the repertoire of effectors secreted into the host apoplast accompany establishment of a mutualistic interaction within the leaves.
Collapse
Affiliation(s)
- Barry Scott
- Institute of Molecular BioSciences and Bioprotection Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Kimberly Green
- Institute of Molecular BioSciences and Bioprotection Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Daniel Berry
- Institute of Molecular BioSciences and Bioprotection Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
28
|
Wang X, Xu X, Liang Y, Wang Y, Tian C. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection. Curr Genet 2018; 64:1153-1169. [PMID: 29700579 DOI: 10.1007/s00294-018-0833-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023]
Abstract
The Rho GTPase Cdc42 is conserved in fungi and plays a key role in regulating polarity establishment, morphogenesis and differentiation. In this study, we identified an ortholog of Cdc42, CgCdc42, and functionally characterized it to determine the role of Cdc42 in the development and pathogenicity of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose. Targeted deletion of CgCdc42 resulted in reduced vegetative growth and dramatic morphological defects, including the formation of elongated conidia and abnormally shaped appressoria. Moreover, CgCdc42 deletion mutants were less virulent on poplar leaves than were wild type. Appressoria formed by ΔCgCdc42 mutants were morphologically abnormal and present in lower numbers on poplar leaves than were those formed by wild type. However, an ROS scavenging assay indicated that the ΔCgCdc42 mutants maintained wild type pathogenicity in the absence of ROS despite having fewer appressoria than wild type, suggesting that the ΔCgCdc42 mutants were deficient in their tolerance of ROS. Additionally, we also found that the distribution of ROS was different after the deletion of CgCdc42, the ΔCgCdc42 mutants were hypersensitive to H2O2, and transcriptional analysis revealed that CgCdc42 is involved in the regulation of ROS-related genes. Furthermore, loss of CgCdc42 caused defects in cell wall integrity and an uneven distribution of chitin. These data collectively suggest that CgCdc42 plays an important role in the regulation of vegetative growth, morphological development, cell wall integrity and ROS-mediated plant infection in C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Xin Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yingmei Liang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|