1
|
Turner AMW, Bashore FM, Falcinelli SD, Fox JA, Keller AL, Fenton AD, Geyer RF, Allard B, Kirchherr JL, Archin NM, James LI, Margolis DM. BET degraders reveal BRD4 disruption of 7SK and P-TEFb is critical for effective reactivation of latent HIV in CD4+ T-cells. J Virol 2025; 99:e0177724. [PMID: 40067013 PMCID: PMC11998493 DOI: 10.1128/jvi.01777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents. We observed that despite highly potent and selective BRD4 degradation in primary CD4+ T-cells from ART-suppressed donors, BRD4 degraders failed to induce latency reversal as compared to BET inhibitors. Furthermore, BRD4 degraders failed to mimic previously observed synergistic HIV reactivation between BET inhibitors and an activator of the non-canonical NF-κB pathway. Mechanistic investigation of this discrepancy revealed that latency reversal by BET inhibitors is not related to the abatement of competition between Tat and BRD4 for P-TEFb, but rather the ability of BRD4 to disrupt 7SK and increase the levels of free P-TEFb. This activity is dependent on the shift of BRD4 from chromatin-bound to soluble and retargeting of P-TEFb to chromatin, which is dependent on intact BRD4 but independent of the bromodomains. IMPORTANCE Multiple factors and pathways contribute to the maintenance of HIV latency, including bromo and extra-terminal domain (BET) family member BRD4. While small molecule inhibitors of the BET family result in latency reversal, enthusiasm for the use of BET inhibitors in HIV cure is limited due to toxicity concerns. We examined BRD4-selective chemical degraders as alternatives to BET inhibitors but found two robust degraders failed to induce latency reversal. We observed key differences in the ability of BET inhibitors versus BET degraders to disrupt P-TEFb, a key cellular activator of transcription and a complex required for HIV reactivation. We present a new model for the role of BRD4 in HIV latency and propose that BRD4 be reconsidered as an activator rather than a repressor of HIV transcription in the context of HIV cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Frances M. Bashore
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua A. Fox
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alana L. Keller
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony D. Fenton
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Renee F. Geyer
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Wu Z, Li Y, Dong J, Qin JJ. An updated review on the role of small molecules in mediating protein degradation. Eur J Med Chem 2025; 287:117370. [PMID: 39933402 DOI: 10.1016/j.ejmech.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Targeted protein degradation (TPD) technologies, inspired by physiological processes, have recently provided new directions for drug development. Unlike conventional drug development focusing on targeting the active sites of disease-related proteins, TPD can utilize any nook or cranny of a protein to drive degradation through the cell's inherent destruction mechanism. It offers various advantages such as stronger pharmacological effects, an expanded range of drug targets, and higher selectivity. Based on the ubiquitin-proteasome system and the lysosomal degradation pathway, a variety of TPD strategies have been developed including PROTAC, PROTAB, and AUTOTAC. These TPD strategies have continuously enriched the toolbox for targeted protein degradation and expanded the scope of application, providing new ideas for biological research and drug discovery. This review attempts to introduce up-to-date research progress in the TPD strategies, focusing mainly on their design concepts, advantages, potential applications, and challenges, which may provide some inspiration for drug design, drug discovery, and clinical application for biologists and chemists.
Collapse
Affiliation(s)
- Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Tibebe H, Marquez D, McGraw A, Gagliardi S, Sullivan C, Hillmer G, Narayan K, Izumi C, Keating A, Izumi T. Targeting Latent HIV Reservoirs: Effectiveness of Combination Therapy with HDAC and PARP Inhibitors. Viruses 2025; 17:400. [PMID: 40143326 PMCID: PMC11945899 DOI: 10.3390/v17030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The "Kick and Kill" strategy, which aims to reactivate latent HIV reservoirs and facilitate the clearance of reactivated HIV-infected cells, has yet to achieve a functional cure due to the limited efficacy of current latency reversal agents. This study evaluates the combination efficacy of histone deacetylase (HDAC) inhibitor with poly(ADP-ribose) polymerase (PARP) inhibitor in latency reversal and immune-mediated clearance. Latently infected J-Lat cells and dual-fluorescent HIV-infected primary CD4 T cells were treated with the HDAC inhibitor (vorinostat) and one of four PARP inhibitors (olaparib, rucaparib, niraparib, or talazoparib). PARP inhibitors, when administered alone, showed no latency reversal activity. However, when combined with vorinostat, their efficacy increased threefold compared to vorinostat alone. This effect was mediated by the inhibition of tankyrase, a PARP superfamily member, which modulates the Hippo signaling pathway. In HIVGR670-infected primary cells, the combination reduced the reservoir size by 67%. In addition, talazoparib alone significantly reduced actively infected cells by 50%. Talazoparib-treated peripheral blood mononuclear cells co-cultured with K562 cells demonstrated enhanced NK-cell-mediated cytotoxicity, with a 10% reduction in K562 cell viability. These findings demonstrate that combining HDAC and PARP inhibitors augments latency reversal and reservoir reduction. With both the HDAC inhibitors and PARP inhibitors used in this study approved by the FDA for cancer treatment, this combination therapy holds strong potential for rapid clinical integration, contingent upon the confirmation of efficacy and safety in ongoing in vivo studies.
Collapse
Affiliation(s)
- Hasset Tibebe
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Dacia Marquez
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Aidan McGraw
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Sophia Gagliardi
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Cailyn Sullivan
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Grace Hillmer
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Kedhar Narayan
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Coco Izumi
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Adleigh Keating
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
| | - Taisuke Izumi
- Department of Biology, College of Arts & Sciences, American University, Washington, DC 20016, USA; (H.T.); (D.M.); (A.M.); (S.G.); (C.S.); (G.H.); (K.N.); (C.I.); (A.K.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
4
|
Gao Q, Lai Y, He S, Wang Y, Zhang G, Zhu X, Zhuang S. Lysine acetyltransferase 5 contributes to diabetic retinopathy by modulating autophagy through epigenetically regulating autophagy-related gene 7. Cytojournal 2025; 22:22. [PMID: 40134575 PMCID: PMC11932963 DOI: 10.25259/cytojournal_187_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 03/27/2025] Open
Abstract
Objective Diabetic retinopathy (DR) is a prevalent and serious complication among individuals with diabetes, significantly compromising their visual acuity and overall quality of life. Lysine acetyltransferase 5 (KAT5), an essential catalytic subunit of the nucleosome acetyltransferase of the H4 complex, is implicated in the development of various diseases, including neurological disorders, breast cancer, and lung cancer. However, the function of KAT5 in DR remains poorly understood. This study aims to investigate the influence of KAT5 on autophagy (Atg) during DR. Material and Methods Experiments were conducted using streptozotocin (STZ)-treated rats to induce diabetes and observe changes in KAT5 expression and its effect on Atg. Retinal tissues and RF/6A cells were utilized to analyze the expression levels of various proteins and their involvement in Atg and apoptosis. KAT5 depletion and Atg7 knockdown were performed to further understand their roles in the process. Results The eyeballs of STZ-treated rats showed increased expression of KAT5. Depletion of KAT5 attenuated STZ-induced DR injury in rats. The retinal tissues of STZ-treated rats exhibited reduced expression of B-cell lymphoma-2 (Bcl-2) and increased levels of BCL-2-associated X protein and cleaved caspase 3, which could be reversed by KAT5 depletion. STZ treatment induced expression of Beclin-1 and microtubule-associated protein 1 light chain 3B in retinal tissues, and KAT5 knockdown blocked this effect. In monkey retinal choroidal endothelial ( RF/6A) cells, high glucose (HG) treatment decreased 5-ethynyl-2'-deoxyuridine-positivecells and increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, which were reversed by KAT5 depletion. KAT5 depletion also attenuated HG-induced apoptosis and Atg in RF/6A cells. Mechanistically, KAT5 depletion reduced histone H3 lysine 27 acetylation and ribonucleic acid ( RNA) polymerase II enrichment on the Atg7 promoter, leading to a decrease in the messenger RNA ( mRNA) and protein expression of Atg7. Atg7 knockdown suppressed Atg in RF/6A cells under HG conditions and reversed the effect of KAT5 depletion on cell apoptosis and Atg. Conclusion The findings suggest that KAT5 contributes to DR by modulating Atg through epigenetic regulation of Atg7. KAT5 emerges as a valuable target for DR treatment, providing a fresh perspective on the disease's pathogenesis and laying the foundation for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qi Gao
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanjun Lai
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shuai He
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanhua Wang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Guochao Zhang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Xinyu Zhu
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shifang Zhuang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| |
Collapse
|
5
|
George AF, Neidleman J, Luo X, Frouard J, Elphick N, Yin K, Young KC, Ma T, Andrew AK, Ezeonwumelu IJ, Pedersen JG, Chaillon A, Porrachia M, Woodworth B, Jakobsen MR, Thomas R, Smith DM, Gianella S, Roan NR. Anatomical, subset, and HIV-dependent expression of viral sensors and restriction factors. Cell Rep 2025; 44:115202. [PMID: 39798087 PMCID: PMC11829653 DOI: 10.1016/j.celrep.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
We developed viral sensor and restriction factor-cytometry by time of flight (VISOR-CyTOF), which profiles 19 viral sensors and restriction factors (VISORs) simultaneously in single cells, and applied it to 41 postmortem tissues from people with HIV. Mucosal myeloid cells are well equipped with SAMHD1 and sensors of viral capsid and DNA while CD4+ T cells are not. In lymph node CD4+ Tfh, VISOR expression patterns reflect those favoring integration but blocking HIV gene expression, thus favoring viral latency. We also identify small subsets of bone marrow-, lung-, and gut-associated CD4+ T and myeloid cells expressing high levels of restriction factors targeting most stages of the HIV replication cycle. In vitro, HIV preferentially fuses to CD4+ T cells with a permissive VISOR profile, but early induction of select VISORs by T1IFN prevents productive HIV infection. Our findings document the diverse patterns of VISOR profiles across tissues and cellular subsets and define their association with susceptibility to HIV.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Kailin Yin
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Kyrlia C Young
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Tongcui Ma
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Alicer K Andrew
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Ifeanyi J Ezeonwumelu
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Magali Porrachia
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Brendon Woodworth
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | | | | | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
6
|
Horvath RM, Sadowski I. CBP/p300 lysine acetyltransferases inhibit HIV-1 expression in latently infected T cells. iScience 2024; 27:111244. [PMID: 39640574 PMCID: PMC11617383 DOI: 10.1016/j.isci.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation. In contrast, inhibition of CBP/p300 impaired reversal of latency by the HDACi SAHA, indicating that CBP/p300 must contribute to acetylation on the HIV-1 LTR associated with HDACi-mediated latency reversal. CBP/p300 inhibition caused loss of H3K27ac and H3K4me3 from the LTR, but did not affect association of the inhibitor protein BRD4. Furthermore, inhibition of the additional lysine acetyltransferases PCAF/GCN5 or KAT6A/KAT6B also caused reversal of latency, suggesting that protein acetylation has an inhibitory effect on HIV-1 expression. Collectively, these observations indicate that transcription from the HIV-1 LTR is controlled both positively and negatively by protein acetylation, likely including both histone and non-histone regulatory targets.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
8
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
9
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Zhang X, Guo J, Xu H, Ding S, Liu L, Chen Z, Yang J, Liu Y, Hao H, Huang F, Qiu J, Guan W, Sun Y, Liu H. NS1-mediated enhancement of MVC transcription and replication promoted by KAT5/H4K12ac. J Virol 2024; 98:e0169523. [PMID: 38349085 PMCID: PMC10949499 DOI: 10.1128/jvi.01695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 03/20/2024] Open
Abstract
Histone modifications function in both cellular and viral gene expression. However, the roles of acetyltransferases and histone acetylation in parvoviral infection remain poorly understood. In the current study, we found the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), promoted the replication and transcription of parvovirus minute virus of canines (MVC). Notably, the expression of host acetyltransferases KAT5, GTF3C4, and KAT2A was increased in MVC infection, as well as H4 acetylation (H4K12ac). KAT5 is not only responsible for H4K12ac but also crucial for viral replication and transcription. The viral nonstructural protein NS1 interacted with KAT5 and enhanced its expression. Further study showed that Y44 in KAT5, which may be tyrosine-phosphorylated, is indispensable for NS1-mediated enhancement of KAT5 and efficient MVC replication. The data demonstrated that NS1 interacted with KAT5, which resulted in an enhanced H4K12ac level to promote viral replication and transcription, implying the epigenetic addition of H4K12ac in viral chromatin-like structure by KAT5 is vital for MVC replication.IMPORTANCEParvoviral genomes are chromatinized with host histones. Therefore, histone acetylation and related acetyltransferases are required for the virus to modify histones and open densely packed chromatin structures. This study illustrated that histone acetylation status is important for MVC replication and transcription and revealed a novel mechanism that the viral nonstructural protein NS1 hijacks the host acetyltransferase KAT5 to enhance histone acetylation of H4K12ac, which relies on a potential tyrosine phosphorylation site, Y44 in KAT5. Other parvoviruses share a similar genome organization and coding potential and may adapt a similar strategy for efficient viral replication and transcription.
Collapse
Affiliation(s)
- Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianhui Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huanzhou Xu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuang Ding
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Yuning Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
11
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
12
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
13
|
Mbonye U, Kizito F, Karn J. New insights into transcription elongation control of HIV-1 latency and rebound. Trends Immunol 2023; 44:60-71. [PMID: 36503686 PMCID: PMC11932764 DOI: 10.1016/j.it.2022.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Antiretroviral therapy reduces circulating HIV-1 to undetectable amounts but does not eliminate the virus due to the persistence of a stable reservoir of latently infected cells. The reservoir is maintained both by proliferation of latently infected cells and by reseeding from reactivated cells. A major challenge for the field is to find safe and effective methods to eliminate this source of rebounding HIV-1. Studies on the molecular mechanisms leading to HIV-1 latency and reactivation are being transformed using latency models in primary and patient CD4+ T cells. These studies have revealed the central role played by the biogenesis of the transcription elongation factor P-TEFb (Positive Transcription Elongation Factor b) and its recruitment to proviral HIV-1, for the maintenance of viral latency and the control of viral reactivation.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fredrick Kizito
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Hsieh E, Janssens DH, Paddison PJ, Browne EP, Henikoff S, OhAinle M, Emerman M. A modular CRISPR screen identifies individual and combination pathways contributing to HIV-1 latency. PLoS Pathog 2023; 19:e1011101. [PMID: 36706161 PMCID: PMC9907829 DOI: 10.1371/journal.ppat.1011101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters.
Collapse
Affiliation(s)
- Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steve Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Molly OhAinle
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
16
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
17
|
Luo F, Tao Y, Wang M, Yang L, Su R, Pan Z, Tan X. The Protective Effects of KAT5 Inhibition on Ocular Inflammation by Mediating the PI3K/AKT Pathway in a Murine Model of Allergic Conjunctivitis. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35503228 PMCID: PMC9078075 DOI: 10.1167/iovs.63.5.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to explore the effect of lysine acetyltransferase KAT5 on allergic conjunctivitis (AC). Methods The effect of KAT5 on inflammatory response during AC progression was analyzed in the experimental allergic conjunctivitis (EAC) mouse model. Results The clinical score, permeability, total IgE, ovalbumin (OVA)-specific IgE, and IgG1/IgG2a were induced in the EAC mice, in which the overexpression of KAT5 could further enhance but KAT5 inhibitor NU9056 reduce the phenotypes. The eosinophilic infiltration was induced in EAC mice, in which the overexpression of KAT5 was able to further promote but NU9056 attenuate the phenotype. The expression of Eotaxin and RANTES and the inflammatory factors were upregulated in EAC mice and KAT5 overexpression increased, but NU9056 decreased the expression in the model. Significantly, the CD11c+ dendritic cells and CD4+ T cells infiltration in the conjunctiva was enhanced in EAC mice, whereas KAT5 overexpression induced but NU9056 suppressed the effect in the model. Mechanically, the phosphorylation of PI3K and Akt and the levels of histone H3 lysine 27 acetylation (H3K27ac) were enhanced in EAC mice, whereas the overexpression of KAT5 promoted and NU9056 repressed the phenotype in the mice. The enrichment of KAT5 and H3K27ac on PI3K promoter was increased in EAC mice, and the overexpression of KAT5 further enhanced the enrichment in the mice. Significantly, we observed similar results in the KAT5 knockout mice as well. Moreover, PI3K/AKT signaling inhibitor LY294002 reversed KAT5 overexpression-mediated phenotypes and inflammatory response after induction AC in vivo. Conclusions Therefore we concluded that KAT5 inhibition protected against ocular inflammation by mediating the PI3K/AKT pathway in EAC mouse model.
Collapse
Affiliation(s)
- Fei Luo
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences Key Lab, China
| | - Yu Tao
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Mengyu Wang
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Liuqing Yang
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Ruifeng Su
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Zhiqiang Pan
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences Key Lab, China
| | - Xiaobo Tan
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| |
Collapse
|
18
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
19
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
20
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
21
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
22
|
Peng Z, Zhang Y, Ma X, Zhou M, Wu S, Song Z, Yuan Y, Chen Y, Li Y, Wang G, Huang F, Qiao Y, Xia B, Liu W, Liu J, Zhang X, He X, Pan T, Xu H, Zhang H. Brd4 Regulates the Homeostasis of CD8 + T-Lymphocytes and Their Proliferation in Response to Antigen Stimulation. Front Immunol 2021; 12:728082. [PMID: 34512660 PMCID: PMC8427756 DOI: 10.3389/fimmu.2021.728082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
CD8+ T cells are major components of adaptive immunity and confer robust protective cellular immunity, which requires adequate T-cell numbers, targeted migration, and efficient T-cell proliferation. Altered CD8+ T-cell homeostasis and impaired proliferation result in dysfunctional immune response to infection or tumorigenesis. However, intrinsic factors controlling CD8+ T-cell homeostasis and immunity remain largely elusive. Here, we demonstrate the prominent role of Brd4 on CD8+ T cell homeostasis and immune response. By upregulating Myc and GLUT1 expression, Brd4 facilitates glucose uptake and energy production in mitochondria, subsequently supporting naïve CD8+ T-cell survival. Besides, Brd4 promotes the trafficking of naïve CD8+ T cells partially through maintaining the expression of homing receptors (CD62L and LFA-1). Furthermore, Brd4 is required for CD8+ T cell response to antigen stimulation, as Brd4 deficiency leads to a severe defect in clonal expansion and terminal differentiation by decreasing glycolysis. Importantly, as JQ1, a pan-BRD inhibitor, severely dampens CD8+ T-cell immune response, its usage as an anti-tumor agent or latency-reversing agent for human immunodeficiency virus type I (HIV-1) should be more cautious. Collectively, our study identifies a previously-unexpected role of Brd4 in the metabolic regulation of CD8+ T cell-mediated immune surveillance and also provides a potential immunomodulation target.
Collapse
Affiliation(s)
- Zhilin Peng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiancai Ma
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mo Zhou
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaochang Yuan
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingshi Chen
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuzhuang Li
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guanwen Wang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Feng Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yidan Qiao
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baijing Xia
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Institute of Human Virology, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021; 11:1126. [PMID: 34439792 PMCID: PMC8391731 DOI: 10.3390/biom11081126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.
Collapse
Affiliation(s)
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain;
| |
Collapse
|
24
|
Zheng T, Chen P, Huang Y, Qiu J, Zhou C, Wu Z, Li L. CPI-637 as a Potential Bifunctional Latency-Reversing Agent That Targets Both the BRD4 and TIP60 Proteins. Front Cell Infect Microbiol 2021; 11:686035. [PMID: 34350133 PMCID: PMC8326664 DOI: 10.3389/fcimb.2021.686035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The failure of highly active antiretroviral therapy (HAART) has been largely responsible for the existence of latent human immunodeficiency virus type 1 (HIV-1) reservoirs. The “shock and kill” strategy was confirmed to reactivate HIV-1 latent reservoirs by latency-reversing agents (LRAs) for accelerated HIV-1 clearance. However, a single LRA might be insufficient to induce HIV-1 reactivation from latency due to the complexity of the multiple signaling regulatory pathways that establish the HIV-1 latent reservoir. Therefore, combinations of LRAs or dual-mechanism LRAs are urgently needed to purge the latent reservoirs. We demonstrate here for the first time that a dual-target inhibitor with a specific suppressive effect on both BRD4 and TIP60, CPI-637, could reactivate latent HIV-1 in vitro by permitting Tat to bind positive transcription elongation factor b (P-TEFb) and assembling Tat-super-elongation complex (SEC) formation. In addition, CPI-637-mediated TIP60 downregulation further stimulated BRD4 dissociation from the HIV-1 long terminal repeat (LTR) promoter, allowing Tat to more effectively bind P-TEFb compared to BRD4 inhibition alone. Much more importantly, CPI-637 exerted a potent synergistic effect but alleviated global T cell activation and blocked viral spread to uninfected bystander CD4+ T cells with minimal cytotoxicity. Our results indicate that CPI-637 opens up the prospect of novel dual-target inhibitors for antagonizing HIV-1 latency and deserves further investigation for development as a promising LRA with a “shock and kill” strategy.
Collapse
Affiliation(s)
- Tengyi Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayin Qiu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenliang Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyao Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Epigenetic Mechanisms of HIV-1 Persistence. Vaccines (Basel) 2021; 9:vaccines9050514. [PMID: 34067608 PMCID: PMC8156729 DOI: 10.3390/vaccines9050514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.
Collapse
|
26
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
27
|
Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6635225. [PMID: 33763479 PMCID: PMC7952163 DOI: 10.1155/2021/6635225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Histone posttranslational modifications (HPTMs) are crucial epigenetic mechanisms regulating various biological events. Different types of HPTMs characterize and shape functional chromatin states alone or in combination, and dedicated effector proteins selectively recognize these modifications for gene expression. The dysregulation of HPTM recognition events takes part in human diseases. With the application of mass spectrometry- (MS-) based proteomics, novel histone lysine acylation has been successively discovered, e.g., propionylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, malonylation, succinylation, crotonylation, glutarylation, and lactylation. These nine types of modifications expand the repertoire of HPTMs and regulate chromatin remodeling, gene expression, cell cycle, and cellular metabolism. Recent researches show that HPTMs have a close connection with the pathogenesis of cancer, metabolic diseases, neuropsychiatric disorders, infertility, kidney diseases, and acquired immunodeficiency syndrome (AIDS). This review focuses on the chemical structure, sites, functions of these novel HPTMs, and underlying mechanism in gene expression, providing a glimpse into their complex regulation in health and disease.
Collapse
|
28
|
HIV latency reversal agents: A potential path for functional cure? Eur J Med Chem 2021; 213:113213. [PMID: 33540228 DOI: 10.1016/j.ejmech.2021.113213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
Despite the advances in Human Immunodeficiency Virus (HIV) treatment, the cure for all HIV patients still poses a major challenge, which needs to be surpassed in the coming years. Among the strategies pursuing this aim, the 'kick-and-kill' approach, which involves the reactivation and elimination of a latent HIV reservoir that resides in some CD4+ T cells, appears promising. The first step of this approach requires the use of latency reversal agents (LRAs) that induce the reactivation of the latent virus. Although several classes of LRAs have been reported so far, some limitations of these compounds still need to be overcome before their clinical use. The complete exhaustion of the reservoir of latent virus will contribute to promote the second step of this approach, facilitating the elimination of the reactivated HIV. Therefore, potent, safe, and non-toxic LRAs are necessary to promote efficient elimination of the HIV-1 virus from its reservoir. In this review article, we focus on the promising LRAs that have been described in the literature over the past few years, highlighting the advantages and disadvantages of their use in the 'kick and kill' approach, thus opening a new avenue in the development of a potential cure.
Collapse
|
29
|
Alamer E, Zhong C, Hajnik R, Soong L, Hu H. Modulation of BRD4 in HIV epigenetic regulation: implications for finding an HIV cure. Retrovirology 2021; 18:3. [PMID: 33413475 PMCID: PMC7792063 DOI: 10.1186/s12977-020-00547-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Following reverse transcription, HIV viral DNA is integrated into host cell genomes and establishes a stable latent infection, which has posed a major obstacle for obtaining a cure for HIV. HIV proviral transcription is regulated in cellular reservoirs by complex host epigenetic and transcriptional machineries. The Bromodomain (BD) and Extra-Terminal Domain (ET) protein, BRD4, is an important epigenetic reader that interacts with acetyl-histones and a variety of chromatin and transcriptional regulators to control gene expression, including HIV. Modulation of BRD4 by a pan BET inhibitor (JQ1) has been shown to activate HIV transcription. Recent studies by my group and others indicate that the function of BRD4 is versatile and its effects on HIV transcription may depend on the partner proteins or pathways engaged by BRD4. Our studies have reported a novel class of small-molecule modulators that are distinct from JQ1 but induce HIV transcriptional suppression through BRD4. Herein, we reviewed recent research on the modulation of BRD4 in HIV epigenetic regulation and discussed their potential implications for finding an HIV cure.
Collapse
Affiliation(s)
- Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Medical Research Center, Jazan University, Jazan, 45142, Saudi Arabia
| | - Chaojie Zhong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Renee Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA. .,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
30
|
Li Z, Hajian C, Greene WC. Identification of unrecognized host factors promoting HIV-1 latency. PLoS Pathog 2020; 16:e1009055. [PMID: 33270809 PMCID: PMC7714144 DOI: 10.1371/journal.ppat.1009055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
To counter HIV latency, it is important to develop a better understanding of the full range of host factors promoting latency. Their identification could suggest new strategies to reactivate latent proviruses and subsequently kill the host cells (“shock and kill”), or to permanently silence these latent proviruses (“block and lock”). We recently developed a screening strategy termed “Reiterative Enrichment and Authentication of CRISPRi Targets” (REACT) that can unambiguously identify host genes promoting HIV latency, even in the presence of high background “noise” produced by the stochastic nature of HIV reactivation. After applying this strategy in four cell lines displaying different levels of HIV inducibility, we identified FTSJ3, TMEM178A, NICN1 and the Integrator Complex as host genes promoting HIV latency. shRNA knockdown of these four repressive factors significantly enhances HIV expression in primary CD4 T cells, and active HIV infection is preferentially found in cells expressing lower levels of these four factors. Mechanistically, we found that downregulation of these newly identified host inhibitors stimulates different stages of RNA Polymerase II-mediated transcription of HIV-1. The identification and validation of these new host inhibitors provide insight into the novel mechanisms that maintain HIV latency even when cells are activated and undergo cell division. The presence of a pool of latent HIV proviruses currently thwarts a cure for HIV-infected individuals. This “latent reservoir” is primarily composed of CD4 T cells that are infected with HIV but are indistinguishable from an uninfected T cell due to a lack of viral gene expression even when the cells are activated and undergo proliferation. This finding suggests there are powerful cellular mechanisms that hold HIV transcription in check even in stimulated cells allowing latent proviruses to remain hidden. Our goal was to identify and characterize these “unknown cellular factors”. We conducted genome-wide CRISPRi screens in multiple latently infected cell lines where each cell line displayed a different depth of latency as assessed by responsiveness to latency reversing agents. Application of our recently developed iterative screening strategy (REACT) allowed us to unambiguously identify and confirm four host factors that promote HIV latency. The latency promoting activity of these four factors (FTSJ3, TMEM178A, NICN1 and the Integrator Complex) were further validated in primary CD4 T cells, where their knockdown by shRNA significantly enhances latent HIV reactivation. In addition, we found that HIV infection preferentially occurs in cells expressing lower levels of these four factors. Mechanistically, our findings suggest that the newly identified host inhibitors likely block HIV transcription through different mechanisms. The identification and validation of these host inhibitors provides important new insights into how latency is maintained in T cells that could be useful for either activating and eliminating latently infected cells (“shock and kill”), or permanently silencing the integrated latent proviruses (“block and lock”).
Collapse
Affiliation(s)
- Zichong Li
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology, San Francisco, California, United States of America
| | - Cyrus Hajian
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology, San Francisco, California, United States of America
- Santa Rosa Junior College, Santa Rosa, California, United States of America
| | - Warner C. Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology, San Francisco, California, United States of America
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
32
|
KAT5 acetylates cGAS to promote innate immune response to DNA virus. Proc Natl Acad Sci U S A 2020; 117:21568-21575. [PMID: 32817552 DOI: 10.1073/pnas.1922330117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The DNA sensor cGMP-AMP synthase (cGAS) senses cytosolic microbial or self DNA to initiate a MITA/STING-dependent innate immune response. cGAS is regulated by various posttranslational modifications at its C-terminal catalytic domain. Whether and how its N-terminal unstructured domain is regulated by posttranslational modifications remain unknown. We identified the acetyltransferase KAT5 as a positive regulator of cGAS-mediated innate immune signaling. Overexpression of KAT5 potentiated viral-DNA-triggered transcription of downstream antiviral genes, whereas a KAT5 deficiency had the opposite effects. Mice with inactivated Kat5 exhibited lower levels of serum cytokines in response to DNA virus infection, higher viral titers in the brains, and more susceptibility to DNA-virus-induced death. Mechanistically, KAT5 catalyzed acetylation of cGAS at multiple lysine residues in its N-terminal domain, which promoted its DNA-binding ability. Our findings suggest that KAT5-mediated cGAS acetylation at its N terminus is important for efficient innate immune response to DNA virus.
Collapse
|
33
|
Epigenetic Suppression of HIV in Myeloid Cells by the BRD4-Selective Small Molecule Modulator ZL0580. J Virol 2020; 94:JVI.01880-19. [PMID: 32188727 DOI: 10.1128/jvi.01880-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/08/2020] [Indexed: 01/06/2023] Open
Abstract
Brain-resident microglia and myeloid cells (perivascular macrophages) are important HIV reservoirs in vivo, especially in the central nervous system (CNS). Despite antiretroviral therapy (ART), low-level persistent HIV replication in these reservoirs remains detectable, which contributes to neuroinflammation and neurological disorders in HIV-infected patients. New approaches complementary to ART to repress residual HIV replication in CNS reservoirs are needed. Our group has recently identified a BRD4-selective small molecule modulator (ZL0580) that induces the epigenetic suppression of HIV. Here, we examined the effects of this compound on HIV in human myeloid cells. We found that ZL0580 induces potent and durable suppression of both induced and basal HIV transcription in microglial cells (HC69) and monocytic cell lines (U1 and OM10.1). Pretreatment of microglia with ZL0580 renders them more refractory to latent HIV reactivation, indicating an epigenetic reprogramming effect of ZL0580 on HIV long terminal repeat (LTR) in microglia. We also demonstrate that ZL0580 induces repressive effect on HIV in human primary monocyte-derived macrophages (MDMs) by promoting HIV suppression during ART treatment. Mechanistically, ZL0580 inhibits Tat transactivation in microglia by disrupting binding of Tat to CDK9, a process key to HIV transcription elongation. High-resolution micrococcal nuclease mapping showed that ZL0580 induces a repressive chromatin structure at the HIV LTR. Taken together, our data suggest that ZL0580 represents a potential approach that could be used in combination with ART to suppress residual HIV replication and/or latent HIV reactivation in CNS reservoirs, thereby reducing HIV-associated neuroinflammation.IMPORTANCE Brain-resident microglia and perivascular macrophages are important HIV reservoirs in the CNS. Persistent viral replication and latent HIV reactivation in the CNS, even under ART, are believed to occur, causing neuroinflammation and neurological disorders in HIV-infected patients. It is critical to identify new approaches that can control residual HIV replication and/or latent HIV reactivation in these reservoirs. We here report that the BRD4-selective small molecule modulator, ZL0580, induces potent and durable suppression of HIV in human microglial and monocytic cell lines. Using an in vitro HIV-infected, ART-treated MDM model, we show that ZL0580 also induces suppressive effect on HIV in human primary macrophages. The significance of our research is that it suggests a potential new approach that has utility in combination with ART to suppress residual HIV replication and/or HIV reactivation in CNS reservoirs, thereby reducing neuroinflammation and neurological disorders in HIV-infected individuals.
Collapse
|
34
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
35
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
36
|
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 2019; 47:10357-10372. [PMID: 31504794 PMCID: PMC6821171 DOI: 10.1093/nar/gkz747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2019] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideaki Ishikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sally Fujiyama
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University 53, Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Hiroyuki Aburatani
- Laboratory for System Biology and Medicine, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tachikawa
- Department of Applied Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Li Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
37
|
Huang H, Kong W, Jean M, Fiches G, Zhou D, Hayashi T, Que J, Santoso N, Zhu J. A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Res 2019; 47:7333-7347. [PMID: 31165872 PMCID: PMC6698651 DOI: 10.1093/nar/gkz493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone demethylase, MINA53, is potentially a novel HIV-1 latency-promoting gene (LPG). We next validated MINA53’s function in maintenance of HIV-1 latency by depleting MINA53 using the alternative RNAi approach. We further identified that in vitro MINA53 preferentially demethylates the histone substrate, H3K36me3 and that in cells MINA53 depletion by RNAi also increases the local level of H3K36me3 at LTR. The effort to map the downstream effectors unraveled that H3K36me3 has the cross-talk with another epigenetic mark H4K16ac, mediated by KAT8 that recognizes the methylated H3K36 and acetylated H4K16. Removing the MINA53-mediated latency mechanisms could benefit the reversal of post-integrated latent HIV-1 proviruses for purging of reservoir cells. We further demonstrated that a pan jumonji histone demethylase inhibitor, JIB-04, inhibits MINA53-mediated demethylation of H3K36me3, and JIB-04 synergizes with other latency-reversing agents (LRAs) to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Huachao Huang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Weili Kong
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maxime Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tsuyoshi Hayashi
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
38
|
J de Castro I, Lusic M. Navigating through the nucleus with a virus. Curr Opin Genet Dev 2019; 55:100-105. [PMID: 31479982 DOI: 10.1016/j.gde.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/17/2023]
Abstract
In each cell, the hierarchical organisation of the ∼2m DNA fibre ensures different nuclear functions, particularly proper gene expression. Chromosomes are non-randomly positioned occupying specific chromosome territories in the 3D nuclear space and circumventing several nuclear landmarks the Nuclear Envelope with embedded Nuclear Pore Complexes, Splicing Speckles, PML bodies and many others. At a higher level of organisation, similarly regulated chromatin regions cluster together in so called Topologically Associated Domains, TADs, while on a smaller scale, DNA sequences wrapped around histones dictate binding of transcription factors or inhibitors that determine the level of chromatin compaction. As intracellular pathogens, viruses explore different cellular structures and functions to either promote their lytic infection or control the latent state of their replication cycles. Here we highlight the most recent discoveries on how different levels of nuclear architecture and genome are exploited by various human viruses.
Collapse
Affiliation(s)
| | - Marina Lusic
- Heidelberg University Hospital, Heidelberg, 69120, Germany; German Center for Infection Research, Heidelberg, 69120, Germany.
| |
Collapse
|
39
|
Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J, Gelman BB, Tian B, Kim JH, Michael NL, Robb ML, Ananworanich J, Zhou J, Hu H. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J Clin Invest 2019; 129:3361-3373. [PMID: 31329163 PMCID: PMC6668673 DOI: 10.1172/jci120633] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.
Collapse
Affiliation(s)
- Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Janice Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | | | - Bing Tian
- Department of Internal Medicine, Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, USA
| | - Jerome H. Kim
- International Vaccine Institute, Gwanak-gu, Seoul, South Korea
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, The University of Amsterdam, Amsterdam, Netherlands
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| |
Collapse
|
40
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Beliakova-Bethell N, Mukim A, White CH, Deshmukh S, Abewe H, Richman DD, Spina CA. Histone deacetylase inhibitors induce complex host responses that contribute to differential potencies of these compounds in HIV reactivation. J Biol Chem 2019; 294:5576-5589. [PMID: 30745362 PMCID: PMC6462528 DOI: 10.1074/jbc.ra118.005185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely tested in clinical trials for their ability to reverse HIV latency but have yielded only limited success. One HDACi, suberoylanilide hydroxamic acid (SAHA), exhibits off-target effects on host gene expression predicted to interfere with induction of HIV transcription. Romidepsin (RMD) has higher potency and specificity for class I HDACs implicated in maintaining HIV provirus in the latent state. More robust HIV reactivation has indeed been achieved with RMD use ex vivo than with SAHA; however, reduction of viral reservoir size has not been observed in clinical trials. Therefore, using RNA-Seq, we sought to compare the effects of SAHA and RMD on gene expression in primary CD4+ T cells. Among the genes whose expression was modulated by both HDACi agents, we identified genes previously implicated in HIV latency. Two genes, SMARCB1 and PARP1, whose modulation by SAHA and RMD is predicted to inhibit HIV reactivation, were evaluated in the major maturation subsets of CD4+ T cells and were consistently either up- or down-regulated by both HDACi compounds. Our results indicate that despite having different potencies and HDAC specificities, SAHA and RMD modulate an overlapping set of genes, implicated in HIV latency regulation. Some of these genes merit exploration as additional targets to improve the therapeutic outcomes of "shock and kill" strategies. The overall complexity of HDACi-induced responses among host genes with predicted stimulatory or inhibitory effects on HIV expression likely contributes to differential HDACi potencies and dictates the outcome of HIV reactivation.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Amey Mukim
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Cory H White
- the University of California San Diego, La Jolla, California 92093
| | - Savitha Deshmukh
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Hosiana Abewe
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Douglas D Richman
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Celsa A Spina
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| |
Collapse
|
42
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
43
|
Li Z, Wu J, Chavez L, Hoh R, Deeks SG, Pillai SK, Zhou Q. Reiterative Enrichment and Authentication of CRISPRi Targets (REACT) identifies the proteasome as a key contributor to HIV-1 latency. PLoS Pathog 2019; 15:e1007498. [PMID: 30645648 PMCID: PMC6333332 DOI: 10.1371/journal.ppat.1007498] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
The establishment of HIV-1 latency gives rise to persistent chronic infection that requires life-long treatment. To reverse latency for viral eradiation, the HIV-1 Tat protein and its associated ELL2-containing Super Elongation Complexes (ELL2-SECs) are essential to activate HIV-1 transcription. Despite efforts to identify effective latency-reversing agents (LRA), avenues for exposing latent HIV-1 remain inadequate, prompting the need to identify novel LRA targets. Here, by conducting a CRISPR interference-based screen to reiteratively enrich loss-of-function genotypes that increase HIV-1 transcription in latently infected CD4+ T cells, we have discovered a key role of the proteasome in maintaining viral latency. Downregulating or inhibiting the proteasome promotes Tat-transactivation in cell line models. Furthermore, the FDA-approved proteasome inhibitors bortezomib and carfilzomib strongly synergize with existing LRAs to reactivate HIV-1 in CD4+ T cells from antiretroviral therapy-suppressed individuals without inducing cell activation or proliferation. Mechanistically, downregulating/inhibiting the proteasome elevates the levels of ELL2 and ELL2-SECs to enable Tat-transactivation, indicating the proteasome-ELL2 axis as a key regulator of HIV-1 latency and promising target for therapeutic intervention. To cure chronic HIV-1 infection requires reversal of HIV-1 latency from latently infected CD4+ T cells. A key step in HIV latency reversal is the recruitment of Super Elongation Complexes (SECs) that contain ELL2 by an HIV-encoded protein, Tat, to activate proviral transcription. To identify novel drug targets, we conducted a CRISPRi-based screen to enrich the sgRNAs that increase HIV transcription in latently infected CD4+ T cells. Three of the six most prominent hits in our screen are proteasome subunits. We further proved that antagonizing the proteasome promotes Tat-induced HIV-1 transcription in cell line-based latency models. Furthermore, we found that two FDA-approved proteasome inhibitors strongly synergize with existing LRAs ex vivo without inducing cell activation or proliferation. We further found that antagonizing the proteasome elevates the levels of ELL2 and ELL2-containing SECs in the cells, thus enabling Tat-transactivation. These results indicate that the proteasome-ELL2 axis is a key regulator of HIV-1 latency could potentially be targeted for therapeutic interventions.
Collapse
Affiliation(s)
- Zichong Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Leonard Chavez
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Rebecca Hoh
- University of California, San Francisco, California, United States of America
| | - Steven G. Deeks
- University of California, San Francisco, California, United States of America
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|