1
|
Malouli D, Taher H, Mansouri M, Iyer RF, Reed J, Papen C, Schell JB, Beechwood T, Martinson T, Morrow D, Hughes CM, Gilbride RM, Randall K, Ford JC, Belica K, Ojha S, Sacha JB, Bimber BN, Hansen SG, Picker LJ, Früh K. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 + T cells. Sci Immunol 2024; 9:eadp5216. [PMID: 39392895 PMCID: PMC11797217 DOI: 10.1126/sciimmunol.adp5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Rhesus cytomegalovirus (RhCMV) vectors elicit major histocompatibility complex (MHC)-E-restricted CD8+ T cells that stringently control simian immunodeficiency virus (SIV) in rhesus macaques. These responses require deletion of eight RhCMV chemokine-like open reading frames (ORFs) that are conserved in human cytomegalovirus (HCMV). To determine whether HCMV encodes additional, nonconserved inhibitors of unconventional T cell priming, we inserted 41 HCMV-specific ORFs into a chemokine-deficient strain (68-1 RhCMV). Monitoring of epitope recognition revealed that HCMV UL18 prevented unconventional T cell priming, resulting in MHC-Ia-targeted responses. UL18 is homologous to MHC-I but does not engage T cell receptors and, instead, binds with high affinity to inhibitory leukocyte immunoglobulin-like receptor-1 (LIR-1). UL18 lacking LIR-1 binding no longer interfered with MHC-E-restricted T cell stimulation by RhCMV-infected cells or the induction of unconventionally restricted T cells. Thus, LIR-1 binding needs to be deleted from UL18 of HCMV/HIV vaccines to allow for the induction of protective MHC-E-restricted T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
2
|
Peereboom ETM, de Marco R, Geneugelijk K, Jairam J, Verduyn Lunel FM, Blok AJ, Medina-Pestana J, Gerbase-DeLima M, van Zuilen AD, Spierings E. Peptide Sharing Between CMV and Mismatched HLA Class I Peptides Promotes Early T-Cell-Mediated Rejection After Kidney Transplantation. HLA 2024; 104:e15719. [PMID: 39435970 DOI: 10.1111/tan.15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cytomegalovirus (CMV) infection is related to acute rejection and graft loss after kidney transplantation, though the underlying mechanism remains largely unknown. Some CMV strains produce a peptide that is identical to a peptide sequence found in the leader peptide of specific HLA-A and -C alleles. In this retrospective study of 351 kidney transplantations, we explored whether CMV-seropositive recipients without the VMAPRTLIL, VMAPRTLLL or VMAPRTLVL HLA class I leader peptide receiving a transplant from a donor with this peptide, faced an increased risk of T-cell-mediated rejection (TCMR) in the first 90 days after transplantation. An independent case-control cohort was used for validation (n = 122). The combination of recipient CMV seropositivity with the VMAPRTLIL peptide mismatch was associated with TCMR with a hazard ratio (HR) of 3.06 (p = 0.001) in a multivariable analysis. Similarly, the VMAPRTLLL peptide mismatch was associated with TCMR revealing a HR of 2.61 (p = 0.008). Transplantations featuring either a VMAPRTLIL or a VMAPRTLLL peptide mismatch had a significantly higher cumulative TCMR incidence (p < 0.0001), with the primary impact observed in the first 2 weeks post-transplantation. The findings could be validated in an independent cohort. Together, our data strongly suggest that CMV-positive recipients without an HLA peptide identical to a CMV peptide yet transplanted with a donor who does possess this peptide, have a significantly increased risk of early TCMR. Considering the prevention of such an leader peptide mismatch in these patients or adjusting immunosuppression protocols accordingly may hold promise in reducing the incidence of early TCMR.
Collapse
Affiliation(s)
- Emma T M Peereboom
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renato de Marco
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Kirsten Geneugelijk
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasvir Jairam
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frans M Verduyn Lunel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna J Blok
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - José Medina-Pestana
- Nephrology Division, Hospital Do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Gerbase-DeLima
- Immunogenetics Institute - IGEN, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Iyer RF, Verweij MC, Nair SS, Morrow D, Mansouri M, Chakravarty D, Beechwood T, Meyer C, Uebelhoer L, Lauron EJ, Selseth A, John N, Thin TH, Dzedzik S, Havenar-Daughton C, Axthelm MK, Douglas J, Korman A, Bhardwaj N, Tewari AK, Hansen S, Malouli D, Picker LJ, Früh K. CD8 + T cell targeting of tumor antigens presented by HLA-E. SCIENCE ADVANCES 2024; 10:eadm7515. [PMID: 38728394 PMCID: PMC11086602 DOI: 10.1126/sciadv.adm7515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Marieke C. Verweij
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sujit S. Nair
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Dimple Chakravarty
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - Teresa Beechwood
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Luke Uebelhoer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Andrea Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Nessy John
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tin Htwe Thin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siarhei Dzedzik
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Alan Korman
- Vir Biotechnology, San Francisco, CA 14158, USA
| | - Nina Bhardwaj
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - Scott Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
4
|
Tang K, Zhang Y, Li X, Zhang C, Jia X, Hu H, Chen L, Zhuang R, Zhang Y, Jin B, Ma Y. HLA-E-restricted Hantaan virus-specific CD8 + T cell responses enhance the control of infection in hemorrhagic fever with renal syndrome. BIOSAFETY AND HEALTH 2023; 5:289-299. [PMID: 40078905 PMCID: PMC11895001 DOI: 10.1016/j.bsheal.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 03/14/2025] Open
Abstract
Infection with the Hantaan virus (HTNV) may result in severe hemorrhagic fever with renal syndrome (HFRS). The functions of HLA-E-restricted CD8+ T lymphocytes in virus control and vaccine development have recently received increased attention. The purpose of this research is to discover HLA-E-restricted CD8+ T cell epitopes on HTNV as well as the features of these epitope-specific CD8+ T cells in HFRS patients. To anticipate HLA-E-restricted HTNV epitopes, the NetMHCpan servers were utilized. The K562/HLA-E cell binding test and the enzyme-linked immunospot assay were used to confirm epitope binding to HLA-E. The number and features of HLA-E-restricted epitope-specific CD8+ T lymphocytes in HFRS patients were investigated using tetramer staining, intracellular cytokine labeling, proliferation, and cytotoxicity assays. Six HTNV-derived HLA-E-restricted CD8+ T cell epitopes were found in this study. In mild/moderate HFRS patients, the frequency of HLA-E-restricted epitope-specific CD8+ T cells was greater than in severe/critical patients. CD38+HLA-DR+ HLA-E-restricted CD8+ T cells were identified. Meanwhile, CD45RA+CCR7- effector memory-re-expressing CD45RA T cells with early and intermediate maturation and differentiation characteristics predominated. Notably, CD8+ T cells from milder HFRS patients produced more interferon-γ, interleukin-2, and granzyme B, had a stronger proliferative potential, and were inversely linked with the amount of plasma HTNV virus load. Furthermore, HLA-E-restricted epitope-specific CD8+ T cells demonstrated improved cytotoxic activity in vitro during the acute stage of HFRS. Taken together, the findings demonstrate the protective effects of HLA-E-restricted CD8+ T cells during HTNV infection, suggesting that HLA-E-targeted vaccines against HTNV might be developed for HLA-diverse populations.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyu Li
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | | | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
6
|
Geiger KM, Manoharan M, Coombs R, Arana K, Park CS, Lee AY, Shastri N, Robey EA, Coscoy L. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42:112317. [PMID: 36995940 PMCID: PMC10539480 DOI: 10.1016/j.celrep.2023.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.
Collapse
Affiliation(s)
- Kristina M Geiger
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Manoharan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel Coombs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathya Arana
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angus Y Lee
- Cancer Research Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen A Robey
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Laurent Coscoy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Rousselière A, Charreau B. Persistent CD8 T Cell Marks Caused by the HCMV Infection in Seropositive Adults: Prevalence of HLA-E-Reactive CD8 T Cells. Cells 2023; 12:cells12060889. [PMID: 36980230 PMCID: PMC10047643 DOI: 10.3390/cells12060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the frequency and peptide specificity of long-lasting HCMV-specific CD8 T cells in a cohort of 120 cytomegalovirus seropositive (HCMV+) healthy carriers with the aim of deciphering the relative contribution of unconventional HLA-E- versus conventional HLA-A2-specific CD8 T cells to long-term T cell memory expansion in HCMV immunity. The presence of HCMV-specific CD8 T cells was investigated by flow cytometry using five MHC/peptide tetramer complexes (HLA-A2/pp65, HLA-A2/IE1 and three different HLA-E/UL40). Here, we report that 50% of HCMV+ healthy individuals possess HCMV-specific CD8 T cells, representing ≥0.1% of total blood CD8 T cells years post-infection. Around a third (30.8%) of individuals possess HLA-A2-restricted (A2pp65 or A2IE1) and an equal proportion (27.5%) possess an HLA-E/UL40 CD8 T response. Concomitant HLA-E- and HLA-A2-reactive CD8 T cells were frequently found, and VMAPRTLIL peptide was the major target. The frequency of HLA-E/VMAPRTLIL among total blood CD8 T cells was significantly higher than the frequency of HLA-A2pp65 T cells (mean values: 5.9% versus 2.3%, p = 0.0354). HLA-EUL40 CD8 T cells display lower TCR avidity but similar levels of CD3 and CD8 coreceptors. In conclusion, HLA-E-restricted CD8 T cells against the VMAPRTLIL UL40 peptide constitute a predominant subset among long-lasting anti-HCMV CD8 T cells.
Collapse
Affiliation(s)
- Amélie Rousselière
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
| | - Béatrice Charreau
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CEDEX 1, 44093 Nantes, France
- Correspondence:
| |
Collapse
|
8
|
Ruibal P, Derksen I, van Wolfswinkel M, Voogd L, Franken KLMC, El Hebieshy AF, van Hall T, Schoufour TAW, Wijdeven RH, Ottenhoff THM, Scheeren FA, Joosten SA. Thermal-exchange HLA-E multimers reveal specificity in HLA-E and NKG2A/CD94 complex interactions. Immunology 2023; 168:526-537. [PMID: 36217755 DOI: 10.1111/imm.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela F El Hebieshy
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
10
|
Rousselière A, Delbos L, Foureau A, Reynaud-Gaubert M, Roux A, Demant X, Le Pavec J, Kessler R, Mornex JF, Messika J, Falque L, Le Borgne A, Boussaud V, Tissot A, Hombourger S, Bressollette-Bodin C, Charreau B. Changes in HCMV immune cell frequency and phenotype are associated with chronic lung allograft dysfunction. Front Immunol 2023; 14:1143875. [PMID: 37187736 PMCID: PMC10175754 DOI: 10.3389/fimmu.2023.1143875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is common and often severe in lung transplant recipients (LTRs), and it is a risk factor associated with chronic lung allograft dysfunction (CLAD). The complex interplay between HCMV and allograft rejection is still unclear. Currently, no treatment is available to reverse CLAD after diagnosis, and the identification of reliable biomarkers that can predict the early development of CLAD is needed. This study investigated the HCMV immunity in LTRs who will develop CLAD. Methods This study quantified and phenotyped conventional (HLA-A2pp65) and HLA-E-restricted (HLA-EUL40) anti-HCMV CD8+ T (CD8 T) cell responses induced by infection in LTRs developing CLAD or maintaining a stable allograft. The homeostasis of immune subsets (B, CD4T, CD8 T, NK, and γδT cells) post-primary infection associated with CLAD was also investigated. Results At M18 post-transplantation, HLA-EUL40 CD8 T responses were less frequently found in HCMV+ LTRs (21.7%) developing CLAD (CLAD) than in LTRs (55%) keeping a functional graft (STABLE). In contrast, HLA-A2pp65 CD8 T was equally detected in 45% of STABLE and 47.8% of CLAD LTRs. The frequency of HLA-EUL40 and HLA-A2pp65 CD8 T among blood CD8 T cells shows lower median values in CLAD LTRs. Immunophenotype reveals an altered expression profile for HLA-EUL40 CD8 T in CLAD patients with a decreased expression for CD56 and the acquisition of PD-1. In STABLE LTRs, HCMV primary infection causes a decrease in B cells and inflation of CD8 T, CD57+/NKG2C+ NK, and δ2-γδT cells. In CLAD LTRs, the regulation of B, total CD8 T, and δ2+γδT cells is maintained, but total NK, CD57+/NKG2C+ NK, and δ2-γδT subsets are markedly reduced, while CD57 is overexpressed across T lymphocytes. Conclusions CLAD is associated with significant changes in anti-HCMV immune cell responses. Our findings propose that the presence of dysfunctional HCMV-specific HLA-E-restricted CD8 T cells together with post-infection changes in the immune cell distribution affecting NK and γδT cells defines an early immune signature for CLAD in HCMV+ LTRs. Such a signature may be of interest for the monitoring of LTRs and may allow an early stratification of LTRs at risk of CLAD.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Aurore Foureau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Martine Reynaud-Gaubert
- CHU de Marseille, APHM, Hôpital Nord, Service de Pneumologie et Equipe de Transplantation pulmonaire; Marseille, France; Aix-Marseille Université, Marseille, France
| | - Antoine Roux
- Hôpital Foch, Service de pneumologie, Suresnes, France
| | - Xavier Demant
- Hôpital Haut-Lévêque, Service de pneumologie, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et de Transplantation Pulmonaire, Groupe Hospitalier Marie-Lannelongue -Paris Saint Joseph, Le Plessis-Robinson, France
- Université Paris-Saclay, Le Kremlin Bicêtre, France
- UMR_S 999, Université Paris–Sud, Inserm, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Romain Kessler
- Groupe de transplantation pulmonaire des hôpitaux universitaires de Strasbourg, Inserm-Université de Strasbourg, Strasbourg, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, GHE, Service de Pneumologie, Inserm, Lyon, France
| | - Jonathan Messika
- APHP, Nord-Université Paris Cité, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Loïc Falque
- Service Hospitalier Universitaire Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| | | | - Véronique Boussaud
- Service de Pneumologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Sophie Hombourger
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
- *Correspondence: Béatrice Charreau,
| |
Collapse
|
11
|
Davies EL, Noor M, Lim EY, Houldcroft CJ, Okecha G, Atkinson C, Reeves MB, Jackson SE, Wills MR. HCMV carriage in the elderly diminishes anti-viral functionality of the adaptive immune response resulting in virus replication at peripheral sites. Front Immunol 2022; 13:1083230. [PMID: 36591233 PMCID: PMC9797693 DOI: 10.3389/fimmu.2022.1083230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection and periodic reactivation is, generally, well controlled by adaptative immune responses in the healthy. In older people, overt HCMV disease is rarely seen despite the association of HCMV with increased risk of mortality; evidence from studies of unwell aged populations suggest that HCMV seropositivity is an important co-morbidity factor. HCMV genomes have been detected in urine from older donors, suggesting that the immune response prevents systemic disease but possibly immunomodulation due to lifelong viral carriage may alter its efficacy at peripheral tissue sites. Previously we have demonstrated that there were no age-related expansions of T cell responses to HCMV or increase in latent viral carriage with age and these T cells produced anti-viral cytokines and viremia was very rarely detected. To investigate the efficacy of anti-HCMV responses with increasing age, we used an in vitro Viral Dissemination Assay (VDA) using autologous dermal fibroblasts to determine the anti-viral effector capacity of total PBMC, as well as important subsets (T cells, NK cells). In parallel we assessed components of the humoral response (antibody neutralization) and combined this with qPCR detection of HCMV in blood, saliva and urine in a cohort of young and old donors. Consistent with previous studies, we again show HCMV specific cIL-10, IFNγ and TNFα T cell responses to peptides did not show an age-related defect. However, assessment of direct anti-viral cellular and antibody-mediated adaptive immune responses using the VDA shows that older donors are significantly less able to control viral dissemination in an in vitro assay compared to young donors. Corroborating this observation, we detected viral genomes in saliva samples only from older donors, these donors had a defect in cellular control of viral spread in our in vitro assay. Phenotyping of fibroblasts used in this study shows expression of a number of checkpoint inhibitor ligands which may contribute to the defects observed. The potential to therapeutically intervene in checkpoint inhibitor pathways to prevent HCMV reactivation in the unwell aged is an exciting avenue to explore.
Collapse
Affiliation(s)
- Emma L. Davies
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mahlaqua Noor
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Eleanor Y. Lim
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Charlotte J. Houldcroft
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Georgina Okecha
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Claire Atkinson
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sarah E. Jackson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
12
|
Rousselière A, Gérard N, Delbos L, Guérif P, Giral M, Bressollette-Bodin C, Charreau B. Distinctive phenotype for HLA-E- versus HLA-A2-restricted memory CD8 αβT cells in the course of HCMV infection discloses features shared with NKG2C +CD57 +NK and δ2 -γδT cell subsets. Front Immunol 2022; 13:1063690. [PMID: 36532017 PMCID: PMC9752567 DOI: 10.3389/fimmu.2022.1063690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
The human cytomegalovirus (HCMV) triggers both innate and adaptive immune responses, including protective CD8+ αβT cells (CD8T) that contributes to the control of the infection. In addition to CD8T restricted by classical HLA class Ia molecules, HCMV also triggers CD8T recognizing peptides from the HCMV UL40 leader peptide and restricted by HLA-E molecules (HLA-EUL40 CD8T). This study investigated the frequency, phenotype and functions of HLA-EUL40 CD8T in comparison to the immunodominant HLA-A2pp65 CD8T upon acute (primary or secondary infection) or chronic infection in kidney transplant recipients (KTR) and in seropositive (HCMV+) healthy volunteer (HV) hosts. The frequency of hosts with detected HLA-EUL40 CD8T was similar after a primary infection (24%) and during viral latency in HCMV+ HV (26%) and equal to the frequency of HLA-A2pp65 CD8T cells in both conditions (29%). Both CD8T subsets vary from 0.1% to >30% of total circulating CD8T according to the host. Both HLA-EUL40 and HLA-A2pp65 CD8T display a phenotype specific of CD8+ TEMRA (CD45RA+/CCR7-) but HLA-EUL40 CD8T express distinctive level for CD3, CD8 and CD45RA. Tim3, Lag-3, 4-1BB, and to a lesser extend 2B4 are hallmarks for T cell priming post-primary infection while KLRG1 and Tigit are markers for restimulated and long lived HCMV-specific CD8T responses. These cell markers are equally expressed on HLA-EUL40 and HLA-A2pp65 CD8T. In contrast, CD56 and PD-1 are cell markers discriminating memory HLA-E- from HLA-A2-restricted CD8T. Long lived HLA-EUL40 display higher proliferation rate compared to HLA-A2pp65 CD8T consistent with elevated CD57 expression. Finally, a comparative immunoprofiling indicated that HLA-EUL40 CD8T, divergent from HLA-A2pp65 CD8T, share the expression of CD56, CD57, NKG2C, CD158 and the lack of PD-1 with NKG2C+CD57+ NK and δ2-γδT cells induced in response to HCMV and thus defines a common immunopattern for these subsets.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Nathalie Gérard
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France,*Correspondence: Béatrice Charreau,
| |
Collapse
|
13
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2022; 13:1008220. [PMID: 36341392 PMCID: PMC9626817 DOI: 10.3389/fimmu.2022.1008220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections develop into CMV diseases that result in various forms of manifestations in local organs. CMV-retinitis is a form of CMV disease that develops in immunocompromised hosts with CMV-viremia after viruses in the peripheral circulation have entered the eye. In the HCMV genome, extensive diversification of the UL40 gene has produced peptide sequences that modulate NK cell effector functions when loaded onto HLA-E and are subsequently recognized by the NKG2A and NKG2C receptors. Notably, some HCMV strains carry UL40 genes that encode peptide sequences identical to the signal peptide sequences of specific HLA-A and HLA-C allotypes, which enables these CMV strains to escape HLA-E-restricted CD8+T cell responses. Variations in UL40 sequences have been studied mainly in the peripheral blood of CMV-viremia cases. In this study, we sought to investigate how ocular CMV disease develops from CMV infections. CMV gene sequences were compared between the intraocular fluids and peripheral blood of 77 clinical cases. UL40 signal peptide sequences were more diverse, and multiple sequences were typically present in CMV-viremia blood compared to intraocular fluid. Significantly stronger NK cell suppression was induced by UL40-derived peptides from intraocular HCMV compared to those identified only in peripheral blood. HCMV present in intraocular fluids were limited to those carrying a UL40 peptide sequence corresponding to the leader peptide sequence of the host's HLA class I, while UL40-derived peptides from HCMV found only in the peripheral blood were disparate from any HLA class I allotype. Overall, our analyses of CMV-retinitis inferred that specific HCMV strains with UL40 signal sequences matching the host's HLA signal peptide sequences were those that crossed the blood-ocular barrier to enter the intraocular space. UL40 peptide repertoires were the same in the intraocular fluids of all ocular CMV diseases, regardless of host immune status, implying that virus type is likely to be a common determinant in ocular CMV disease development. We thus propose a mechanism for ocular CMV disease development, in which particular HCMV types in the blood exploit peripheral and central HLA-E-mediated tolerance mechanisms and, thus, escape the antivirus responses of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Ocular inflammation and Immunology, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hisashi Mashimo
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Akira Hayashida
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Akihiko Numata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Ohguro
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Mayumi Hosogai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Michael Paley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Atsunobu Takeda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, MO, United States
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, ASTAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University Health System, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- National University Singapore Medicine Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Hansen SG, Hancock MH, Malouli D, Marshall EE, Hughes CM, Randall KT, Morrow D, Ford JC, Gilbride RM, Selseth AN, Trethewy RE, Bishop LM, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Silipino L, Nekorchuk M, Busman-Sahay K, Estes JD, Axthelm MK, Smedley J, Shao D, Edlefsen PT, Lifson JD, Früh K, Nelson JA, Picker LJ. Myeloid cell tropism enables MHC-E-restricted CD8 + T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci Immunol 2022; 7:eabn9301. [PMID: 35714200 PMCID: PMC9387538 DOI: 10.1126/sciimmunol.abn9301] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Emily E. Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Renee Espinosa Trethewy
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Lindsey M Bishop
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| |
Collapse
|
15
|
Tarragó D, González I, González-Escribano MF. HLA-E restricted cytomegalovirus UL40 peptide polymorphism may represent a risk factor following congenital infection. BMC Genomics 2022; 23:455. [PMID: 35725386 PMCID: PMC9208114 DOI: 10.1186/s12864-022-08689-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Congenital cytomegalovirus immunopathogenesis is largely unknown and multifactorial due to the complex interactions between viral, maternal, placental, and child factors. Polymorphisms in the HLA-E binding UL4015-23 peptide mimics HLA-E complexed peptides from certain HLA-A, -B, -C and -G alleles, which regulate the cellular immune response driven by natural killer-cells (NK) and CD8 + T cells. The aim of this study was to compare UL4015-23 peptides distribution in congenital CMV and the counterpart HLA Class I peptides in a healthy cohort to investigate risk factors and markers for cCMV disease. In this 10-year retrospective study, the UL40 gene was directly sequenced from 242 clinical samples from 199 cases of congenital CMV (166 children and 33 pregnant or breast feeding women). Distribution of HLA-E binding UL4015-23 peptides was analyzed and compared to those of HLA Class I observed in a cohort of 444 healthy individuals. RESULTS Nineteen different HLA-E binding UL4015-23 peptides were found. Three of them (VMAPRTLIL, VMAPRTLLL, VMAPRTLVL) were found in 88.3% of UL40 and 100% of HLA Class I of healthy individuals. In contrast, 15 of them (10.7%) were not found in HLA Class I. The VMAPRTLFL peptide was found in 1% of UL40 and all HLA-G alleles. Significant differences in peptide (VMAPRTLIL, VMAPRTLLL, VMAPRTLVL, other UL4015-23 peptides, other HLA Class I peptides) distribution between UL4015-23 from congenital CMV and HLA-A, -B, -C and -G from healthy individuals were found. CONCLUSIONS Our findings suggest that a mismatch between UL4015-23 peptides and HLA Class I peptides between children and mothers might play a role in congenital CMV disease, and it may account for differences in outcome, morbidity and sequelae.
Collapse
Affiliation(s)
- David Tarragó
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda- Pozuelo km 2, 28220 Majadahonda, Madrid, Spain.
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Irene González
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda- Pozuelo km 2, 28220 Majadahonda, Madrid, Spain
| | | |
Collapse
|
16
|
Voogd L, Ruibal P, Ottenhoff TH, Joosten SA. Antigen presentation by MHC-E: a putative target for vaccination? Trends Immunol 2022; 43:355-365. [PMID: 35370095 PMCID: PMC9058203 DOI: 10.1016/j.it.2022.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.
Collapse
|
17
|
Rousselière A, Delbos L, Bressollette C, Berthaume M, Charreau B. Mapping and Characterization of HCMV-Specific Unconventional HLA-E-Restricted CD8 T Cell Populations and Associated NK and T Cell Responses Using HLA/Peptide Tetramers and Spectral Flow Cytometry. Int J Mol Sci 2021; 23:263. [PMID: 35008688 PMCID: PMC8745070 DOI: 10.3390/ijms23010263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
HCMV drives complex and multiple cellular immune responses, which causes a persistent immune imprint in hosts. This study aimed to achieve both a quantitative determination of the frequency for various anti-HCMV immune cell subsets, including CD8 T, γδT, NK cells, and a qualitative analysis of their phenotype. To map the various anti-HCMV cellular responses, we used a combination of three HLApeptide tetramer complexes (HLA-EVMAPRTLIL, HLA-EVMAPRSLLL, and HLA-A2NLVPMVATV) and antibodies for 18 surface markers (CD3, CD4, CD8, CD16, CD19, CD45RA, CD56, CD57, CD158, NKG2A, NKG2C, CCR7, TCRγδ, TCRγδ2, CX3CR1, KLRG1, 2B4, and PD-1) in a 20-color spectral flow cytometry analysis. This immunostaining protocol was applied to PBMCs isolated from HCMV- and HCMV+ individuals. Our workflow allows the efficient determination of events featuring HCMV infection such as CD4/CD8 ratio, CD8 inflation and differentiation, HCMV peptide-specific HLA-EUL40 and HLA-A2pp65CD8 T cells, and expansion of γδT and NK subsets including δ2-γT and memory-like NKG2C+CD57+ NK cells. Each subset can be further characterized by the expression of 2B4, PD-1, KLRG1, CD45RA, CCR7, CD158, and NKG2A to achieve a fine-tuned mapping of HCMV immune responses. This assay should be useful for the analysis and monitoring of T-and NK cell responses to HCMV infection or vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Béatrice Charreau
- INSERM, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, CHU Nantes, F-44000 Nantes, France; (A.R.); (L.D.); (C.B.); (M.B.)
| |
Collapse
|
18
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
19
|
Bansal A, Gehre MN, Qin K, Sterrett S, Ali A, Dang Y, Abraham S, Costanzo MC, Venegas LA, Tang J, Manjunath N, Brockman MA, Yang OO, Kan-Mitchell J, Goepfert PA. HLA-E-restricted HIV-1-specific CD8+ T cell responses in natural infection. J Clin Invest 2021; 131:148979. [PMID: 34228645 PMCID: PMC8363272 DOI: 10.1172/jci148979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E-restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E-restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E-restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mika N. Gehre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ayub Ali
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - Ying Dang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Margaret C. Costanzo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Leon A. Venegas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - N. Manjunath
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | | - Otto O. Yang
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Mayassi T, Barreiro LB, Rossjohn J, Jabri B. A multilayered immune system through the lens of unconventional T cells. Nature 2021; 595:501-510. [PMID: 34290426 PMCID: PMC8514118 DOI: 10.1038/s41586-021-03578-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.
Collapse
Affiliation(s)
- Toufic Mayassi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Luis B. Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Pediatrics, University of Chicago, Chicago, IL, USA.,Correspondence and requests for materials should be addressed to B.J.,
| |
Collapse
|
21
|
Sullivan LC, Nguyen THO, Harpur CM, Stankovic S, Kanagarajah AR, Koutsakos M, Saunders PM, Cai Z, Gray JA, Widjaja JML, Lin J, Pietra G, Mingari MC, Moretta L, Samir J, Luciani F, Westall GP, Malmberg KJ, Kedzierska K, Brooks AG. Natural killer cell receptors regulate responses of HLA-E-restricted T cells. Sci Immunol 2021; 6:eabe9057. [PMID: 33893172 DOI: 10.1126/sciimmunol.abe9057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (CMV) infection can stimulate robust human leukocyte antigen (HLA)-E-restricted CD8+ T cell responses. These T cells recognize a peptide from UL40, which differs by as little as a single methyl group from self-peptides that also bind HLA-E, challenging their capacity to avoid self-reactivity. Unexpectedly, we showed that the UL40/HLA-E T cell receptor (TCR) repertoire included TCRs that had high affinities for HLA-E/self-peptide. However, paradoxically, lower cytokine responses were observed from UL40/HLA-E T cells bearing TCRs with high affinity for HLA-E. RNA sequencing and flow cytometric analysis revealed that these T cells were marked by the expression of inhibitory natural killer cell receptors (NKRs) KIR2DL1 and KIR2DL2/L3. On the other hand, UL40/HLA-E T cells bearing lower-affinity TCRs expressed the activating receptor NKG2C. Activation of T cells bearing higher-affinity TCRs was regulated by the interaction between KIR2D receptors and HLA-C. These findings identify a role for NKR signaling in regulating self/non-self discrimination by HLA-E-restricted T cells, allowing for antiviral responses while avoiding contemporaneous self-reactivity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Christopher M Harpur
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Abbie R Kanagarajah
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Zhangying Cai
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - James A Gray
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jacqueline M L Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa 16132, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy
| | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Glen P Westall
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Karl J Malmberg
- KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo 0310, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
Kovalenko EI, Zvyagin IV, Streltsova MA, Mikelov AI, Erokhina SA, Telford WG, Sapozhnikov AM, Lebedev YB. Surface NKG2C Identifies Differentiated αβT-Cell Clones Expanded in Peripheral Blood. Front Immunol 2021; 11:613882. [PMID: 33664730 PMCID: PMC7921799 DOI: 10.3389/fimmu.2020.613882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
T cells that express CD56 in peripheral blood of healthy humans represent a heterogeneous and poorly studied subset. In this work, we analyzed this subset for NKG2C expression. In both CD56+ and CD56- subsets most of the NKG2C+ T cells had a phenotype of highly differentiated CD8+ TEMRA cells. The CD56+NKG2C+ T cells also expressed a number of NK cell receptors, such as NKG2D, CD16, KIR2DL2/DL3, and maturation marker CD57 more often than the CD56-NKG2C+CD3+ cells. TCR β-chain repertoire of the CD3+CD56+NKG2C+ cell fraction was limited by the prevalence of one or several clonotypes which can be found within the most abundant clonotypes in total or CD8+ T cell fraction TCRβ repertoire. Thus, NKG2C expression in highly differentiated CD56+ T cells was associated with the most expanded αβ T cell clones. NKG2C+ T cells produced almost no IFN-γ in response to stimulation with HCMV pp65-derived peptides. This may be partially due to the high content of CD45RA+CD57+ cells in the fraction. CD3+NKG2C+ cells showed signs of activation, and the frequency of this T-cell subset in HCMV-positive individuals was positively correlated with the frequency of NKG2C+ NK cells that may imply a coordinated in a certain extent development of the NKG2C+ T and NK cell subsets under HCMV infection.
Collapse
Affiliation(s)
- Elena I. Kovalenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Artem I. Mikelov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya A. Erokhina
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - William G. Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alexander M. Sapozhnikov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Coste C, Gérard N, Dinh CP, Bruguière A, Rouger C, Leong ST, Awang K, Richomme P, Derbré S, Charreau B. Targeting MHC Regulation Using Polycyclic Polyprenylated Acylphloroglucinols Isolated from Garcinia bancana. Biomolecules 2020; 10:biom10091266. [PMID: 32887413 PMCID: PMC7563419 DOI: 10.3390/biom10091266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.
Collapse
Affiliation(s)
- Chloé Coste
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France; (C.C.); (N.G.)
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
| | - Nathalie Gérard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France; (C.C.); (N.G.)
| | - Chau Phi Dinh
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
| | - Antoine Bruguière
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
| | - Caroline Rouger
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
| | - Sow Tein Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.L.); (K.A.)
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.T.L.); (K.A.)
| | - Pascal Richomme
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
| | - Séverine Derbré
- SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; (C.P.D.); (A.B.); (C.R.); (P.R.)
- Correspondence: (S.D.); (B.C.); Tel.: +33-249-180-440 (S.D.); +33-240-087-416 (B.C.); Fax: +33-240-087-411 (B.C.)
| | - Béatrice Charreau
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France; (C.C.); (N.G.)
- Correspondence: (S.D.); (B.C.); Tel.: +33-249-180-440 (S.D.); +33-240-087-416 (B.C.); Fax: +33-240-087-411 (B.C.)
| |
Collapse
|
24
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
25
|
de Miranda BLM, Gelmini GF, Risti M, Hauer V, da Silva JS, Roxo VMMS, Bicalho MDG, Malheiros D. HLA-E genotyping and its relevance in kidney transplantation outcome. HLA 2020; 95:457-464. [PMID: 31950670 DOI: 10.1111/tan.13806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
HLA-E, a class I nonclassical HLA molecule, is expressed in all tissues and is involved in the regulation of both innate (by interaction with the CD94/NKG2 receptor expressed mainly in NK cells) and adaptive immunity (by interaction with T CD8+ cells), suggesting a possible role in the solid organ transplantation context. Transplanted patients with chronic kidney disease and their respective donors (N = 107 pairs) were genotyped for exons 2 and 3 of the HLA-E locus by sequence-based typing (SBT). Groups' genotype frequencies were compared regarding episodes of clinical rejection by global G test, and binary logistic regression was made to demonstrate the contribution of genetic variables vs epidemiological variables. Comparisons of donors' genotype frequencies showed significant differences (P = .0230), revealing a protective profile of E*01:01/*01:01 compared to the other genotypes (P = .0099; OR = 0.3088; CI [95%] = 0.1333-0.7157). The same happened when the aforementioned genotype was combined with the E*01:01/*01:01 recipients' genotype (P = .0065; OR = 0.1760; CI [95%] = 0.0517-0.5987). A binary logistic regression analysis was performed, and, of all variables considered, only two were included in the resulting model (P = .007; R2 Cox and Snell = 0.243; R2 Nagelkerke = 0.328)- "End-Stage Renal Disease" and "HLA class II Mismatches." A protective profile (E*01:01/*01:01) was observed between the recipients and donors, suggesting a possible impact of the HLA-E genotype in rejection episodes.
Collapse
Affiliation(s)
- Bruna L M de Miranda
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Geórgia F Gelmini
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Matilde Risti
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Vanessa Hauer
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - José Samuel da Silva
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Valéria M M S Roxo
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria da Graça Bicalho
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Danielle Malheiros
- Laboratório de Genética Molecular Humana do Departamento de Genética da Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
26
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
27
|
Kanevskiy L, Erokhina S, Kobyzeva P, Streltsova M, Sapozhnikov A, Kovalenko E. Dimorphism of HLA-E and its Disease Association. Int J Mol Sci 2019; 20:ijms20215496. [PMID: 31690066 PMCID: PMC6862560 DOI: 10.3390/ijms20215496] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. However, opposite to multiallelic classical MHC I genes, HLA-E in fact has only two alleles—HLA-E*01:01 and HLA-E*01:03—which differ by one nonsynonymous amino acid substitution at position 107, resulting in an arginine in HLA-E*01:01 (HLA-ER) and glycine in HLA-E*01:03 (HLA-EG). In contrast to HLA-ER,HLA-EG has higher affinity to peptide, higher surface expression, and higher thermal stability of the corresponding protein, and it is more ancient than HLA-ER, though both alleles are presented in human populations in nearly equal frequencies. In the current review, we aimed to uncover the reason of the expansion of the younger allele, HLA-ER, by analysis of associations of both HLA-E alleles with a number of diseases, including viral and bacterial infections, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Leonid Kanevskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Sofya Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Polina Kobyzeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Maria Streltsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexander Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| |
Collapse
|
28
|
Abdulhaqq SA, Wu H, Schell JB, Hammond KB, Reed JS, Legasse AW, Axthelm MK, Park BS, Asokan A, Früh K, Hansen SG, Picker LJ, Sacha JB. Vaccine-Mediated Inhibition of the Transporter Associated with Antigen Processing Is Insufficient To Induce Major Histocompatibility Complex E-Restricted CD8 + T Cells in Nonhuman Primates. J Virol 2019; 93:e00592-19. [PMID: 31315990 PMCID: PMC6744250 DOI: 10.1128/jvi.00592-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Major histocompatibility complex E (MHC-E) is a highly conserved nonclassical MHC-Ib molecule that tightly binds peptides derived from leader sequences of classical MHC-Ia molecules for presentation to natural killer cells. However, MHC-E also binds diverse foreign and neoplastic self-peptide antigens for presentation to CD8+ T cells. Although the determinants of MHC-E-restricted T cell priming remain unknown, these cells are induced in humans infected with pathogens containing genes that inhibit the transporter associated with antigen processing (TAP). Indeed, mice vaccinated with TAP-inhibited autologous dendritic cells develop T cells restricted by the murine MHC-E homologue, Qa-1b. Here, we tested whether rhesus macaques (RM) vaccinated with viral constructs expressing a TAP inhibitor would develop insert-specific MHC-E-restricted CD8+ T cells. We generated viral constructs coexpressing SIVmac239 Gag in addition to one of three TAP inhibitors: herpes simplex virus 2 ICP47, bovine herpes virus 1 UL49.5, or rhesus cytomegalovirus Rh185. Each TAP inhibitor reduced surface expression of MHC-Ia molecules but did not reduce surface MHC-E expression. In agreement with modulation of surface MHC-Ia levels, TAP inhibition diminished presentation of MHC-Ia-restricted CD8+ T cell epitopes without impacting presentation of peptide antigen bound by MHC-E. Vaccination of macaques with vectors dually expressing SIVmac239 Gag with ICP47, UL49.5, or Rh185 generated Gag-specific CD8+ T cells classically restricted by MHC-Ia but not MHC-E. These data demonstrate that, in contrast to results in mice, TAP inhibition alone is insufficient for priming of MHC-E-restricted T cell responses in primates and suggest that additional unknown mechanisms govern the induction of CD8+ T cells recognizing MHC-E-bound antigen.IMPORTANCE Due to the near monomorphic nature of MHC-E in the human population and inability of many pathogens to inhibit MHC-E-mediated peptide presentation, MHC-E-restricted T cells have become an attractive vaccine target. However, little is known concerning how these cells are induced. Understanding the underlying mechanisms that induce these T cells would provide a powerful new vaccine strategy to an array of neoplasms and viral and bacterial pathogens. Recent studies have indicated a link between TAP inhibition and induction of MHC-E-restricted T cells. The significance of our research is in demonstrating that TAP inhibition alone does not prime MHC-E-restricted T cell generation and suggests that other, currently unknown mechanisms regulate their induction.
Collapse
Affiliation(s)
- Shaheed A Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Helen Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - John B Schell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Katherine B Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Byung S Park
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Aravind Asokan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
29
|
Wasnik S, Baylink DJ, Leavenworth J, Liu C, Bi H, Tang X. Towards Clinical Translation of CD8 + Regulatory T Cells Restricted by Non-Classical Major Histocompatibility Complex Ib Molecules. Int J Mol Sci 2019; 20:E4829. [PMID: 31569411 PMCID: PMC6801908 DOI: 10.3390/ijms20194829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
In central lymphoid tissues, mature lymphocytes are generated and pathogenic autoreactive lymphocytes are deleted. However, it is currently known that a significant number of potentially pathogenic autoreactive lymphocytes escape the deletion and populate peripheral lymphoid tissues. Therefore, peripheral mechanisms are present to prevent these potentially pathogenic autoreactive lymphocytes from harming one's own tissues. One such mechanism is dictated by regulatory T (Treg) cells. So far, the most extensively studied Treg cells are CD4+Foxp3+ Treg cells. However, recent clinical trials for the treatment of immune-mediated diseases using CD4+ Foxp3+ Treg cells met with limited success. Accordingly, it is necessary to explore the potential importance of other Treg cells such as CD8+ Treg cells. In this regard, one extensively studied CD8+ Treg cell subset is Qa-1(HLA-E in human)-restricted CD8+ Treg cells, in which Qa-1(HLA-E) molecules belong to a group of non-classical major histocompatibility complex Ib molecules. This review will first summarize the evidence for the presence of Qa-1-restricted CD8+ Treg cells and their regulatory mechanisms. Major discussions will then focus on the potential clinical translation of Qa-1-restricted CD8+ Treg cells. At the end, we will briefly discuss the current status of human studies on HLA-E-restricted CD8+ Treg cells as well as potential future directions.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jianmei Leavenworth
- Department of Neurosurgery, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Department of Microbiology, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Chenfan Liu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Hongzheng Bi
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA.
| |
Collapse
|
30
|
Ogg G, Cerundolo V, McMichael AJ. Capturing the antigen landscape: HLA-E, CD1 and MR1. Curr Opin Immunol 2019; 59:121-129. [PMID: 31445404 DOI: 10.1016/j.coi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
T cell receptor (TCR) recognition of antigens presented by relatively non-polymorphic MHC-like molecules is emerging as a significant contributor to health and disease. These evolutionarily ancient pathways have been inappropriately labelled 'non-conventional' because their roles were discovered after viral-specific peptide presentation by polymorphic MHC class I molecules. We suggest that these pathways are complementary to mainstream peptide presentation. HLA-E, CD1 and MR1 can present diverse self and foreign antigens to TCRs and therefore contribute to tissue homeostasis, pathogen defence, inflammation and immune responses to cancer. Despite presenting different classes of antigens, they share many features and are under common selective pressures. Through understanding their roles in disease, therapeutic manipulation for disease prevention and treatment should become possible.
Collapse
Affiliation(s)
- Graham Ogg
- MRC Human Immunology Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | | | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, University of Oxford, UK.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent landscape of HIV therapeutic vaccine research, emphasizing the results of randomized controlled trials that included analytical treatment interruption (ATI) to assess efficacy. RECENT FINDINGS Therapeutic vaccines for HIV are designed to re-educate the host immune response in HIV-infected individuals to better control viral replication in the absence of antiretroviral therapy. No therapeutic vaccine has yet to induce long-term HIV remission following ATI in a randomized controlled trial. This is likely because the vaccines have not elicited a broad enough immune response to suppress the diverse escape variants that emerge during viral rebound, and have not been used with effective agents to reduce the HIV reservoir. Recent studies in nonhuman primates using combination approaches are showing significant successes, with several candidates eliciting significant antiviral activity following ATI. Future studies pairing these vaccines with effective reservoir reduction hold great promise. SUMMARY Therapeutic vaccines aim to modulate the immune system of HIV-infected individuals to elicit sustained virologic control in the absence of antiretroviral therapy. Therapeutic vaccines that elicit broad immune responses have recently shown promise in randomized controlled trials and nonhuman primate studies.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Sharpe HR, Bowyer G, Brackenridge S, Lambe T. HLA-E: exploiting pathogen-host interactions for vaccine development. Clin Exp Immunol 2019; 196:167-177. [PMID: 30968409 PMCID: PMC6468186 DOI: 10.1111/cei.13292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus‐vectored vaccine, which is able to generate a stable effector‐memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non‐canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC‐E. The MHC‐E‐restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)‐E, is now being targeted as a new avenue for vaccine development. In humans, HLA‐E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA‐E classically binds defined leader peptides from class Ia MHC peptides and down‐regulates NK cell cytolytic activity when presented on the cell surface. HLA‐E can also restrict non‐canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA‐E and its ability to interact with NK cells and non‐canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette–Guérin (BCG) vaccination, and the broad restriction of non‐canonical CD8+ T cells by cytomegalovirus (CMV)‐vectored vaccines in pre‐clinical trials.
Collapse
Affiliation(s)
- H R Sharpe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - G Bowyer
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - S Brackenridge
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford, UK
| | - T Lambe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW CMV-vectored vaccines expressing SIV antigens have mediated unprecedented levels of virus control following SIV challenge in rhesus macaques. Remarkably, protection was dependent on nonclassically restricted CD8 T cells. Here, we review the latest research in CMV-vectored vaccines in both humans and nonhuman primates as well as recent advances in the understanding nonclassically restricted T cells, particularly MHC-E-restricted CD8 T cells. RECENT FINDINGS Recent studies have investigated human translation of CMV-vectored vaccines including studies to ensure vaccine vector safety. Other work has focused on testing of animal models to investigate the relative contribution of MHC diversity and CMV strain on T-cell induction. Lastly, several groups have investigated MHC-E peptide binding, including HLA-E, have found that MHC-E can accommodate different peptide motifs, consistent with the original observations in CMV-vaccinated macaques. SUMMARY CMV remains a promising vaccine vector with the potential to be protective against multiple diseases, including HIV. However, CMV is highly species-specific and in humans, congenital infection can lead to serious birth defects. To ensure safe translation to humans, further clinical and animal studies are needed to better understand CMV-vectored immunity as well as more basic immunological questions relating to the induction of classical vs. nonclassical T cells.
Collapse
Affiliation(s)
- Maria Abad-Fernandez
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Rölle A, Jäger D, Momburg F. HLA-E Peptide Repertoire and Dimorphism-Centerpieces in the Adaptive NK Cell Puzzle? Front Immunol 2018; 9:2410. [PMID: 30386347 PMCID: PMC6199380 DOI: 10.3389/fimmu.2018.02410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Adaptive Natural Killer (NK) cells, a heterogenous subpopulation of human NK cells with a unique phenotypic and functional signature, became arguably one of the central areas of interest in the field. While their existence seems closely associated with prior exposure to human cytomegalovirus (HCMV), many questions regarding their origin and regulation remain unanswered. However, a common denominator for the majority of adaptive NK cells is the expression of the activating heterodimeric receptor CD94/NKG2C that binds to HLA-E, a non-classical HLA molecule, that displays a comparably restricted expression pattern, very limited polymorphism and presents a distinct set of peptides. Recent studies suggest that-in analogy to T cell responses-peptides presented on HLA-E could play an unexpectedly decisive role for the biology of adaptive NK cells. Here, we discuss how this perspective on the CD94/NKG2C-HLA-E axis aligns with the existing literature and speculate about possible translational implication.
Collapse
Affiliation(s)
- Alexander Rölle
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|