1
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025; 33:533-545. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
2
|
Hashem SM, Abdel-Kader F, Ismael E, Hassan AM, Farouk MM, Elhariri M, Elhelw R. Evidence of hypervirulent carbapenem-resistant Klebsiella pneumoniae in cats with urinary affections and associated humans in Egypt. Sci Rep 2025; 15:12950. [PMID: 40234530 PMCID: PMC12000467 DOI: 10.1038/s41598-025-96147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
The emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae poses a significant threat to the public health of both cats and their owners. Therefore, conducting molecular characterization and phylogenetic analysis of K. pneumoniae strains in both cats and humans in Egypt is crucial. 108 feline and 101 human urine samples were collected and subjected to routine microbiological isolation and molecular identification of K. pneumoniae. Subsequently, phenotypic antimicrobial sensitivity patterns and molecular identification of classical virulence, hypervirulence, and carbapenem resistance genes were examined. A total of 46 K. pneumoniae isolates were recovered, comprising 43.4% (23 out of 53) from diseased humans, 4.17% (2 out of 48) from healthy humans, 22.95% (14 out of 61) from diseased felines, and 14.89% (7 out of 47) from healthy felines. The detection rates for narrow drug-resistant (NDR), multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR) strains were 41.30%, 54.35%, 2.17%, and 2.17%, respectively. The distribution rates for mrKD, entB, K2, Kfu, and MagA genes were 76.1%, 82.6%, 8.7%, 13.0%, and 0%, respectively. In addition, the distribution of hypervirulence genes was 41.3%, 36.9%, 13.0%, 10.9%, and 17.4% for iucA, iroB, Peg344, rmPA, and rmPA2, respectively, and 43.5%, 30.4%, 19.6%, and 52.2% for NDM, OXA-48, VIM, and KPC resistance genes, respectively. Phylogenetic analysis of the entB gene from four recovered strains revealed a relationship between feline strains and other human strains. In conclusion, this study focused on the molecular characterization and phylogenetic analysis of hypervirulent and carbapenem-resistant K. pneumoniae in companion cats and humans in Egypt.
Collapse
Affiliation(s)
- Sarah M Hashem
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fatma Abdel-Kader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayah M Hassan
- Genome Research Unit (GRU), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Elhariri
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab Elhelw
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Li Y, Li X, Wu W, Liu P, Liu J, Jiang H, Deng L, Ni C, Wu X, Zhao Y, Ren J. Insights into the roles of macrophages in Klebsiella pneumoniae infections: a comprehensive review. Cell Mol Biol Lett 2025; 30:34. [PMID: 40140770 PMCID: PMC11948646 DOI: 10.1186/s11658-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Klebsiella pneumoniae (KP) infections represent a significant global health challenge, characterized by severe inflammatory sequelae and escalating antimicrobial resistance. This comprehensive review elucidates the complex interplay between macrophages and KP, encompassing pathogen recognition mechanisms, macrophage activation states, cellular death pathways, and emerging immunotherapeutic strategies. We critically analyze current literature on macrophage pattern recognition receptor engagement with KP-associated molecular patterns. The review examines the spectrum of macrophage responses to KP infection, including classical M1 polarization and the newly described M(Kp) phenotype, alongside metabolic reprogramming events such as glycolytic enhancement and immune responsive gene 1 (IRG1)-itaconate upregulation. We systematically evaluate macrophage fate decisions in response to KP, including autophagy, apoptosis, pyroptosis, and necroptosis. Furthermore, we provide a critical assessment of potential future therapeutic modalities. Given the limitations of current treatment paradigms, elucidating macrophage-KP interactions is imperative. Insights gained from this analysis may inform the development of novel immunomodulatory approaches to augment conventional antimicrobial therapies, potentially transforming the clinical management of KP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Zhong C, Lin S, Li Z, Yang X. Characterization of carbapenem-resistant Klebsiella pneumoniae in bloodstream infections: antibiotic resistance, virulence, and treatment strategies. Front Cell Infect Microbiol 2025; 15:1541704. [PMID: 40125512 PMCID: PMC11925884 DOI: 10.3389/fcimb.2025.1541704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections pose a major clinical challenge due to multidrug resistance. This study evaluated the clinical features, antibiotic resistance mechanisms, virulence factors, and the potential therapeutic impact of berberine hydrochloride (a traditional Chinese medicine) in CRKP infections. Methods Ninety-four CRKP isolates from bloodstream infections at the First Affiliated Hospital of Zhejiang Chinese Medical University were characterized for carbapenemase genes, antibiotic susceptibility, and virulence determinants. Clinical data were analyzed to identify risk factors for CRKP infection, and the in vitro antibacterial activity of berberine hydrochloride was assessed. Results Most of the isolates (71.3%) were from the intensive care unit (ICU) patients. The bla KPC gene was the predominant resistance mechanism (62.77%), while the virulence genes uge (93.62%) and wabG (92.55%) were highly prevalent. ICU admission, male sex, respiratory diseases, invasive procedures, prior use of third-generation cephalosporinase inhibitors, and absence of traditional Chinese medicine treatment were linked to poorer outcomes. Importantly, berberine hydrochloride inhibited CRKP growth in vitro, with a minimum inhibitory concentration (MIC) of 125 mg/mL. Conclusion Our study reveals the multifaceted resistance and virulence profiles of CRKP in bloodstream infections and highlights the potential clinical value of berberine hydrochloride as an adjunctive therapeutic agent. These findings support further clinical investigations into incorporating traditional Chinese medicine to improve outcomes in patients with CRKP bloodstream infections.
Collapse
Affiliation(s)
| | | | | | - Xuejing Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhou Y, Chai Z, Pandeya A, Yang L, Zhang Y, Zhang G, Wu C, Li Z, Wei Y. Caspase-11 and NLRP3 exacerbate systemic Klebsiella infection through reducing mitochondrial ROS production. Front Immunol 2025; 16:1516120. [PMID: 40034692 PMCID: PMC11873083 DOI: 10.3389/fimmu.2025.1516120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Klebsiella pneumoniae is a Gram-negative bacterium and the third most commonly isolated microorganism in blood cultures from septic patients. Despite extensive research, the mechanisms underlying K. pneumoniae-induced sepsis and its pathogenesis remain unclear. Acute respiratory failure is a leading cause of mortality in systemic K. pneumoniae infections, highlighting the need to better understand the host immune response and bacterial clearance mechanisms. Method To investigate the impact of K. pneumoniae infection on organ function and immune response, we utilized a systemic infection model through intraperitoneal injection in mice. Bacterial loads in key organs were quantified, and lung injury was assessed. Survival analysis was performed in wild-type (WT) and gene deficient mice. Mitochondrial damage and reactive oxygen species (ROS) production, as well as cytokine levels were measured in macrophages isolated from these mice to evaluate their contribution to bacterial clearance capacity. Results Our findings demonstrate that K. pneumoniae systemic infection results in severe lung injury and significant bacterial accumulation in multiple organs, with the highest burden in the lungs. Deficiency of caspase-11 or NLRP3 led to prolonged survival, a reduction in pulmonary bacterial load, increased blood oxygen levels, and decreased IL-6 levels in the lungs compared to WT controls. Furthermore, caspase-11- and NLRP3-deficient macrophages exhibited elevated mitochondrial ROS production in response to K. pneumoniae, which correlated with more effective bacterial clearance. Discussion These results suggest that caspase-11 and NLRP3 contribute to K. pneumoniae-induced sepsis by impairing mitochondrial function and reducing ROS production in macrophages, thereby compromising bacterial clearance. The observed reduction in lung injury and increased survival in caspase-11- and NLRP3-deficient mice indicate that targeting these pathways may offer potential therapeutic strategies to improve host defense against systemic K. pneumoniae infection.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Zhuodong Chai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ankit Pandeya
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ling Yang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Guoying Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Congqing Wu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zhenyu Li
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Cui J, Xu Z, Yu Z, Zhang Q, Liu S, Du B, Gan L, Yan C, Xue G, Feng J, Fan Z, Fu T, Feng Y, Zhao H, Ding Z, Li X, Zhang R, Cui X, Tian Z, Huang K, Wang W, Bai Y, Zhou H, Sun Y, Yang X, Wan M, Ke Y, Yuan J. High-alcohol-producing Klebsiella pneumoniae aggravates lung injury by affecting neutrophils and the airway epithelium. Cell Rep Med 2025; 6:101886. [PMID: 39753141 PMCID: PMC11866443 DOI: 10.1016/j.xcrm.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity. To further explore the potential mechanism, a murine model is established with high-dose bacteria. Kpn stimulates granular neutrophils (G0), subsequently transforming them into phagocytic neutrophils (G1). HiAlc Kpn also causes dysfunction of pyrimidine metabolism, leading to neutrophil apoptosis. These changes inhibit phagocytosis of neutrophils and possibly suppress inflammasome-dependent innate immunity. In a persistent infective murine model, HiAlc Kpn induces lung fibrosis and production of reactive oxygen species (ROS), possibly affecting epithelial cell apoptosis and lung function. The results suggest that the subtype of neutrophil is a potential biomarker for the severity of lung injury caused by HiAlc Kpn.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Qun Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiyu Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoran Li
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Rui Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Kewu Huang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenjun Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yu Bai
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaopeng Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehua Ke
- Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
7
|
Ou J, Li K, Yuan H, Du S, Wang T, Deng Q, Wu H, Zeng W, Cheng K, Nandakumar KS. Staphylococcus aureus vesicles impair cutaneous wound healing through p38 MAPK-MerTK cleavage-mediated inhibition of macrophage efferocytosis. Cell Commun Signal 2025; 23:14. [PMID: 39780180 PMCID: PMC11708000 DOI: 10.1186/s12964-024-01994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown. METHODS Filtration, ultracentrifugation, and iodixanol density gradient centrifugation were used to purify the bacterial vesicles. Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB) were used to characterize the vesicles. Macrophage efferocytosis efficiency was assessed using flow cytometry and confocal microscopy, while efferocytosis at wound sites was analyzed through WB, FACS, and TUNEL staining. Hematoxylin and eosin (H&E) staining and wound size measurements were used to evaluate the wound healing process. Phosphorylation of signaling pathways was detected by WB, and efferocytosis receptor expression was measured using RNA sequencing, qPCR, and flow cytometry. siRNA and pathway inhibitors were used to investigate the roles of key receptors and signaling pathways in efferocytosis. RESULTS We identified SAVs at infected wound sites, linking them to delayed healing of wounds. SAVs inhibit efferocytosis by activating the TLR2-MyD88-p38 MAPK signaling pathway, which regulates efferocytosis receptor genes. This activation promoted cleavage and shedding of MerTK, a crucial receptor for macrophage-driven efferocytosis. Notably, selective inhibition of p38 MAPK prevented MerTK shedding, restored efferocytosis and accelerated wound healing significantly, offering a promising therapeutic approach for chronic, non-healing wounds. CONCLUSION These findings uncover a novel mechanism in S. aureus-infected wounds, highlighting how the disruption of efferocytosis via the TLR2-MyD88-p38 MAPK-MerTK axis becomes a key force behind impaired healing of wounds. Targeting this pathway could open up a new therapeutic avenue facilitating the treatment of chronic, non-healing skin injuries.
Collapse
Affiliation(s)
- Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kangxin Li
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Respiratory and Critical Care Medicine, the Tenth Affiliated Hospital (Dongguan Peoples Hospital), Southern Medical University, Dongguan, 523059, China.
- Department of Endocrinology, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510030, China.
| | - Hui Yuan
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510642, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiannan Deng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510075, China
| | - Huimei Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiyan Zeng
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, 510030, China
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
10
|
El-Kholy AT, El-Kholy MA, Omar H, Aboulmagd E. Co-existence of antibiotic resistance and virulence factors in carbapenem resistant Klebsiella pneumoniae clinical isolates from Alexandria, Egypt. BMC Microbiol 2024; 24:466. [PMID: 39528926 PMCID: PMC11552214 DOI: 10.1186/s12866-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The emergence and spread of carbapenem resistance among Enterobacteriaceae, particularly Klebsiella pneumoniae, constitute a serious threat to public health, since carbapenems are the last line of defense in the treatment of life-threatening infections caused by drug-resistant Enterobacteriaceae. The current study investigated the co-existence of different virulence factors and carbapenemases in carbapenem-resistant Klebsiella pneumoniae clinical isolates from Alexandria, Egypt. RESULTS Phenotypic characterization of virulence factors indicated that 41.5% of the isolates were strong biofilm producers, while hypermucoviscosity was detected in 14.9% of the isolates. All isolates harbored five or more virulence factor encoding genes. entB, ycfM, mrkD and fimH were detected in all isolates, while only one isolate was negative for ybtS. uge, iutA, rmpA and kpn were detected in 61 (64.8%), 55 (58.5%), 41 (43.6%) and 27 (28.7%) isolates, respectively, while all isolates lacked magA and k2A. Phenotypic detection of carbapenemases was explored by performing CarbaNP and mCIM/eCIM. CarbaNP test showed positive results in 98.9% of the isolates and positive mCIM tests were observed in all isolates, while 68 (72.3%) isolates showed positive eCIM tests. blaNDM was the most prevalent carbapenemase encoding gene (92.5%) followed by the blaOXA-48 (51.1%), while blaKPC was detected in only one (1.06%) isolate. blaVIM, blaIMP and blaGES were not detected in any of the tested isolates. CONCLUSIONS The widespread of carbapenem-resistant Klebsiella pneumoniae represents a major problem in health care settings. A significant association between certain virulence factors and carbapenemase-encoding genes was observed. Antibiotic stewardship programs and infection control policies should be effectively implemented especially in hospitals to limit the spread of such highly virulent pathogens.
Collapse
Affiliation(s)
- Aya T El-Kholy
- College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alamein, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Clinical and Biology Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Qir Campus, P.O. Box 1029, Alexandria, Egypt.
| | - Hoda Omar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Elsayed Aboulmagd
- College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alamein, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Khalifa A, Anwar MM, Alshareef WA, El-Gebaly EA, Elseginy SA, Abdelwahed SH. Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine-Benzenesulfonamide Compounds. Molecules 2024; 29:4778. [PMID: 39407706 PMCID: PMC11477697 DOI: 10.3390/molecules29194778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1-25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine-benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Eman A. El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
12
|
Dar MR, Khan AK, Inam M, Hano C, Anjum S. Differential Impact of Zinc Salt Precursors on Physiognomies, Anticancerous, and Antibacterial Activities of Zinc Oxide Nanoparticles. Appl Biochem Biotechnol 2024; 196:4874-4899. [PMID: 37979085 DOI: 10.1007/s12010-023-04781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.
Collapse
Affiliation(s)
- Momina Riaz Dar
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Mubashra Inam
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.
| |
Collapse
|
13
|
Rani K, Tripathi S, Sharma A, Sharma S, Sheba P, Samuel Raj V. Solithromycin in Combination with Other Antimicrobial Agents Against the Carbapenem Resistant Klebsiella pneumoniae (CRKP). Indian J Microbiol 2024; 64:540-547. [PMID: 39011018 PMCID: PMC11246330 DOI: 10.1007/s12088-024-01188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/01/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae is considered as the most common pathogen of hospital-acquired pneumonia. K. pneumoniae has emerged as the superbug which had shown multidrug resistance (MDR) as well as extensively drug resistance. Carbapenem resistant K. pneumoniae (CRKP) has become a menace for the treatment with monotherapy of the patients mainly admitted in intensive care units. Hence, in the present study we collected total 187 sputum isolates of K. pneumoniae and performed the antimicrobial susceptibility testing by using the automated Vitek-2 system and broth micro-dilution method (67 CRKP). The combination study of solithromycin with meropenem, colistin, cefotaxime, piperacillin and tazobactam, nitrofurantoin, tetracycline, levofloxacin, curcumin and nalidixic acid was performed by using checkerboard assay. We observed the high rate of resistance towards ampicillin, cefotaxime, ceftriaxone, cefuroxime and aztreonam. The colistin and tigecycline were the most sensitive drugs. The CRKP were 36%, maximum were from the patients of ICUs. The best synergistic effect of solithromycin was with meropenem and cefotaxime (100%), colistin and tetracycline (80%). So, these combinations can be a choice of treatment for the infections caused by MDR CRKP and other Gram-negative bacteria where the monotherapy could not work.
Collapse
Affiliation(s)
- Kusum Rani
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Shyam Tripathi
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Amit Sharma
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Shingini Sharma
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Poornima Sheba
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - V Samuel Raj
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| |
Collapse
|
14
|
Xiao Y, Xiang W, Ma X, Gao D, Bayram H, Lorimer GH, Ghiladi RA, Xie Z, Wang J. HemN2 Regulates the Virulence of Pseudomonas donghuensis HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress. BIOLOGY 2024; 13:373. [PMID: 38927253 PMCID: PMC11200716 DOI: 10.3390/biology13060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, 34010 Istanbul, Turkey;
| | - George H. Lorimer
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA;
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
15
|
Yohannes L, Amare DE, Feleke H. Microbiological quality of edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:509. [PMID: 38703327 DOI: 10.1007/s10661-024-12641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
Edible oils are imported and produced in Ethiopia, notably in Gondar, and their production has expanded considerably in recent years. The expansion of locally produced edible vegetable oils with severe quality control, substandard edible oil production, and quality deterioration may contribute to the contamination of microbes, which may cause public health problems. This study determines the microbiological quality of edible vegetable oils being produced and marketed in Gondar City, Northwest Ethiopia, in 2021. A laboratory-based cross-sectional study design was conducted from May to July 2021 in Gondar City. A simple random sampling technique was used to collect 17 edible vegetable oil samples. Aseptically collected samples were analyzed in the microbiology lab room. The microbiological quality of vegetable oil was assessed using standard microbiological procedures and techniques. The collected data were entered into a Microsoft Excel 2016 spreadsheet and Stata Version 14. A non-parametric Kruskal-Wallis test was used to assess significant variation. Seventeen edible vegetable oil samples were examined and found to contain a varying number of bacteria, yeast, and molds. Staphylococcus aureus, Klebsiella Pneumoniae, and Pseudomonas aeruginosa were the identified bacteria, whereas Saccharomyces cerevisiae, Aspergillus niger, Aspergillus flavus, and Aspergillus fumigatus were the identified fungi. Total coliform and fecal coliform isolates were also identified in the oil samples. A level of microbial contamination that has public health importance was observed in some of the oil samples analyzed, and the isolated microorganisms indicate unhygienic handling, processing, and storage practices in the oil production and market sites. The introduction of strict rules, regulations, and updated manufacturing technologies and processes to ensure food safety and quality is needed.
Collapse
Affiliation(s)
- Lamrot Yohannes
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, University of Gondar, Gondar, Ethiopia.
| | - Dagnachew Eyachew Amare
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| | - Hailemariam Feleke
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Jang S, Jeon M, Mun SJ, Kim SH. Clinical characteristics and risk factors for septic shock in patients with pyometra: A retrospective multicenter cohort study. J Infect Public Health 2024; 17:862-867. [PMID: 38554592 DOI: 10.1016/j.jiph.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pyometra is a disease characterized by the collection of pus in the uterus. The clinical characteristics and etiology of pyometra have not been sufficiently described. In this study, we investigated the clinical characteristics, epidemiology, outcomes, and risk factors of septic shock in patients with pyometra. METHODS Patients with pyometra admitted to one of four university-affiliated hospitals between January 2010 to August 2022 were enrolled. Pyometra cases associated with peripartum infection and surgical site infection were excluded. Clinical characteristics and outcomes of pyometra were described, and pyometra patients with or without septic shock were compared. RESULTS A total of 192 patients was included. Twenty-eight-day all-cause mortality was 5.0%, and the 1-year recurrence rate was 6.3%. Median patient age was 77.5 years. The two most common symptoms were abdominal pain (49.0%) and vaginal discharge (47.9%). Escherichia coli (40.1%), Klebsiella pneumoniae (16.7%), and Streptococcus spp.(16.0%) were the pathogens most frequently isolated by conventional culture; those isolated from polymerase chain reaction were Mycoplasma hominis (48.0%), and Ureaplasma spp. (32.0%). In multivariable analysis, fever, uterine perforation, and dementia were associated with increased incidence of septic shock, while vaginal discharge was associated with a lower incidence of septic shock. CONCLUSIONS Our findings suggest that pyometra is a unique gynecological infectious syndrome in post-menopausal individuals. The most common associated pathogens are similar to those involved in urinary tract infections rather than those of sexually transmitted diseases. Decreased cognitive function could delay early diagnosis of pyometra and lead to septic shock and higher mortality.
Collapse
Affiliation(s)
- Sukbin Jang
- Division of Infectious Diseases, Department of Medicine, Dankook University School of Medicine, Cheonan, Republic of Korea
| | - Minji Jeon
- Division of Infectious Diseases, Department of Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seok Jun Mun
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| | - Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
17
|
Bai R, Guo J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect Drug Resist 2024; 17:449-462. [PMID: 38333568 PMCID: PMC10849896 DOI: 10.2147/idr.s451013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Gupta N, Saseedharan S, Paliwal Y. Effectiveness of Ceftazidime-Avibactam in Gram-Negative Nosocomial Pneumonia: A Real-World Study in India. Cureus 2024; 16:e54443. [PMID: 38510907 PMCID: PMC10951683 DOI: 10.7759/cureus.54443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The incidences of nosocomial pneumonia in intensive care units (ICUs) in India have been reported to range from 9% to 58% and are associated with a mortality rate of 30-70%. Ceftazidime-avibactam has activity against OXA-48-like carbapenem-resistant Enterobacterales (CRE) and has a safer adverse effect profile as compared to the nephrotoxic colistin. The current study aimed to assess the effectiveness and usage pattern of ceftazidime-avibactam in gram-negative hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) in real-world settings in India. METHODS Electronic medical records of hospitalized patients in three prominent medical centers in India (Fortis Memorial Research Centre, Gurugram, S L Raheja Hospital, Mumbai, and Fortis Hospital, Anandapur, Kolkata) with nosocomial pneumonia and documented gram-negative Klebsiella pneumoniae (KP)-confirmed infection were collected. This study assessed the effectiveness, usage pattern of ceftazidime-avibactam, and clinical and microbiological cure rates. RESULTS Among the 116 patients included, 78.45% (91/116) showed clinical cure. Microbiological cure was observed in nine out of 13 (69.23%) patients. In the subset analysis, a clinical cure rate of 84.85% (28/33) and microbiological recovery rate of 62.50% (5/8) were observed when ceftazidime-avibactam was initiated within 72 hours of diagnosis. Ceftazidime-avibactam was administered for a mean (±SD) duration of 7.79 ± 4.43 days, with improvement in signs and symptoms reported among 91.38% (106/116). Ceftazidime-avibactam showed a susceptibility of 56% (28/56) in the study. CONCLUSION The current study showed a better clinical and microbiological cure rate with a safer tolerability profile of ceftazidime-avibactam in carbapenem-resistant KP nosocomial pneumonia and VAP. This study has further demonstrated that ceftazidime-avibactam may be used as one of the viable treatment choices in carbapenem-resistant KP with favorable clinical outcomes.
Collapse
Affiliation(s)
- Neha Gupta
- Internal Medicine and Infectious Diseases, Fortis Memorial Research Institute, Gurugram, IND
| | | | | |
Collapse
|
19
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
20
|
Ma F, Ghimire L, Ren Q, Fan Y, Chen T, Balasubramanian A, Hsu A, Liu F, Yu H, Xie X, Xu R, Luo HR. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death. Nat Commun 2024; 15:386. [PMID: 38195694 PMCID: PMC10776763 DOI: 10.1038/s41467-023-44669-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Both lytic and apoptotic cell death remove senescent and damaged cells in living organisms. However, they elicit contrasting pro- and anti-inflammatory responses, respectively. The precise cellular mechanism that governs the choice between these two modes of death remains incompletely understood. Here we identify Gasdermin E (GSDME) as a master switch for neutrophil lytic pyroptotic death. The tightly regulated GSDME cleavage and activation in aging neutrophils are mediated by proteinase-3 and caspase-3, leading to pyroptosis. GSDME deficiency does not alter neutrophil overall survival rate; instead, it specifically precludes pyroptosis and skews neutrophil death towards apoptosis, thereby attenuating inflammatory responses due to augmented efferocytosis of apoptotic neutrophils by macrophages. In a clinically relevant acid-aspiration-induced lung injury model, neutrophil-specific deletion of GSDME reduces pulmonary inflammation, facilitates inflammation resolution, and alleviates lung injury. Thus, by controlling the mode of neutrophil death, GSDME dictates host inflammatory outcomes, providing a potential therapeutic target for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Laxman Ghimire
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yuping Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, Tianjin, China
| | - Arumugam Balasubramanian
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Alan Hsu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Fei Liu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Rong Xu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, PhD Program in Immunology, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 811, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Gielecińska A, Kciuk M, Yahya EB, Ainane T, Mujwar S, Kontek R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim Biophys Acta Rev Cancer 2023; 1878:189024. [PMID: 37980943 DOI: 10.1016/j.bbcan.2023.189024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
For decades, common chemotherapeutic drugs have been established to trigger apoptosis, the preferred immunologically "silent" form of cell death. The primary objective of this review was to show that various FDA-approved chemotherapeutic drugs, including cisplatin, cyclosporine, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, paclitaxel, or vinblastine can trigger necroptosis and pyroptosis. We aimed to provide the advantages and disadvantages of the induction of the given type of cell death by chemotherapeutical agents. Moreover, we give a short overview of the molecular mechanism of each type of cell death and indicate the existing crosstalks between cell death types. Finally, we provide a comparison of cell death types to facilitate the exploration of cell death types induced by other chemotherapeutical agents. Understanding the cell death pathway induced by a drug can lessen side effects and assist the discovery of new combinations with synergistic effects and low systemic toxicity.
Collapse
Affiliation(s)
- A Gielecińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - M Kciuk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| | - E-B Yahya
- Bioprocess Technology Division, School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
| | - T Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - S Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - R Kontek
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
22
|
Rahimi S, Bakht M, Javadi A, Foroughi F, Marashi SMA, Nikkhahi F. Characterization of novel bacteriophage PSKP16 and its therapeutic potential against β-lactamase and biofilm producer strain of K2-Hypervirulent Klebsiella pneumoniae pneumonia infection in mice model. BMC Microbiol 2023; 23:233. [PMID: 37612659 PMCID: PMC10464470 DOI: 10.1186/s12866-023-02979-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Severe infections caused by β- lactamase producers, hypervirulent Klebsiella pneumoniae (BhvKp) with K2 serotype, highlight emergency need for new therapeutic strategies against this pathogen. We aimed to assess the efficacy of a novel phage, PSKP16, in the treating of pneumonia induced by BhvKp in mice models. METHOD Genome sequences of PSKP16 were analyzed, and associated information can be found in NCBI. We applied treatment in two ways: by using mice for immediate and delayed treatments. Moreover, acute pneumonia obtained by BhvKp with intranasal method, was characterized in terms of histopathology of pulmonary lesions, biomarkers of inflammation level, leukocytes cells infiltration extent in mice, and was assessed treatment of them with PSKP16 multiplicity of infection (MOI: 10), either individually or in combination with gentamicin. Assessment of the ability of PSKP16 to inhibit BhvKp biofilm was studied. RESULTS PSKP16 was associated with the Drexlerviridae family, and had a genome size of 46,712 bp, and 67 predicted ORFs. Herein, prompt phage administration's efficacy to decrease bacterial load and improve the survival rate in pneumonia models was faster than the synergism model with delay, but both almost displayed similar endpoints. The distribution of BhvKp strains in the lung was consistent with the histopathological findings, simultaneous inflammation, and level of serum tumor necrosis factor-α (TNF α). The phage treatment presented a lack of severe lesions and alveolar edema, reduction of inflammatory cell infiltration, which not only was it not associated with an over-inflammation but also provided a faster correction of blood cell count abnormalities compared to gentamicin. Phage with a high concentration in in vitro model effectively eliminated biofilms. CONCLUSION It is essential to raise clinical awareness and management of BhvKp infections, signaled as the next superbug in waiting. The results of our study underscore the importance of PSKP16 as a phage with promising therapeutic potential in treating BhvKp-induced pneumonia.
Collapse
Affiliation(s)
- Sara Rahimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Community Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
23
|
Kim JK, Jung HJ, Hyun M, Lee JY, Park JH, Suh SI, Baek WK, Kim HA. Resistance of hypervirulent Klebsiella pneumoniae to cathepsin B-mediated pyroptosis in murine macrophages. Front Immunol 2023; 14:1207121. [PMID: 37457695 PMCID: PMC10342201 DOI: 10.3389/fimmu.2023.1207121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a clinically significant global pathogen in the last decade. However, the host immune responses of the macrophages during hvKp infection are largely unknown. In the present study, we aimed to compare the cytotoxic effects of hvKp and classical K. pneumoniae (cKp) in murine macrophages. Results We found that the activation of caspase-1 -dependent pyroptosis was higher in cKp-infected macrophages compared with that in hvKp-infected macrophages. In Caspase-1 deficiency macrophages, pyroptosis diminished during infection. Both hvKp and cKp strains led to nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome formation and lysosomal cathepsin B activation, thus resulting in pyroptosis. Compared with the cKp strain, the hvKp strain inhibited these phenomena in murine macrophages. Conclusion HvKp infection resulted in different levels of pyroptosis via the activation of cathepsin B-NLRP3-caspase-1 in murine macrophages. Therefore, the manipulation of pyroptotic cell death is a potential target for host response during hvKp infection in macrophages.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hui-Jung Jung
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Miri Hyun
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ji Yeon Lee
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Brain Korea 21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyun ah Kim
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
24
|
Wang X, Bi C, Xin X, Zhang M, Fu H, Lan L, Wang M, Yan Z. Pyroptosis, apoptosis, and autophagy are involved in infection induced by two clinical Klebsiella pneumoniae isolates with different virulence. Front Cell Infect Microbiol 2023; 13:1165609. [PMID: 37223846 PMCID: PMC10200925 DOI: 10.3389/fcimb.2023.1165609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Klebsiella pneumoniae can cause widespread infections and is an important factor of hospital- and community-acquired pneumonia. The emergence of hypervirulent K. pneumoniae poses a serious clinical therapeutic challenge and is associated with a high mortality. The goal of this work was to investigate the influence of K. pneumoniae infection on host cells, particularly pyroptosis, apoptosis, and autophagy in the context of host-pathogen interactions to better understand the pathogenic mechanism of K. pneumoniae. Two clinical K. pneumoniae isolates, one classical K. pneumoniae isolate and one hypervirulent K. pneumoniae isolate, were used to infect RAW264.7 cells to establish an in vitro infection model. We first examined the phagocytosis of macrophages infected with K. pneumoniae. Lactate dehydrogenase (LDH) release test, and calcein-AM/PI double staining was conducted to determine the viability of macrophages. The inflammatory response was evaluated by measuring the pro-inflammatory cytokines and reactive oxygen species (ROS) production. The occurrence of pyroptosis, apoptosis, and autophagy was assessed by detecting the mRNA and protein levels of the corresponding biochemical markers. In addition, mouse pneumonia models were constructed by intratracheal instillation of K. pneumoniae for in vivo validation experiments. As for results, hypervirulent K. pneumoniae was much more resistant to macrophage-mediated phagocytosis but caused more severe cellular damage and lung tissues damage compared with classical K. pneumoniae. Moreover, we found increased expression of NLRP3, ASC, caspase-1, and GSDMD associated with pyroptosis in macrophages and lung tissues, and the levels were much higher following hypervirulent K. pneumoniae challenge. Both strains induced apoptosis in vitro and in vivo; the higher apoptosis proportion was observed in infection caused by hypervirulent K. pneumoniae. Furthermore, classical K. pneumoniae strongly triggered autophagy, while hypervirulent K. pneumoniae weakly activated this process. These findings provide novel insights into the pathogenesis of K. pneumoniae and may form the foundation for the future design of treatments for K. pneumoniae infection.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Medical Faculty, Qingdao University, Qingdao, China
| | - Chunxia Bi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoni Xin
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Clinical Laboratory, Shandong Provincial Second People’s Hospital, Jinan, China
| | - Hengxia Fu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, China
| | - Lei Lan
- Department of Blood Transfusion, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Mengyuan Wang
- Department of Clinical Laboratory, Jinan Children’s Hospital, Jinan, China
| | - Zhiyong Yan
- College of Basic Medicine, Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
26
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Wei S, Xu T, Chen Y, Zhou K. Autophagy, cell death, and cytokines in K. pneumoniae infection: Therapeutic Perspectives. Emerg Microbes Infect 2022; 12:2140607. [DOI: 10.1080/22221751.2022.2140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sha Wei
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
29
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
30
|
Taurine inhibits necroptosis helps to alleviate inflammatory and injury induced by Klebsiella infection. Vet Immunol Immunopathol 2022; 250:110444. [DOI: 10.1016/j.vetimm.2022.110444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 01/02/2023]
|
31
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
32
|
Ge Y, Huang M, Yao YM. Efferocytosis and Its Role in Inflammatory Disorders. Front Cell Dev Biol 2022; 10:839248. [PMID: 35281078 PMCID: PMC8913510 DOI: 10.3389/fcell.2022.839248] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Efferocytosis is the effective clearance of apoptotic cells by professional and non-professional phagocytes. The process is mechanically different from other forms of phagocytosis and involves the localization, binding, internalization, and degradation of apoptotic cells. Defective efferocytosis has been demonstrated to associate with the pathogenesis of various inflammatory disorders. In the current review, we summarize recent findings with regard to efferocytosis networks and discuss the relationship between efferocytosis and different immune cell populations, as well as describe how efferocytosis helps resolve inflammatory response and modulate immune balance. Our knowledge so far about efferocytosis suggests that it may be a useful target in the treatment of numerous inflammatory diseases.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Traditional Medicinal Plants—A Possible Source of Antibacterial Activity on Respiratory Diseases Induced by Chlamydia pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae and Moraxella catarrhalis. DIVERSITY 2022. [DOI: 10.3390/d14020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background. Nowadays, phytotherapy offers viable solutions in managing respiratory infections, disorders known for considerable incidence in both children and adults. In a context in which more and more people are turning to phytotherapy, finding new remedies is a topical goal of researchers in health and related fields. This paper aims to identify those traditional medicinal plants that show potentially antibacterial effects against four Gram-negative germs (Chlamydia pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, and Moraxella catarrhalis), which are considered to have high involvement in respiratory infections. Furthermore, a comparison with Romanian folk medicines was performed. Methods. An extensive review of books and databases was undertaken to identify vegetal species of interest in the context of the topic. Results. Some traditional Romanian species (such as Mentha × piperita, Thymus vulgaris, Pinus sylvestris, Allium sativum, Allium cepa, Ocimum basilicum, and Lavandulaangustifolia) were identified and compared with the plants and preparations confirmed as having antibacterial effects against specific germs. Conclusions. The antibacterial effects of some traditionally used Romanian medicinal plants are poorly investigated, and deserve further attention.
Collapse
|
34
|
Phillips SMB, Bergstrom C, Walker B, Wang G, Alfaro T, Stromberg ZR, Hess BM. Engineered Cell Line Imaging Assay Differentiates Pathogenic from Non-Pathogenic Bacteria. Pathogens 2022; 11:pathogens11020209. [PMID: 35215152 PMCID: PMC8874627 DOI: 10.3390/pathogens11020209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Cell culture systems have greatly expanded our understanding of how bacterial pathogens target signaling pathways to manipulate the host and cause infection. Advances in genetic engineering have allowed for the creation of fluorescent protein readouts within signaling pathways, but these techniques have been underutilized in pathogen biology. Here, we genetically engineered a lung cell line with fluorescent reporters for extracellular signal-related kinase (ERK) and the downstream transcription factor FOS-related antigen 1 (Fra1) and evaluated signaling after inoculation with pathogenic and non-pathogenic bacteria. Cells were inoculated with 100 colony-forming units of Acinetobacter baylyi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus agalactiae, or Staphylococcus epidermidis and imaged in a multi-mode reader. The alamarBlue cell viability assay was used as a reference test and showed that pathogenic P. aeruginosa induced significant (p < 0.05) cell death after 8 h in both wild-type and engineered cell lines compared to non-pathogenic S. epidermidis. In engineered cells, we found that Fra1 signaling was disrupted in as little as 4 h after inoculation with bacterial pathogens compared to delayed disruption in signaling by non-pathogenic S. epidermidis. Overall, we demonstrate that low levels of pathogenic versus non-pathogenic bacteria can be rapidly and sensitively screened based on ERK-Fra1 signaling.
Collapse
|
35
|
CHENG Q, MAO Y, DING X. Establishment of a mouse pneumonia model under cold stress. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
37
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
38
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
39
|
Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung Homeostasis and Diseases. Front Immunol 2021; 12:753940. [PMID: 34630433 PMCID: PMC8500393 DOI: 10.3389/fimmu.2021.753940] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases.
Collapse
Affiliation(s)
- Fei Hou
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences·Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Wang L, Zhou L, Zhou Y, Liu L, Jiang W, Zhang H, Liu H. Necroptosis in Pulmonary Diseases: A New Therapeutic Target. Front Pharmacol 2021; 12:737129. [PMID: 34594225 PMCID: PMC8476758 DOI: 10.3389/fphar.2021.737129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
42
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
43
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
44
|
Kopotsa K, Mbelle NM, Osei Sekyere J. Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant Klebsiella pneumoniae clinical strains. Microb Genom 2020; 6:mgen000474. [PMID: 33170117 PMCID: PMC8116673 DOI: 10.1099/mgen.0.000474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) remains a major clinical pathogen and public health threat with few therapeutic options. The mobilome, resistome, methylome, virulome and phylogeography of CRKP in South Africa and globally were characterized. CRKP collected in 2018 were subjected to antimicrobial susceptibility testing, screening by multiplex PCR, genotyping by repetitive element palindromic (REP)-PCR, plasmid size, number, incompatibility and mobility analyses, and PacBio's SMRT sequencing (n=6). There were 56 multidrug-resistant CRKP, having blaOXA-48-like and blaNDM-1/7 carbapenemases on self-transmissible IncF, A/C, IncL/M and IncX3 plasmids endowed with prophages, traT, resistance islands, and type I and II restriction modification systems (RMS). Plasmids and clades detected in this study were respectively related to globally established/disseminated plasmids clades/clones, evincing transboundary horizontal and vertical dissemination. Reduced susceptibility to colistin occurred in 23 strains. Common clones included ST307, ST607, ST17, ST39 and ST3559. IncFIIk virulent plasmid replicon was present in 56 strains. Whole-genome sequencing of six strains revealed least 41 virulence genes, extensive ompK36 mutations, and four different K- and O-loci types: KL2, KL25, KL27, KL102, O1, O2, O4 and O5. Types I, II and III RMS, conferring m6A (GATC, GATGNNNNNNTTG, CAANNNNNNCATC motifs) and m4C (CCWGG) modifications on chromosomes and plasmids, were found. The nature of plasmid-mediated, clonal and multi-clonal dissemination of blaOXA-48-like and blaNDM-1 mirrors epidemiological trends observed for closely related plasmids and sequence types internationally. Worryingly, the presence of both blaOXA-48 and blaNDM-1 in the same isolates was observed. Plasmid-mediated transmission of RMS, virulome and prophages influence bacterial evolution, epidemiology, pathogenicity and resistance, threatening infection treatment. The influence of RMS on antimicrobial and bacteriophage therapy needs urgent investigation.
Collapse
Affiliation(s)
- Katlego Kopotsa
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa
| | - Nontombi M. Mbelle
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa
| |
Collapse
|
45
|
Innate Immune Effectors Play Essential Roles in Acute Respiratory Infection Caused by Klebsiella pneumoniae. J Immunol Res 2020; 2020:5291714. [PMID: 33163539 PMCID: PMC7607282 DOI: 10.1155/2020/5291714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Innate immune effectors constitute the first line of host defense against pathogens. However, the roles of these effectors are not clearly defined during Klebsiella pneumoniae (K. pneumoniae) respiratory infection. In the current study, we established an acute pneumonia model of K. pneumoniae respiratory infection in mice and confirmed that the injury was most severe 48 h post infection. Flow cytometric assay demonstrated that alveolar macrophages were the predominant cells in BALF before infection, and neutrophils were quickly recruited after infection, and this was in consistent with the kinetics of chemokine expression. Further, we depleted neutrophils, macrophages, and complement pathways in vivo and challenged these mice with a sublethal dose of K. pneumonia, the result showed that 80%, 60%, and 40% of mice were died in these groups, respectively, while no deaths occurred in the control group. Besides, innate immune effector depleted mice showed higher bacterial burdens in lungs and blood, companied with more severe lung damage and increased levels of cytokine/chemokine expression. These results demonstrated that the innate immune effectors are critical in the early controlling of K. pneumoniae infection, and neutrophils are the most important. Thus, alternative strategies targeting these innate immune effectors may be effective in controlling of K. pneumoniae respiratory infection.
Collapse
|
46
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
47
|
Lawrence SM, Corriden R, Nizet V. How Neutrophils Meet Their End. Trends Immunol 2020; 41:531-544. [PMID: 32303452 DOI: 10.1016/j.it.2020.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death.
Collapse
Affiliation(s)
- Shelley M Lawrence
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA.
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Department of Pharmacology, University of California, San Diego, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
48
|
Abstract
The clearance of apoptotic cells by professional and non-professional phagocytes - a process termed 'efferocytosis' - is essential for the maintenance of tissue homeostasis. Accordingly, defective efferocytosis underlies a growing list of chronic inflammatory diseases. Although much has been learnt about the mechanisms of apoptotic cell recognition and uptake, several key areas remain incompletely understood. This Review focuses on new discoveries related to how phagocytes process the metabolic cargo they receive during apoptotic cell uptake; the links between efferocytosis and the resolution of inflammation in health and disease; and the roles of efferocytosis in host defence. Understanding these aspects of efferocytosis sheds light on key physiological and pathophysiological processes and suggests novel therapeutic strategies for diseases driven by defective efferocytosis and impaired inflammation resolution.
Collapse
|
49
|
Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol 2019; 318:L215-L225. [PMID: 31774305 DOI: 10.1152/ajplung.00065.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell death is increasingly recognized as a driving factor in the development of acute lung injury. Necroptosis, an immunogenic regulated cell death program important in innate immunity, has been implicated in the development of lung injury in a diverse range of conditions. Characterized by lytic cell death and consequent extracellular release of endogenous inflammatory mediators, necroptosis can be both beneficial and deleterious to the host, depending on the context. Here, we review recent investigations linking necroptosis and the development of experimental lung injury. We assess the consequences of necroptosis during bacterial pneumonia, viral infection, sepsis, and sterile injury, highlighting increasing evidence from in vitro studies, animal models, and clinical studies that implicates necroptosis in the pathogenesis of ARDS. Lastly, we highlight current challenges in translating laboratory findings to the bedside.
Collapse
Affiliation(s)
- Hilary Faust
- Allergy, Pulmonary, and Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Behar SM, Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr Opin Immunol 2019; 60:103-110. [PMID: 31228759 DOI: 10.1016/j.coi.2019.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Regulated cell death via apoptosis not only is important for organismal homeostasis but also serves as an innate defense mechanism. The engulfment of apoptotic infected cells, a process known as efferocytosis, is a common pathway for the destruction of many intracellular bacteria. Some pathogens take advantage of efferocytosis to prevent activation of macrophages and thereby facilitate their dissemination. Conversely, many obligate intracellular bacterial pathogens and some facultative-intracellular bacteria inhibit apoptosis, preventing efferocytosis, and evading innate host defenses. The molecular mechanism of bacterial effectors includes secreted proteins that bind to and inhibit apoptosis cell signaling pathways. We provide an overview of the known bacterial effectors, their host cell targets and their importance for the virulence of human pathogens.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|