1
|
Hayman DJ, Morrin LM, Halder S, Phillips EJ, Simons MJP, Evans IR. Expansion of Drosophila haemocytes using a conditional GeneSwitch driver affects larval haemocyte function, but does not modulate adult lifespan or survival after severe infection. J Exp Biol 2025; 228:jeb249649. [PMID: 40116111 PMCID: PMC12079669 DOI: 10.1242/jeb.249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Macrophages are responsible for diverse and fundamental functions in vertebrates. Drosophila blood cells (haemocytes) are dominated by cells bearing a striking homology to vertebrate macrophages (plasmatocytes). The importance of haemocytes has been demonstrated previously, with immune and developmental phenotypes observed upon haemocyte ablation. Here, we show that we can increase Hemolectin (Hml)-positive cell numbers using a constitutively active form of ras and ablate Hml-positive cell numbers using the pro-apoptotic transgene bax. However, compared with larvae, total blood cell numbers in adults were not significantly affected by experimental expansion or ablation, implying the existence of feedback mechanisms regulating haemocyte numbers. No effect on lifespan was observed from driving ras and bax in Hml-positive cells via a conditional approach (Hml-GeneSwitch). Using constitutive expression, we observed differences in lifespan; however, we attribute this to differences in genetic background. Additionally, no effect of either transgene was observed upon infection with a high dose of two different bacterial species, although pupal lethality was observed upon expansion of Hml-positive cells in a self-encapsulation mutant genetic background. The latter confirms that changes in Hml-positive cell numbers can result in phenotypes. The lack of adult phenotypes could be due to the strength of experimental manipulations or compensation via feedback mechanisms operating to regulate total blood cell numbers. Our study demonstrates the importance of conditional approaches to modulate haemocyte cell numbers, allowing for more precise study of innate immune function. This strategy could be especially fruitful to uncover mechanisms regulating total blood cell numbers across development and ageing.
Collapse
Affiliation(s)
- Dan J. Hayman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lola M. Morrin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sudipta Halder
- Division of Clinical Medicine, School of Medicine and Population Health and Bateson Centre for Disease Mechanisms, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | - Iwan R. Evans
- Division of Clinical Medicine, School of Medicine and Population Health and Bateson Centre for Disease Mechanisms, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Nedbalová P, Kaislerova N, Chodakova L, Moos M, Doležal T. SAM transmethylation pathway and adenosine recycling to ATP are essential for systemic regulation and immune response. eLife 2025; 13:RP105039. [PMID: 40193491 PMCID: PMC11975374 DOI: 10.7554/elife.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
Collapse
Affiliation(s)
- Pavla Nedbalová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Nikola Kaislerova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Lenka Chodakova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Martin Moos
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Krejčová G, Novotná D, Bajgar A. Ketogenesis nutritionally supports brain during bacterial infection in Drosophila. Brain Behav Immun 2025; 125:280-291. [PMID: 39824470 DOI: 10.1016/j.bbi.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels. Here, we employed an experimental model of severe bacterial infection in Drosophila melanogaster to investigate whether ketogenesis may represent a metabolic adaptation for overcoming periods of nutritional scarcity during the immune response. We found that the immune response to severe bacterial infection is accompained by increased ketogenesis in the fat body and macrophages, leading to elevated levels of β-hydroxybutyrate in circulation. Although this metabolic adaptation is essential for survival during infection, it is not required for the elimination of the pathogen itself. Instead, ketone bodies predominately serve as an energy source for the brain neurons during this period of nutrient scarcity.
Collapse
Affiliation(s)
- Gabriela Krejčová
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Diana Novotná
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic.
| |
Collapse
|
4
|
Zhang S, Wang Z, Luo Q, Zhou L, Du X, Ren Y. Effects of Microbes on Insect Host Physiology and Behavior Mediated by the Host Immune System. INSECTS 2025; 16:82. [PMID: 39859663 PMCID: PMC11765777 DOI: 10.3390/insects16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens. The innate immune system of insects primarily comprises cellular immunity and humoral immunity. Toll, immune deficiency, and Janus kinase/signal transducers and activators of transcription are the main signaling pathways regulating insect humoral immunity. Nevertheless, increasing research has revealed that immune signaling activated by microbes also performs non-immune roles while exerting immune roles, and insulin signaling performs a key role in mediating the connection between the immune system and non-immune physiological activities. Therefore, this paper first briefly reviews the main innate immune signaling and insulin signaling of insects, then summarizes the relationship between immune signaling activated by microbes and insect growth and development, reproduction, pesticide resistance, chemical communication, cell turnover, lifespan, sleep, energy generation pathways and their possible underlying mechanisms. Future research directions and methodologies are also proposed, aiming to provide insights into further study on the physiological mechanism linking microbes and insect hosts.
Collapse
Affiliation(s)
- Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Lizhen Zhou
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Xin Du
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| |
Collapse
|
5
|
Darby AM, Keith SA, Kalukin AA, Lazzaro BP. Chronic bacterial infections exert metabolic costs in Drosophila melanogaster. J Exp Biol 2025; 228:jeb249424. [PMID: 39801480 PMCID: PMC11832186 DOI: 10.1242/jeb.249424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 02/19/2025]
Abstract
Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection. We infected D. melanogaster with four bacterial species (Providencia rettgeri, Serratia marcescens, Enterococcus faecalis and Lactococcus lactis) and assayed metabolic traits in chronically infected survivors. We found that D. melanogaster carrying chronic infections were uniformly more susceptible to starvation than uninfected controls, and that sensitivity to starvation escalated with higher chronic pathogen burden. We observed some evidence for greater depletion of triglyceride and glycogen stores in D. melanogaster carrying chronic bacterial loads, although this varied among bacterial species. Chronically infected flies exhibit sustained upregulation of the immune response, which we hypothesized might contribute to the metabolic costs. Consistent with this prediction, genetic activation of the major innate immune signaling pathways depleted metabolic stores and increased starvation sensitivity even in the absence of infection. These results demonstrate that even sublethal infections can have substantial health and fitness consequences for the hosts, arising in part from pathogen-induced immune activation, and that the consequences scale quantitatively with the severity of infection.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Ananda A. Kalukin
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Darby AM, Okoro DO, Aredas S, Frank AM, Pearson WH, Dionne MS, Lazzaro BP. High sugar diets can increase susceptibility to bacterial infection in Drosophila melanogaster. PLoS Pathog 2024; 20:e1012447. [PMID: 39133760 PMCID: PMC11341100 DOI: 10.1371/journal.ppat.1012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Overnutrition with dietary sugar can worsen infection outcomes in diverse organisms including insects and humans, through generally unknown mechanisms. In the present study, we show that adult Drosophila melanogaster fed high-sugar diets became more susceptible to infection by the Gram-negative bacteria Providencia rettgeri and Serratia marcescens. We found that P. rettgeri and S. marcescens proliferate more rapidly in D. melanogaster fed a high-sugar diet, resulting in increased probability of host death. D. melanogaster become hyperglycemic on the high-sugar diet, and we find evidence that the extra carbon availability may promote S. marcescens growth within the host. However, we found no evidence that increased carbon availability directly supports greater P. rettgeri growth. D. melanogaster on both diets fully induce transcription of antimicrobial peptide (AMP) genes in response to infection, but D. melanogaster provided with high-sugar diets show reduced production of AMP protein. Thus, overnutrition with dietary sugar may impair host immunity at the level of AMP translation. Our results demonstrate that dietary sugar can shape infection dynamics by impacting both host and pathogen, depending on the nutritional requirements of the pathogen and by altering the physiological capacity of the host to sustain an immune response.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Destiny O. Okoro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Sophia Aredas
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ashley M. Frank
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Battelle, Columbus, Ohio, United States of America
| | - William H. Pearson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc S. Dionne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Krejčová G, Ruphuy G, Šalamúnová P, Sonntag E, Štěpánek F, Bajgar A. Inhibition of mevalonate pathway by macrophage-specific delivery of atorvastatin prevents their pro-inflammatory polarisation. INSECT MOLECULAR BIOLOGY 2024; 33:323-337. [PMID: 38367277 DOI: 10.1111/imb.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Adjustment of the cellular metabolism of pro-inflammatory macrophages is essential for their bactericidal function; however, it underlies the development of many human diseases if induced chronically. Therefore, intervention of macrophage metabolic polarisation has been recognised as a potent strategy for their treatment. Although many small-molecule inhibitors affecting macrophage metabolism have been identified, their in vivo administration requires a tool for macrophage-specific delivery to limit their potential side effects. Here, we establish Drosophila melanogaster as a simple experimental model for in vivo testing of macrophage-specific delivery tools. We found that yeast-derived glucan particles (GPs) are suitable for macrophage-specific delivery of small-molecule inhibitors. Systemic administration of GPs loaded with atorvastatin, the inhibitor of hydroxy-methyl-glutaryl-CoA reductase (Hmgcr), leads to intervention of mevalonate pathway specifically in macrophages, without affecting HMGCR activity in other tissues. Using this tool, we demonstrate that mevalonate pathway is essential for macrophage pro-inflammatory polarisation and individual's survival of infection.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Gabriela Ruphuy
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Erik Sonntag
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Rai M, Li H, Policastro RA, Zentner GE, Nemkov T, D’Alessandro A, Tennessen JM. Glycolytic Disruption Triggers Interorgan Signaling to Nonautonomously Restrict Drosophila Larval Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597835. [PMID: 38895259 PMCID: PMC11185712 DOI: 10.1101/2024.06.06.597835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | | |
Collapse
|
9
|
Lindsey AR, Tennessen JM, Gelaw MA, Jones MW, Parish AJ, Newton IL, Nemkov T, D'Alessandro A, Rai M, Stark N. The intracellular symbiont Wolbachia alters Drosophila development and metabolism to buffer against nutritional stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.20.524972. [PMID: 36711506 PMCID: PMC9882369 DOI: 10.1101/2023.01.20.524972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain " w Mel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines partially rescued developmental phenotypes in the Wolbachia -free flies, and that Wolbachia titers were responsive to reduced gene expression of the fly's de novo pyrimidine synthesis pathway. In parallel, transcriptomic and metabolomic analyses indicated that Wolbachia impacts larval biology far beyond pyrimidine metabolism. Wolbachia -infected larvae had strong signatures of shifts in glutathione and mitochondrial metabolism, plus significant changes in the expression of key developmental regulators including Notch , the insulin receptor ( lnR ), and the juvenile hormone receptor Methoprene-tolerant ( Met ). We propose that Wolbachia acts as a beneficial symbiont to support fly development and enhance host fitness, especially during periods of nutrient stress. SIGNIFICANCE Wolbachia is a bacterial symbiont of arthropods and nematodes, well described for its manipulations of arthropod reproduction. However, many have theorized there must be more to this symbiosis, even in well-studied Wolbachia- host relationships such as with Drosophila . Reproductive impacts alone cannot explain the success and ubiquity of this bacterium. Here, we use Drosophila melanogaster and their native Wolbachia infections to show that Wolbachia supports fly development and significantly buffers flies against nutritional stress. These developmental advantages might help explain the ubiquity of Wolbachia infections.
Collapse
|
10
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
11
|
Krejčová G, Morgantini C, Zemanová H, Lauschke VM, Kovářová J, Kubásek J, Nedbalová P, Kamps‐Hughes N, Moos M, Aouadi M, Doležal T, Bajgar A. Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection. EMBO J 2023; 42:e114086. [PMID: 37807855 PMCID: PMC10690471 DOI: 10.15252/embj.2023114086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Cecilia Morgantini
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
| | - Helena Zemanová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Volker M Lauschke
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Julie Kovářová
- Biology Centre CASInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Pavla Nedbalová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Martin Moos
- Institute of EntomologyBiology Centre CASCeske BudejoviceCzech Republic
| | - Myriam Aouadi
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| |
Collapse
|
12
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
14
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG. Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 2023; 32:5028-5041. [PMID: 37540037 PMCID: PMC10529729 DOI: 10.1111/mec.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Joaquin C B Nunez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Shawn Williams
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - John T Burley
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Kimberly B Neil
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Wilson McKerrow
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Yevgeniy Raynes
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Thomas J Fayton
- University of Southern Mississippi, Hattiesburg, Mississippi, USA
- Cornell University, Ithaca, New York, USA
| | - Nicholas Skvir
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David A Ferranti
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Maya Greenhill Zeff
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Amanda Lyons
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Naima Okami
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - David M Morgan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | | | - Bianca R P Brown
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anne E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
17
|
Tang C, Kurata S, Fuse N. Re-recognition of innate immune memory as an integrated multidimensional concept. Microbiol Immunol 2023. [PMID: 37311618 DOI: 10.1111/1348-0421.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
In the past decade, the concept of immunological memory, which has long been considered a phenomenon observed in the adaptive immunity of vertebrates, has been extended to the innate immune system of various organisms. This de novo immunological memory is mainly called "innate immune memory", "immune priming", or "trained immunity" and has received increased attention because of its potential for clinical and agricultural applications. However, research on different species, especially invertebrates and vertebrates, has caused controversy regarding this concept. Here we discuss the current studies focusing on this immunological memory and summarize several mechanisms underlying it. We propose "innate immune memory" as a multidimensional concept as an integration between the seemingly different immunological phenomena.
Collapse
Affiliation(s)
- Chang Tang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Lin YC, Lu YH, Tang CK, Yang EC, Wu YL. Honey bee foraging ability suppressed by imidacloprid can be ameliorated by adding adenosine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121920. [PMID: 37257810 DOI: 10.1016/j.envpol.2023.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Honey bees are important pollinators in most ecosystem, but they are currently facing many threats, which have led to a reduction in their population. Previous studies have indicated that neonicotinoid pesticide can impair the memory and learning ability of honey bees, which can eventually lead to a decline in their foraging and homing abilities. In this study, we investigated the homing ability barrier from the perspective of energy supply. We believe that when worker bees experience stress, their energy supply may shift from pro-movement to pro-resistance; this will lead to inadequate energy provision to the flight muscles, causing a reduction in wingbeat frequency and impairing the flight ability of the worker bees. To test this, the worker bees were treated with imidacloprid, and wing beats between the treatment groups were compared. Their glucose, glycogen, trehalose, and ATP contents were also measured, and their genes for energy metabolism and resistance were analyzed. The addition of adenosine improved the ATP content and helped recover the wingbeat frequency of the worker bees. The preliminary results obtained showed that wingbeat frequency and glucose content in the worker bees treated with imidacloprid were significantly lower than those in the control group. This result is consistent with our hypothesis and demonstrates that energy supply imbalances can prevent worker bees from returning to their hives.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Plant Health Care Master Degree Program, Academy of Circular Economy, National Chung-Hsing University, Taichung, 504, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
19
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
20
|
Felden A, Dobelmann J, Baty JW, McCormick J, Haywood J, Lester PJ. Can immune gene silencing via dsRNA feeding promote pathogenic viruses to control the globally invasive Argentine ant? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2755. [PMID: 36196505 DOI: 10.1002/eap.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Pest control methods that can target pest species with limited environmental impacts are a conservation and economic priority. Species-specific pest control using RNA interference is a challenging but promising avenue in developing the next generation of pest management. We investigate the feasibility of manipulating a biological invader's immune system using double-stranded RNA (dsRNA) in order to increase susceptibility to naturally occurring pathogens. We used the invasive Argentine ant as a model, targeting the immunity-associated genes Spaetzle and Dicer-1 with dsRNA. We show that feeding with Spaetzle dsRNA can result in partial target gene silencing for up to 28 days in the laboratory and 5 days in the field. Dicer-1 dsRNA only resulted in partial gene knockdown after 2 days in the laboratory. Double-stranded RNA treatments were associated with significant gene expression disruptions across immune pathways in the laboratory and to a lower extent in the field. In total, 12 viruses and four bacteria were found in these ant populations. Some changes in viral loads in dsRNA-treated groups were observed. For example, Linepithema humile Polycipivirus 2 (LhuPCV2) loads increased after 2 days of treatment with Spaetzle and Dicer-1 dsRNA treatments in the laboratory. After treatment with the dsRNA in the field, after 5 days the virus Linepithema humile toti-like virus 1 (LhuTLV1) was significantly more abundant. However, immune pathway disruption did not result in a consistent increase in microbial infections, nor did it alter ant abundance in the field. Some viruses even declined in abundance after dsRNA treatment. Our study explored the feasibility of lowering a pest's immunity as a control tool. We demonstrate that it is possible to alter immune gene expression of pest species and pathogen loads, although in our specific system the affected pathogens did not appear to influence pest abundance. We provide suggestions on future directions for dsRNA-mediated immune disruption in pest species, including potential avenues to improve dsRNA delivery as well as the importance of pest and pathogen biology. Double-stranded RNA targeting immune function might be especially useful for pest control in systems in which viruses or other microorganisms are prevalent and have the potential to be pathogenic.
Collapse
Affiliation(s)
- Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jana Dobelmann
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joseph McCormick
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
21
|
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, Holušová K, Hurychová J, Eliáš S, Pinďáková E, Čukanová E, Prodělalová J, Petřivalský M, Danihlík J, Havlík J, Hobza R, Kavanagh K, Hyršl P. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103877. [PMID: 36403678 DOI: 10.1016/j.ibmb.2022.103877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.
Collapse
Affiliation(s)
- Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Rachel Ward
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eliška Pinďáková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eliška Čukanová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jana Prodělalová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
22
|
The emerging pathogen Enterocytozoon hepatopenaei drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (Penaeus vannamei). Sci Rep 2022; 12:14766. [PMID: 36042348 PMCID: PMC9427843 DOI: 10.1038/s41598-022-19127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that causes substantial economic losses in shrimp (Penaeus spp.) aquaculture worldwide. To prevent diseases in shrimp, the manipulation of the gut microbiota has been suggested. However, prior knowledge of the host-microbiome is necessary. We assessed the modulation of the microbiome (bacteria/fungi) and its predicted functions over the course of disease progression in shrimp experimentally challenged with EHP for 30 days using high throughput 16S rRNA and ITS amplicon sequencing. Infection grade was assessed for the first time by quantitative digital histopathology. According to the infection intensity, three disease-stages (early/developmental/late) were registered. During the early-stage, EHP was not consistently detected, and a high diversity of potentially beneficial microorganisms related to nutrient assimilation were found. In the development-stage, most of the shrimp start to register a high infection intensity related to a decrease in beneficial microorganisms and an increase in opportunistic/pathogenic fungi. During late-stage, animals displayed different infection intensities, showed a displacement of beneficial microorganisms by opportunistic/pathogenic bacteria and fungi related to pathogen infection processes and depletion of energetic reserves. The degenerative cyclic pattern of EHP infection and its effects on beneficial microorganisms and beneficial functions of the shrimp hepatopancreas microbiome are discussed.
Collapse
|
23
|
Tang C, Kurata S, Fuse N. Genetic dissection of innate immune memory in Drosophila melanogaster. Front Immunol 2022; 13:857707. [PMID: 35990631 PMCID: PMC9386478 DOI: 10.3389/fimmu.2022.857707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Current studies have demonstrated that innate immunity possesses memory characteristics. Although the molecular mechanisms underlying innate immune memory have been addressed by numerous studies, genetic variations in innate immune memory and the associated genes remain unclear. Here, we explored innate immune memory in 163 lines of Drosophila melanogaster from the Drosophila Synthetic Population Resource. In our assay system, prior training with low pathogenic bacteria (Micrococcus luteus) increased the survival rate of flies after subsequent challenge with highly pathogenic bacteria (Staphylococcus aureus). This positive training effect was observed in most lines, but some lines exhibited negative training effects. Survival rates under training and control conditions were poorly correlated, suggesting that distinct genetic factors regulate training effects and normal immune responses. Subsequent quantitative trait loci analysis suggested that four loci containing 80 genes may be involved in regulating innate immune memory. Among them, Adgf-A, which encodes an extracellular adenosine deaminase-related growth factor, was shown to be associated with training effects. Our study findings help to elucidate the genetic architecture of innate immune memory in Drosophila and may provide insight for new therapeutic treatments aimed at boosting immunity.
Collapse
Affiliation(s)
| | | | - Naoyuki Fuse
- *Correspondence: Shoichiro Kurata, ; Naoyuki Fuse,
| |
Collapse
|
24
|
Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. eLife 2022; 11:e78906. [PMID: 35920811 PMCID: PMC9348853 DOI: 10.7554/elife.78906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Hemocytes, similar to vertebrate blood cells, play important roles in insect development and immunity, but it is not well understood how they perform their tasks. New technology, in particular single-cell transcriptomic analysis in combination with Drosophila genetics, may now change this picture. This review aims to make sense of recently published data, focusing on Drosophila melanogaster and comparing to data from other drosophilids, the malaria mosquito, Anopheles gambiae, and the silkworm, Bombyx mori. Basically, the new data support the presence of a few major classes of hemocytes: (1) a highly heterogenous and plastic class of professional phagocytes with many functions, called plasmatocytes in Drosophila and granular cells in other insects. (2) A conserved class of cells that control melanin deposition around parasites and wounds, called crystal cells in D. melanogaster, and oenocytoids in other insects. (3) A new class of cells, the primocytes, so far only identified in D. melanogaster. They are related to cells of the so-called posterior signaling center of the larval hematopoietic organ, which controls the hematopoiesis of other hemocytes. (4) Different kinds of specialized cells, like the lamellocytes in D. melanogaster, for the encapsulation of parasites. These cells undergo rapid evolution, and the homology relationships between such cells in different insects are uncertain. Lists of genes expressed in the different hemocyte classes now provide a solid ground for further investigation of function.
Collapse
Affiliation(s)
- Dan Hultmark
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - István Andó
- Biological Research Centre, Institute of Genetics, Innate Immunity Group, Eötvös Loránd Research NetworkSzegedHungary
| |
Collapse
|
25
|
Luo W, Liu S, Zhang F, Zhao L, Su Y. Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:291-302. [PMID: 37073169 PMCID: PMC10077226 DOI: 10.1007/s42995-022-00134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Macrophages are well known for their phagocytic functions in innate immunity across species. In mammals, they rapidly consume a large amount of energy by shifting their metabolism from mitochondrial oxidative phosphorylation toward aerobic glycolysis, to perform the effective bactericidal function upon infection. Meanwhile, they strive for sufficient energy resources by restricting systemic metabolism. In contrast, under nutrient deprivation, the macrophage population is down-regulated to save energy for survival. Drosophila melanogaster possesses a highly conserved and comparatively simple innate immune system. Intriguingly, recent studies have shown that Drosophila plasmatocytes, the macrophage-like blood cells, adopt comparable metabolic remodeling and signaling pathways to achieve energy reassignment when challenged by pathogens, indicating the conservation of such metabolic strategies between insects and mammals. Here, focusing on Drosophila macrophages (plasmatocytes), we review recent advances regarding their comprehensive roles in local or systemic metabolism under homeostasis or stress, emphasizing macrophages as critical players in the crosstalk between the immune system and organic metabolism from a Drosophila perspective.
Collapse
Affiliation(s)
- Wang Luo
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Sumin Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Fang Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Long Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Fisheries College, Ocean University of China, Qingdao, 266003 China
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao, 266003 China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
26
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
27
|
Tsai CH, Chuang YC, Lu YH, Lin CY, Tang CK, Wei SC, Wu YL. Carbohydrate metabolism is a determinant for the host specificity of baculovirus infections. iScience 2022; 25:103648. [PMID: 35028533 PMCID: PMC8741431 DOI: 10.1016/j.isci.2021.103648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Baculoviruses Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV) have highly similar genome sequences but exhibit no overlap in their host range. After baculovirus infects nonpermissive larvae (e.g., AcMNPV infecting B. mori or BmNPV infecting Spodoptera litura), we found that stored carbohydrates, including hemolymph trehalose and fat body glycogen, are rapidly transformed into glucose; enzymes involved in glycolysis and the TCA cycle are upregulated and produce more ATP; adenosine signaling that regulates glycolytic activity is also increased. Subsequently, phagocytosis in cellular immunity and the expression of genes involved in humoral immunity increase significantly. Moreover, inhibiting glycolysis and the expression of gloverins in nonpermissive hosts increased baculovirus infectivity, indicating that the stimulated energy production is designed to support the immune response against infection. Our study highlights that alteration of the host's carbohydrate metabolism is an important factor determining the host specificity of baculoviruses, in addition to viral factors. Nonpermissive infections by AcMNPV and BmNPV alter host carbohydrate metabolism Increased carbohydrate metabolism produces energy to launch immune responses Immune responses including antimicrobial peptide production inhibit virus infection Host metabolic alterations affect the determination of virus's host specificity
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yi-Chi Chuang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Yang Lin
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
28
|
Chen P, Lu YH, Lin YH, Wu CP, Tang CK, Wei SC, Wu YL. Deformed wing virus infection affects the neurological function of Apis mellifera by altering extracellular adenosine signaling. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103674. [PMID: 34737063 DOI: 10.1016/j.ibmb.2021.103674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Deformed wing virus (DWV) infection is believed to be closely associated with colony losses of honeybee (Apis mellifera) due to reduced learning and memory of infected bees. The adenosine (Ado) pathway is important for maintaining immunity and memory function in animals, and it enhances antivirus responses by regulating carbohydrate metabolism in insects. Nevertheless, its effect on the memory of invertebrates is not yet clear. This study investigated how the Ado pathway regulates energy metabolism and memory in honeybees following DWV infection. Decreased Ado receptor (Ado-R) expression in the brain of infected bees resulted in a carbohydrate imbalance as well as impairments of glutamate-glutamine (Glu-Gln) cycle and long-term memory. Dietary supplementation with Ado not only increased the brain energy metabolism but also rescued long-term memory loss by upregulating the expression of memory-related genes. The present study demonstrated the regulation of the Ado pathway upon DWV infection and provides insights into the mechanisms underlying energy regulation and the neurological function of honeybees.
Collapse
Affiliation(s)
- Ping Chen
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Carol-P Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
29
|
NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence. PLoS Pathog 2021; 17:e1009791. [PMID: 34370789 PMCID: PMC8376106 DOI: 10.1371/journal.ppat.1009791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.
Collapse
|
30
|
Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae). Toxins (Basel) 2021; 13:toxins13070502. [PMID: 34357975 PMCID: PMC8310156 DOI: 10.3390/toxins13070502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be “metalloproteinase bombs” that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.
Collapse
|
31
|
Yang L, Weiss BL, Williams AE, Aksoy E, de Silva Orfano A, Son JH, Wu Y, Vigneron A, Karakus M, Aksoy S. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment. PLoS Pathog 2021; 17:e1009475. [PMID: 34107000 PMCID: PMC8216540 DOI: 10.1371/journal.ppat.1009475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.
Collapse
Affiliation(s)
- Liu Yang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adeline E. Williams
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Alessandra de Silva Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Mehmet Karakus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Medical Microbiology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
32
|
Riahi H, Fenckova M, Goruk KJ, Schenck A, Kramer JM. The epigenetic regulator G9a attenuates stress-induced resistance and metabolic transcriptional programs across different stressors and species. BMC Biol 2021; 19:112. [PMID: 34030685 PMCID: PMC8142638 DOI: 10.1186/s12915-021-01025-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
Background Resistance and tolerance are two coexisting defense strategies for fighting infections. Resistance is mediated by signaling pathways that induce transcriptional activation of resistance factors that directly eliminate the pathogen. Tolerance refers to adaptations that limit the health impact of a given pathogen burden, without targeting the infectious agent. The key players governing immune tolerance are largely unknown. In Drosophila, the histone H3 lysine 9 (H3K9) methyltransferase G9a was shown to mediate tolerance to virus infection and oxidative stress (OS), suggesting that abiotic stresses like OS may also evoke tolerance mechanisms. In response to both virus and OS, stress resistance genes were overinduced in Drosophila G9a mutants, suggesting an intact but overactive stress response. We recently demonstrated that G9a promotes tolerance to OS by maintaining metabolic homeostasis and safeguarding energy availability, but it remained unclear if this mechanism also applies to viral infection, or is conserved in other species and stress responses. To address these questions, we analyzed publicly available datasets from Drosophila, mouse, and human in which global gene expression levels were measured in G9a-depleted conditions and controls at different time points upon stress exposure. Results In all investigated datasets, G9a attenuates the transcriptional stress responses that confer resistance against the encountered stressor. Comparative analysis of conserved G9a-dependent stress response genes suggests that G9a is an intimate part of the design principles of stress resistance, buffering the induction of promiscuous stress signaling pathways and stress-specific resistance factors. Importantly, we find stress-dependent downregulation of metabolic genes to also be dependent on G9a across all of the tested datasets. Conclusions These results suggest that G9a sets the balance between activation of resistance genes and maintaining metabolic homeostasis, thereby ensuring optimal organismal performance during exposure to diverse types of stress across different species. We therefore propose G9a as a potentially conserved master regulator underlying the widely important, yet poorly understood, concept of stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01025-0.
Collapse
Affiliation(s)
- Human Riahi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kayla J Goruk
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
33
|
Hosseinzadeh S, Higgins SA, Ramsey J, Howe K, Griggs M, Castrillo L, Heck M. Proteomic Polyphenism in Color Morphotypes of Diaphorina citri, Insect Vector of Citrus Greening Disease. J Proteome Res 2021; 20:2851-2866. [PMID: 33890474 DOI: 10.1021/acs.jproteome.1c00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Steven A Higgins
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - John Ramsey
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Kevin Howe
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michael Griggs
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Louela Castrillo
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
35
|
P P, Tomar A, Madhwal S, Mukherjee T. Immune Control of Animal Growth in Homeostasis and Nutritional Stress in Drosophila. Front Immunol 2020; 11:1528. [PMID: 32849518 PMCID: PMC7416612 DOI: 10.3389/fimmu.2020.01528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
A large body of research implicates the brain and fat body (liver equivalent) as central players in coordinating growth and nutritional homeostasis in multicellular animals. In this regard, an underlying connection between immune cells and growth is also evident, although mechanistic understanding of this cross-talk is scarce. Here, we explore the importance of innate immune cells in animal growth during homeostasis and in conditions of nutrient stress. We report that Drosophila larvae lacking blood cells eclose as small adults and show signs of insulin insensitivity. Moreover, when exposed to dietary stress of a high-sucrose diet (HSD), these animals are further growth retarded than normally seen in regular animals raised on HSD. In contrast, larvae carrying increased number of activated macrophage-like plasmatocytes show no defects in adult growth when raised on HSD and grow to sizes almost comparable with that seen with regular diet. These observations imply a central role for immune cell activity in growth control. Mechanistically, our findings reveal a surprising influence of immune cells on balancing fat body inflammation and insulin signaling under conditions of homeostasis and nutrient overload as a means to coordinate systemic metabolism and adult growth. This work integrates both the cellular and humoral arm of the innate immune system in organismal growth homeostasis, the implications of which may be broadly conserved across mammalian systems as well.
Collapse
Affiliation(s)
- Preethi P
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ajay Tomar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
36
|
Lin YH, Tai CC, Brož V, Tang CK, Chen P, Wu CP, Li CH, Wu YL. Adenosine Receptor Modulates Permissiveness of Baculovirus (Budded Virus) Infection via Regulation of Energy Metabolism in Bombyx mori. Front Immunol 2020; 11:763. [PMID: 32411148 PMCID: PMC7198810 DOI: 10.3389/fimmu.2020.00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Chia-Chi Tai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Václav Brož
- Biology Centre of the Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czechia
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Ping Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Carol P Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsun Li
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Chang Y, Tang CK, Lin YH, Tsai CH, Lu YH, Wu YL. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Sci Rep 2020; 10:2096. [PMID: 32034183 PMCID: PMC7005799 DOI: 10.1038/s41598-020-58375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/11/2020] [Indexed: 01/28/2023] Open
Abstract
Sufficient energy supply to the host immune system is important for resisting pathogens. Therefore, during pathogen infection, the host metabolism is reassigned from storage, growth, and development to the immune system. Previous studies in Drosophila melanogaster have demonstrated that systemic metabolic switching upon an immune challenge is activated by extracellular adenosine signaling, modulating carbohydrate mobilization and redistributing energy to the hemocytes. In the present study, we discovered that symbiotic virus (SmBV) of the parasitoid wasp Snellenius manilae is able to down-regulate the extracellular adenosine of its host, Spodoptera litura, to inhibit metabolism switching. The decreased carbohydrate mobilization, glycogenolysis, and ATP synthesis upon infection results in the host being unable to supply energy to its immune system, thus benefitting the development of wasp larvae. When we added adenosine to the infected S. litura larvae, we observed enhanced host immune responses that decreased the pupation rate of S. manilae. Previous studies showed that after pathogen infection, the host activates its adenosine pathway to trigger immune responses. However, our results suggest a different model: we found that in S. manilae, SmBV modulates the host adenosine pathway such that wasp eggs and larvae can evade the host immune response.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
38
|
Bhalla M, Hui Yeoh J, Lamneck C, Herring SE, Tchalla EYI, Heinzinger LR, Leong JM, Bou Ghanem EN. A1 adenosine receptor signaling reduces Streptococcus pneumoniae adherence to pulmonary epithelial cells by targeting expression of platelet-activating factor receptor. Cell Microbiol 2019; 22:e13141. [PMID: 31709673 DOI: 10.1111/cmi.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host-pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet-activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community-acquired pneumonia in the elderly, we explored the role of A1 in the age-driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial-host interactions.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Jun Hui Yeoh
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Claire Lamneck
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Sydney E Herring
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Essi Y I Tchalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Lauren R Heinzinger
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| |
Collapse
|
39
|
Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T, Bajgar A. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife 2019; 8:50414. [PMID: 31609200 PMCID: PMC6867711 DOI: 10.7554/elife.50414] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here, we used adults of the fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting the conservation of this cellular response between insects and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection. Macrophages are the immune system's first line of defense against infection. These immune cells can be found in all tissues and organs, watching for signs of disease-causing agents and targeting them for destruction. Maintaining macrophages costs energy, so to minimize waste, these cells spend most of their lives in 'low power mode'. When macrophages sense harmful bacteria, they rapidly awaken and trigger a series of immune events that protect the body from infection. However, to perform these protective tasks macrophages need a sudden surge in energy. In mammals, activated macrophages get their energy from aerobic glycolysis – a series of chemical reactions normally reserved for low oxygen environments. Switching on this metabolic process requires a protein called hypoxia inducible factor 1α (HIF-1 α), which switches on the genes that macrophages need to generate energy as quickly as possible. Macrophages then maintain their energy supply by sending out chemical signals which divert glucose away from the rest of the body. Fruit flies are regularly used as a model system for studying human disease, as the mechanisms they use to defend themselves from infections are similar to human immune cells. However, it remains unclear whether their macrophages undergo the same metabolic changes during an infection. To address this question, Krejčová et al. isolated macrophages from fruit flies that had been infected with bacteria. Experiments studying the metabolism of these cells revealed that, just like human macrophages, they responded to bacteria by taking in more glucose and generating energy via aerobic glycolysis. The macrophages of these flies were also found to draw in energy from the rest of the body by raising blood sugar levels and depleting stores of glucose. Similar to human macrophages, these metabolic changes depended on HIF1α, and flies without this protein were unable to secure the level of energy needed to effectively fight off the bacteria. These findings suggest that this metabolic switch to aerobic glycolysis is a conserved mechanism that both insects and mammals use to fight off infections. This means in the future fruit flies could be used as a model organism for studying diseases associated with macrophage mis-activation, such as chronic inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michalina Kazek
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Lukáš Strych
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Jaroslava Lieskovská
- Department of Medical Biology, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Marek Jindra
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| |
Collapse
|
40
|
Abstract
Elsa N. Bou Ghanem works in the field of innate immune senescence, inflammation, and host defense. In this mSphere of Influence article, she reflects on how "Adenosine A2B receptor deficiency promotes host defenses against Gram-negative bacterial pneumonia" by Barletta et al. (K. E. Barletta, R. E. Cagnina, M. D. Burdick, J. Linden, and B. Mehrad, Am J Respir Crit Care Med 186:1044-1050, 2012, https://doi.org/10.1164/rccm.201204-0622OC) impacted her own work examining the role of the extracellular adenosine pathway in neutrophil responses and host defense against pneumococcal pneumonia.
Collapse
Affiliation(s)
- Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
41
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
42
|
Galenza A, Foley E. Immunometabolism: Insights from the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:22-34. [PMID: 30684503 DOI: 10.1016/j.dci.2019.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Multicellular organisms inhabit an environment that includes a mix of essential nutrients and large numbers of potentially harmful microbes. Germline-encoded receptors scan the environment for microbe associated molecular patterns, and, upon engagement, activate powerful defenses to protect the host from infection. At the same time, digestive enzymes and transporter molecules sieve through ingested material for building blocks and energy sources necessary for survival, growth, and reproduction. We tend to view immune responses as a potent array of destructive forces that overwhelm potentially harmful agents. In contrast, we view metabolic processes as essential, constructive elements in the maintenance and propagation of life. However, there is considerable evidence of functional overlap between the two processes, and disruptions to one frequently modify outputs of the other. Studies of immunometabolism, or interactions between immunity and metabolism, have increased in prominence with the discovery of inflammatory components to metabolic diseases such as type two diabetes. In this review, we will focus on contributions of studies with the fruit fly, Drosophila melanogaster, to our understanding of immunometabolism. Drosophila is widely used to study immune signaling, and to understand the regulation of metabolism in vivo, and this insect has considerable potential as a tool to build our understanding of the molecular and cellular bridges that connect immune and metabolic pathways.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
43
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
44
|
Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M. Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 2019; 15:e1007504. [PMID: 30633769 PMCID: PMC6345493 DOI: 10.1371/journal.ppat.1007504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs have important roles in regulating physiology, including immunity. Here, we performed transcriptome profiling of immune-responsive genes in Drosophila melanogaster during a Gram-positive bacterial infection, concentrating on long non-coding RNA (lncRNA) genes. The gene most highly induced by a Micrococcus luteus infection was CR44404, named Induced by Infection (lincRNA-IBIN). lincRNA-IBIN is induced by both Gram-positive and Gram-negative bacteria in Drosophila adults and parasitoid wasp Leptopilina boulardi in Drosophila larvae, as well as by the activation of the Toll or the Imd pathway in unchallenged flies. We show that upon infection, lincRNA-IBIN is expressed in the fat body, in hemocytes and in the gut, and its expression is regulated by NF-κB signaling and the chromatin modeling brahma complex. In the fat body, overexpression of lincRNA-IBIN affected the expression of Toll pathway -mediated genes. Notably, overexpression of lincRNA-IBIN in unchallenged flies elevated sugar levels in the hemolymph by enhancing the expression of genes important for glucose retrieval. These data show that lncRNA genes play a role in Drosophila immunity and indicate that lincRNA-IBIN acts as a link between innate immune responses and metabolism.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tiina S. Salminen
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|