1
|
Briggs N, Versteeg L, Mejia R, Pollet J, Villar MJ, Zhan B, Segal G, Novak S, Lenihan P, Musgrave P, Ellis V, Coello CF, Sastry KJ, Craft J, Hotez PJ, Bottazzi ME. A Honduran Prevalence Study on Soil-Transmitted Helminths Highlights Serological Antibodies to Tm-WAP49 as a Diagnostic Marker for Exposure to Human Trichuriasis. Am J Trop Med Hyg 2025; 112:1017-1025. [PMID: 39933187 PMCID: PMC12062693 DOI: 10.4269/ajtmh.24-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/20/2024] [Indexed: 02/13/2025] Open
Abstract
Soil-transmitted helminth (STH) infections rank among the most prevalent communicable diseases of humans, yet detection of these parasites is mostly restricted to identifying active infection through fecal examinations. Currently, there are no commercial diagnostic tools to identify a prior whipworm or hookworm exposure, and the few serological assays for roundworm infection have not been well validated for crossreactivity or infections in humans. Such diagnostic restrictions limit the range of scientific and clinical questions that surround STH exposures and their implicated relationship to chronic diseases, such as autoimmunity, allergy, and cancer. The goal of this investigation was to evaluate the diagnostic potential of 13 STH recombinant proteins. As there are no gold standard tests to verify positive STH antisera, we used sera from active STH-infected individuals in Honduras (measured by quantitative real-time polymerase chain reaction of helminth DNA in stool) and compared antibody recognition by both ELISA and western blot with nonendemic control sera from age-matched individuals in the United States split into screening and validation cohorts. One recombinant protein, rTm-WAP49, shows potential as a whipworm diagnostic tool by receiver-operator characteristic analysis (area under the curve = 0.997, P <0.001) and indirect ELISA with sensitivity of 100% and specificity of 91% as defined by mean plus two SDs from the nonendemic screening cohort. We found discrepancies in serological recognition of previously tested STH antigens, highlighting the need to consider different technologies before down selection of a promising diagnostic candidate and screen multiple endemic populations before widely accepting an STH serological assay.
Collapse
Affiliation(s)
- Neima Briggs
- Department of Internal Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Rojelio Mejia
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Graeme Segal
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephanie Novak
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Patricia Lenihan
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul Musgrave
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Viviana Ellis
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | | | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, Connecticut
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Biology, Baylor University, Waco, Texas
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Biology, Baylor University, Waco, Texas
| |
Collapse
|
2
|
De Oliveira AS, Versteeg L, Briggs N, Adhikari R, Villar MJ, Redd JR, Hotez P, Bottazzi ME, Pollet J. Altering the intracellular trafficking of Necator americanus GST-1 antigen yields novel hookworm mRNA vaccine candidates. PLoS Negl Trop Dis 2025; 19:e0012809. [PMID: 39792959 PMCID: PMC11756802 DOI: 10.1371/journal.pntd.0012809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies. METHODOLOGY/FINDINGS By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens. After one immunization in mice, mRNA vaccines induced an earlier onset of antigen-specific antibodies compared to rNa-GST-1. Following two immunizations, mRNA vaccines induced similar or superior levels of antigen-specific antibodies compared to rNa-GST-1. Secretory Na-GST-1 was comparable to rNa-GST1 in producing neutralizing antibodies against Na-GST-1's thiol transferase activity, while native Na-GST-1 induced a more robust CD8+ T cell response due to its intracellular accumulation. Although PM Na-GST-1 elicited one of highest titers of antigen-specific antibody and a diverse set of memory T-cell populations, it resulted in a lower ratio of neutralizing antibodies after IgG purification compared to the other vaccine candidates. CONCLUSIONS/SIGNIFICANCE These findings emphasize the importance of antigen localization in tailoring immune responses and suggest that extracellular antigens are more effective for inducing humoral responses, whereas cytosolic antigen accumulation enhances MHC-1 peptide presentation. Future studies will determine if these in vitro and immunogenicity findings translate to in vivo efficacy. Altogether, mRNA vaccines offer numerous possibilities in the development of multivalent vaccines with single or multiple antigens.
Collapse
Affiliation(s)
- Athos Silva De Oliveira
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Leroy Versteeg
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Neima Briggs
- Departments of Immunobiology and Internal Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Rakesh Adhikari
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Maria Jose Villar
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - JeAnna R. Redd
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Peter Hotez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
| | - Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| |
Collapse
|
3
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
4
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Soil-transmitted helminthic vaccines: Where are we now? Acta Trop 2023; 239:106796. [PMID: 36586174 DOI: 10.1016/j.actatropica.2022.106796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.
| |
Collapse
|
5
|
Wainwright E, Shears RK. Trichuris WAP and CAP proteins: Potential whipworm vaccine candidates? PLoS Negl Trop Dis 2022; 16:e0010933. [PMID: 36548229 PMCID: PMC9778506 DOI: 10.1371/journal.pntd.0010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trichuris trichiura and T. suis are gastrointestinal dwelling roundworms that infect humans and pigs, respectively. Heavy infections cause gastrointestinal symptoms and impaired growth and development. Vaccination has the potential to reduce the disease burden of whipworm infection; however, there are currently no commercially available vaccines against these parasites and very few against other gastrointestinal-dwelling nematodes of medical and agricultural importance. The naturally occurring mouse whipworm, T. muris, has been used for decades to model human trichuriasis, and the immunogenic potential of the excretory/secretory material (E/S, which can be collected following ex vivo culture of worms) has been studied in the context of vaccine candidate identification. Despite this, researchers are yet to progress an effective vaccine candidate to clinical trials. The T. muris, T. trichiura, and T. suis genomes each encode between 10 and 27 whey acidic protein (WAP) domain-containing proteins and 15 to 34 cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) family members. WAP and CAP proteins have been postulated to play key roles in host-parasite interactions and may possess immunomodulatory functions. In addition, both protein families have been explored in the context of helminth vaccines. Here, we use phylogenetic and functional analysis to investigate the evolutionary relationship between WAP and CAP proteins encoded by T. muris, T. trichiura, and T. suis. We highlight several WAP and CAP proteins that warrant further study to understand their biological function and as possible vaccine candidates against T. trichiura and/or T. suis, based on the close evolutionary relationship with WAP or CAP proteins identified within T. muris E/S products.
Collapse
Affiliation(s)
- Eleanor Wainwright
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rebecca K. Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Shears RK, Grencis RK. Whipworm secretions and their roles in host-parasite interactions. Parasit Vectors 2022; 15:348. [PMID: 36175934 PMCID: PMC9524059 DOI: 10.1186/s13071-022-05483-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Whipworm (Trichuris) is a genus of roundworms that causes gastrointestinal infections in humans and animals. Of particular interest are T. trichiura, the causative agent of human trichuriasis, a neglected tropical disease that affects 477 million people worldwide, and T. suis, the pig whipworm species, responsible for growth stunting and economic losses within the agricultural industry. The naturally occurring mouse whipworm, T. muris, has been used for decades as a model for trichuriasis, yielding knowledge on the biology of these parasites and the host response to infection. Ex vivo culture of T. muris (and to some extent, T. suis) has provided insight into the composition of the excretory/secretory (E/S) products released by worms, which include a myriad of proteins, RNAs, lipids, glycans, metabolites and extracellular vesicles. T. muris E/S has formed the basis of the search for whipworm vaccine candidates, while the immunomodulatory potential of T. suis and T. muris secretions has been investigated with the aim of improving our understanding of how these parasites modulate host immunity, as well as identifying immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases. This article will review the various components found within Trichuris E/S, their potential as vaccine candidates and their immunomodulatory properties.
Collapse
Affiliation(s)
- Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5DG, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5DG, UK.
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Wei J, Hegde VL, Yanamandra AV, O'Hara MP, Keegan B, Jones KM, Strych U, Bottazzi ME, Zhan B, Sastry KJ, Hotez PJ. Mucosal Vaccination With Recombinant Tm-WAP49 Protein Induces Protective Humoral and Cellular Immunity Against Experimental Trichuriasis in AKR Mice. Front Immunol 2022; 13:800295. [PMID: 35197976 PMCID: PMC8859434 DOI: 10.3389/fimmu.2022.800295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Trichuriasis is one of the most common neglected tropical diseases of the world's poorest people. A recombinant vaccine composed of Tm-WAP49, an immunodominant antigen secreted by adult Trichuris stichocytes into the mucosa of the cecum to which the parasite attaches, is under development. The prototype is being evaluated in a mouse model of Trichuris muris infection, with the ultimate goal of producing a mucosal vaccine through intranasal delivery. Intranasal immunization of mice with Tm-WAP49 formulated with the adjuvant OCH, a truncated analog of alpha-GalCer with adjuvanticity to stimulate natural killer T cells (NKT) and mucosal immunity, induced significantly high levels of IgG and its subclasses (IgG1 and IgG2a) in immunized mice. This also resulted in a significant reduction of worm burden after challenge with T. muris-infective eggs. The addition of QS-21 adjuvant to this vaccine formulation further reduced worm counts. The improved protection from the dual-adjuvanted vaccine correlated with higher serum antibody responses (IgG, IgG1, IgG2a, IgA) as well as with the induction of antigen-specific IgA in the nasal mucosa. It was also associated with the robust cellular responses including functional subsets of CD4 T cells producing IL-4, and cytotoxic CD8 T cells expressing granzyme B. The worm reduction achieved by mucosal immunization was higher than that induced by subcutaneous immunization. Intranasal immunization also induced a significantly higher nasal mucosa-secreted antigen-specific IgA response, as well as higher functional cellular responses including CD4+IL4+ (Th1) and CD8+GnzB+ (Th2) T cells, and antigen-specific INFγ-producing T cells in both spleen and MLNs and antibody-producing B cells (CD19+B220+/B220+GL7+). Mucosal immunization further induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L-CD44+) memory subsets of both CD4 and CD8 T cells at 60 days after the last immunization. In summary, intranasal immunization with recombinant Tm-WAP49 protein induced strong protection versus murine trichuriasis. It represents a promising vaccination approach against intestinal nematodes.
Collapse
Affiliation(s)
- Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Venkatesh L Hegde
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ananta V Yanamandra
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Madison P O'Hara
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - K Jagannadha Sastry
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
8
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
9
|
Bancroft AJ, Grencis RK. Immunoregulatory molecules secreted by Trichuris muris. Parasitology 2021; 148:1-7. [PMID: 34075864 PMCID: PMC8660643 DOI: 10.1017/s0031182021000846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Trichuris, whipworm nematode infections are prevalent in humans, domestic livestock and mammals. All share an epithelial dwelling niche and similar life cycle with the chronic infections that follow implying that immune evasion mechanisms are operating. Nematode excretory secretory (ES) products have been shown to be a rich source of immunomodulatory molecules for many species. The Trichuris muris model is a natural parasite of mice and has been used extensively to study host–parasite interactions and provides a tractable platform for investigation of the immunoregulatory capacity of whipworm ES. The present review details progress in identification of the composition of T. muris ES, immunomodulatory components and their potential mechanisms of action. The adult T. muris secretome is dominated by one protein with modulatory capacity although remains to be completely characterized. In addition, the secretome contains multiple other proteins and small molecules that have immunomodulatory potential, certainly by comparison to other Trichuris species. Moreover, T. muris-derived exosomes/exosome-like vesicles contain both protein and multiple miRNAs providing an alternate delivery process for molecules with the potential to modulate host immunity.
Collapse
Affiliation(s)
- Allison J. Bancroft
- Lydia Becker Institute for Immunology and Inflammation, ManchesterM13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, ManchesterM13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, ManchesterM13 9PL, UK
| | - Richard K. Grencis
- Lydia Becker Institute for Immunology and Inflammation, ManchesterM13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, ManchesterM13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
10
|
Montaño KJ, Cuéllar C, Sotillo J. Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Front Cell Infect Microbiol 2021; 11:639573. [PMID: 33968800 PMCID: PMC8100317 DOI: 10.3389/fcimb.2021.639573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of the most important neglected tropical diseases in terms of morbidity. Due to the difficulty in studying STH human infections, rodent models have become increasingly used, mainly because of their similarities in life cycle. Ascaris suum and Trichuris muris have been proven appropriate and low maintenance models for the study of ascariasis and trichuriasis. In the case of hookworms, despite most of the murine models do not fully reproduce the life cycle of Necator americanus, their proteomic similarity makes them highly suitable for the development of novel vaccine candidates and for the study of hookworm biological features. Furthermore, these models have been helpful in elucidating some basic aspects of our immune system, and are currently being used by numerous researchers to develop novel molecules with immunomodulatory proteins. Herein we review the similarities in the proteomic composition between Nippostrongylus brasiliensis, Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human counterpart with a focus on the vaccine candidates and immunomodulatory proteins being currently studied.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Hayon J, Weatherhead J, Hotez PJ, Bottazzi ME, Zhan B. Advances in vaccine development for human trichuriasis. Parasitology 2021; 148:1-12. [PMID: 33757603 DOI: 10.1017/s0031182021000500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichuriasis known as whipworm infection caused by Trichuris trichiura, is a highly prevalent soil-transmitted helminthiasis in low- and middle-income countries located in tropical and subtropical areas and affecting approximately 360 million people. Children typically harbour the largest burden of T. trichiura and they are usually co-infected with other soil-transmitted helminth (STH), including Ascaris lumbricoides and hookworm. The consequences of trichuriasis, such as malnutrition and physical and cognitive growth restriction, lead to a massive health burden in endemic regions. Despite the implementation of mass drug administration of anthelminthic treatment to school-age children, T. trichiura infection remains challenging to control due to the low efficacy of current drugs as well as high rates of post-treatment re-infection. Thus, the development of a vaccine that would induce protective immunity and reduce infection rate or community faecal egg output is essential. Hurdles for human whipworm vaccine development include the lack of suitable vaccine antigen targets and animal models for human T. trichiura infection. Instead, rodent whipworm T. muris infected mouse models serve as a major surrogate for testing immunogenicity and efficacy of vaccine candidates. In this review, we summarize recent advances in animal models for T. trichiura antigen discovery and testing of vaccine candidates, while providing an overall view of the current status of T. trichiura vaccine development.
Collapse
Affiliation(s)
- Jesica Hayon
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Jill Weatherhead
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| | - Bin Zhan
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| |
Collapse
|
12
|
Darlan DM, Rozi MF, Yulfi H. Overview of Immunological Responses and Immunomodulation Properties of Trichuris sp.: Prospects for Better Understanding Human Trichuriasis. Life (Basel) 2021; 11:188. [PMID: 33673676 PMCID: PMC7997218 DOI: 10.3390/life11030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Trichuris sp. infection has appeared as a pathological burden in the population, but the immunomodulation features could result in an opportunity to discover novel treatments for diseases with prominent inflammatory responses. Regarding the immunological aspects, the innate immune responses against Trichuris sp. are also responsible for determining subsequent immune responses, including the activation of innate lymphoid cell type 2 (ILC2s), and encouraging the immune cell polarization of the resistant host phenotype. Nevertheless, this parasite can establish a supportive niche for worm survival and finally avoid host immune interference. Trichuris sp. could skew antigen recognition and immune cell activation and proliferation through the generation of specific substances, called excretory/secretory (ESPs) and soluble products (SPs), which mainly mediate its immunomodulation properties. Through this review, we elaborate and discuss innate-adaptive immune responses and immunomodulation aspects, as well as the clinical implications for managing inflammatory-based diseases, such as inflammatory bowel diseases, allergic, sepsis, and other autoimmune diseases.
Collapse
Affiliation(s)
- Dewi Masyithah Darlan
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| | | | - Hemma Yulfi
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| |
Collapse
|
13
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
14
|
Partridge FA, Forman R, Bataille CJR, Wynne GM, Nick M, Russell AJ, Else KJ, Sattelle DB. Anthelmintic drug discovery: target identification, screening methods and the role of open science. Beilstein J Org Chem 2020; 16:1203-1224. [PMID: 32550933 PMCID: PMC7277699 DOI: 10.3762/bjoc.16.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there has been much progress in open-source systems for compound screening with parasites, including motility assays but also high content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs, such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insecticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work exemplifies how open science approaches can catalyse drug discovery against neglected diseases.
Collapse
Affiliation(s)
- Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ruth Forman
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Carole J R Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
| | - Marina Nick
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA United Kingdom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Kathryn J Else
- The Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Else KJ, Keiser J, Holland CV, Grencis RK, Sattelle DB, Fujiwara RT, Bueno LL, Asaolu SO, Sowemimo OA, Cooper PJ. Whipworm and roundworm infections. Nat Rev Dis Primers 2020; 6:44. [PMID: 32467581 DOI: 10.1038/s41572-020-0171-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Trichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine. Thereafter, T. trichiura larvae moult within intestinal epithelial cells, with adult worms embedded in a partially intracellular niche in the large intestine, whereas A. lumbricoides larvae penetrate the gut mucosa and migrate through the liver and lungs before returning to the lumen of the small intestine, where adult worms dwell. Both species elicit type 2 anti-parasite immunity. Diagnosis is typically based on clinical presentation (gastrointestinal symptoms and inflammation) and the detection of eggs or parasite DNA in the faeces. Prevention and treatment strategies rely on periodic mass drug administration (generally with albendazole or mebendazole) to at-risk populations and improvements in water, sanitation and hygiene. The effectiveness of drug treatment is very high for A. lumbricoides infections, whereas cure rates for T. trichiura infections are low. Novel anthelminthic drugs are needed, together with vaccine development and tools for diagnosis and assessment of parasite control in the field.
Collapse
Affiliation(s)
- Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London, UK
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel O Asaolu
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluyomi A Sowemimo
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
16
|
Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020; 16:e1008243. [PMID: 32203551 PMCID: PMC7117776 DOI: 10.1371/journal.ppat.1008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.
Collapse
Affiliation(s)
- Ayat Zawawi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Murtala Jibril
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Munirah H. Albaqshi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
17
|
Whipworm Infection Promotes Bacterial Invasion, Intestinal Microbiota Imbalance, and Cellular Immunomodulation. Infect Immun 2020; 88:IAI.00642-19. [PMID: 31843966 DOI: 10.1128/iai.00642-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 01/24/2023] Open
Abstract
Infections with Trichuris trichiura are among the most common causes of intestinal parasitism in children worldwide, and the diagnosis is based on microscopic egg identification in the chronic phase of the infection. During parasitism, the adult worm of the trichurid nematode maintains its anterior region inserted in the intestinal mucosa, which causes serious damage and which may open access for gut microorganisms through the intestinal tissue. The immune-regulatory processes taking place during the evolution of the chronic infection are still not completely understood. By use of the Swiss Webster outbred mouse model, mice were infected with 200 eggs, and tolerance to the establishment of a chronic Trichuris muris infection was induced by the administration of a short pulse of dexamethasone during nematode early larval development. The infected mice presented weight loss, anemia, an imbalance of the microbiota, and intense immunological cell infiltration in the large intestine. It was found that mice have a mixed Th1/Th2/Th17 response, with differences being found among the different anatomical locations. After 45 days of infection, the parasitism induced changes in the microbiota composition and bacterial invasion of the large intestine epithelium. In addition, we describe that the excretory-secretory products from the nematode have anti-inflammatory effects on mouse macrophages cultured in vitro, suggesting that T. muris may modulate the immune response at the site of insertion of the worm inside mouse tissue. The data presented in this study suggest that the host immune state at 45 days postinfection with T. muris during the chronic phase of infection is the result of factors derived from the worm as well as alterations to the microbiota and bacterial invasion. Taken together, these results provide new information about the parasite-host-microbiota relationship and open new treatment possibilities.
Collapse
|