1
|
Li ZP, Jiang XX, Tang ZR, Dong MM, Jiang P, Zhang GR, Ma XF, Wei KJ. Molecular characterization and expression analysis of IL-21 and its four receptor genes in yellow catfish (Pelteobagrus fulvidraco) in response to Edwardsiella ictaluri infection. FISH & SHELLFISH IMMUNOLOGY 2025:110371. [PMID: 40350105 DOI: 10.1016/j.fsi.2025.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Interleukin 21 (IL-21) is a member of the IL-2 family and a pleiotropic cytokine that exerts its effects by binding to its receptor complex (IL-21Rα and γ chain). Due to the critical role and multifunctionality of IL-21, its functions have been extensively studied in mammals; however, there has been limited research on IL-21 in teleosts. In this study, the cDNA sequences of Pf_IL-21, Pf_IL-21Rα.1, Pf_IL-21Rα.2, Pf_γc1 and Pf_γc2 genes were cloned from yellow catfish (Pelteobagrus fulvidraco). Four α-helices and two η-helices were found in Pf_IL-21, one α-helices and three η-helices were found in Pf_IL-21Rα.1/2, and four α-helices and three η-helices were found in Pf_γc1/2. Quantitative real-time PCR analysis revealed high levels of mRNA expressions of Pf_IL-21 and its four receptors in mucosal and immune-related tissues of healthy yellow catfish. The mRNA expressions of these five genes in peripheral blood leukocytes (PBLs) were found to be regulated after stimulation with lipopolysaccharides (LPS), phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (Poly I:C). Following Edwardsiella ictaluri infection, the mRNA expressions of these genes were significantly up-regulated in peripheral blood, hindgut, swim bladder, and other mucosal or immune-related tissues. In addition, the impact of recombinant (r) Pf_IL-21 protein on the intestinal microbiota and histological structure following E. ictaluri infection was examined. The results showed that E. ictaluri infection resulted in a decline in intestinal microbiota richness and diversity, while Fusobacteriota and Cetobacterium abnormally increased, and hindgut exhibited significant pathological alterations. However, the injection of rPf_IL-21 led to a restoration of intestinal microbiota richness and diversity, accompanied by an increase in certain beneficial bacteria and a better recovery of the hindgut structure. These findings suggest that Pf_IL-21 and its four receptor genes may play vital roles in immune defense against pathogens or stimulants in fish, and Pf_IL-21 may contribute to gut microbiota stability and participate in intestinal immune regulation in fish.
Collapse
Affiliation(s)
- Zhang-Ping Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zi-Rui Tang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Mao-Mao Dong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ping Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| |
Collapse
|
2
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025; 16:3439-3464. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Solaymani-Mohammadi S. The IL-21/IL-21R signaling axis regulates CD4+ T-cell responsiveness to IL-12 to promote bacterial-induced colitis. J Leukoc Biol 2024; 116:726-737. [PMID: 38498592 PMCID: PMC11408709 DOI: 10.1093/jleuko/qiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
IL-21/IL-21R signaling dysregulation is linked to multiple chronic intestinal inflammatory disorders in humans and animal models of human diseases. In addition to its critical requirement for the generation and development of germinal center B cells, IL-21/IL-21R signaling can also regulate the effector functions of a variety of T-cell subsets. The antibody-mediated abrogation of IL-21/IL-21R signaling led to the impaired expression of IFN-γ by mucosal CD4+ T cells from human subjects with colitis, suggesting an IL-21/IL-21R-triggered positive feedback loop of the TH1 immune response in the colon. Despite recent advances in our understanding of the mechanisms underpinning the regulation of proinflammatory immune responses by the IL-21/IL-21R signaling axis, it remains unclear how this pathway or its downstream molecules contribute to inflammation during bacterial-induced colitis. This study found that IL-21 enhances the surface expression of IL-12Rβ2, but not IL-12Rβ1, in CD4+ T cells, leading to TH1 differentiation and stability. Consistently, these findings also point to an indispensable role of the IL-12Rβ2 signaling axis in promoting proinflammatory immune responses during Citrobacter rodentium-induced colitis. Genetic deletion of the IL-12Rβ2 signaling pathway led to the attenuation of C. rodentium-induced colitis in vivo. The genetic deletion of the IL-12Rβ2 signaling pathway did not alter the host's ability to respond adequately to C. rodentium infection or the ability of Il12rb2-/- mice to express antigen-specific cytokines (IFN-γ, IL-17A). IL-21 is a pleiotropic cytokine exerting a wide range of immunomodulatory functions in multiple tissues, and its direct targeting may result in undesirable off-target consequences. These findings highlight the possibility for targeted manipulations of signaling cascades downstream of main regulators of proinflammatory responses to control invading pathogens while preserving the integrity of host immune responses. A better understanding of the novel mechanisms by which IL-21/IL-21R signaling regulates bacterial-induced colitis will provide insights into the development of new therapeutic and preventive strategies to harness IL-21/IL-21R signaling or its downstream molecules to treat infectious colitis.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Suite W315, Stop 9037, Grand Forks, ND, United States
| |
Collapse
|
4
|
Sun R, Gu X, Lei C, Chen L, Chu S, Xu G, Doll MA, Tan Y, Feng W, Siskind L, McClain CJ, Deng Z. Neutral ceramidase-dependent regulation of macrophage metabolism directs intestinal immune homeostasis and controls enteric infection. Cell Rep 2022; 38:110560. [PMID: 35354041 PMCID: PMC9007044 DOI: 10.1016/j.celrep.2022.110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
It is not clear how the complex interactions between diet and intestinal immune cells protect the gut from infection. Neutral ceramidase (NcDase) plays a critical role in digesting dietary sphingolipids. We find that NcDase is an essential factor that controls intestinal immune cell dynamics. Mice lacking NcDase have reduced cluster of differentiation (CD) 8αβ+ T cells and interferon (IFN)-γ+ T cells and increased macrophages in the intestine and fail to clear bacteria after Citrobacter rodentium infection. Mechanistically, cellular NcDase or extracellular vesicle (EV)-related NcDase generates sphingosine, which promotes macrophage-driven Th1 immunity. Loss of NcDase influences sphingosine-controlled glycolytic metabolism in macrophages, which regulates the bactericidal activity of macrophages. Importantly, administration of dietary sphingomyelin and genetic deletion or pharmacological inhibition of SphK1 can protect against C. rodentium infection. Our findings demonstrate that sphingosine profoundly alters macrophage glycolytic metabolism, leading to intestinal macrophage activation and T cell polarization, which prevent pathogen colonization of the gut.
Collapse
Affiliation(s)
- Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, CTRB 311, 505 South Hancock Street, KY 40202, USA; Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China; Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xuemei Gu
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, CTRB 311, 505 South Hancock Street, KY 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Liang Chen
- Department of Surgery, Division of Immunotherapy, University of Louisville, CTRB 311, 505 South Hancock Street, KY 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Shenghui Chu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Guangzhong Xu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Yi Tan
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
| | - Leah Siskind
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Robley Rex VA Medical Center, Louisville, KY, USA
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, CTRB 311, 505 South Hancock Street, KY 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Song L, Zhang Y, Zhu C, Ding X, Yang L, Yan H. Hydrogen-rich water partially alleviate inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic ulcerative colitis mice. Adv Med Sci 2022; 67:29-38. [PMID: 34784538 DOI: 10.1016/j.advms.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Oxidative damage and intestinal flora dysbiosis play important roles in the progression of chronic ulcerative colitis (UC). This study explored the effect and mechanism of molecular hydrogen in chronic UC. MATERIALS AND METHODS Male C57BL/6 mice (19.6 ± 0.4 g, 7 weeks) were randomly divided into 3 groups: normal control (NC) group, UC (Dextran Sulfate Sodium, DSS) group, and hydrogen-rich water (HRW, 0.8 ppm)-treated UC (DSS + HRW) group. Mice in the DSS treatment group were treated with DSS for the following 3 cycles to establish chronic UC model: the first 2 cycles consisted of 2.5% DSS for 5 days, followed by drinking water for 16 days, and a third cycle consisted of 2% DSS for 4 days, followed by drinking water for 10 days. The mice in the DSS + HRW group were administered HRW daily throughout the experiment. RESULTS The mice in the DSS groups developed typical clinical signs of colitis. HRW treatment partially ameliorated colitis symptoms, improved histopathological changes, significantly increased glutathione (GSH) concentration and decreased TNF-α level. Notably, HRW treatment significantly inhibited the growth of Enterococcus faecalis, Clostridium perfringens and Bacteroides fragilis (P < 0.05 vs. DSS group), with the relative abundance that was close to the levels in the NC group. Microarray analysis revealed that 252 genes were significantly modified after HRW treatment compared with those in the DSS treatment alone group, and 17 genes were related to inflammation, including 9 interferon-stimulated genes (ISGs). CONCLUSIONS Hydrogen-rich water partially alleviates inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic UC mice.
Collapse
Affiliation(s)
- Lihua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Yan
- Department of Reproductive Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Ong CY, Abdalkareem EA, Khoo BY. Functional roles of cytokines in infectious disease associated colorectal carcinogenesis. Mol Biol Rep 2022; 49:1529-1535. [PMID: 34981335 DOI: 10.1007/s11033-021-07006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.
Collapse
Affiliation(s)
- Ching Yi Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia
| | - Eshtiyag Abdalla Abdalkareem
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.,Tropical Medicine Research Institute (TMRI), 1304, El-Gaser Street, Khartoum, Sudan
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
7
|
The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins (Basel) 2021; 13:toxins13050315. [PMID: 33924897 PMCID: PMC8147029 DOI: 10.3390/toxins13050315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Although millions of people have been infected by Helicobacter pylori (H. pylori), only a small proportion of infected individuals will develop adverse outcomes, ranging from chronic gastritis to gastric cancer. Advanced development of the disease has been well-linked with chronic inflammation, which is significantly impacted by the adaptive and humoral immunity response. From the perspective of cellular immunity, this review aims to clarify the intricate axis between IL-17, IL-21, and IL-23 in H. pylori-related diseases and the pathogenesis of inflammatory gastrointestinal diseases. CD4+ helper T (Th)-17 cells, with the hallmark pleiotropic cytokine IL-17, can affect antimicrobial activity and the pathogenic immune response in the gut environment. These circumstances cannot be separated, as the existence of affiliated cytokines, including IL-21 and IL-23, help maintain Th17 and accommodate humoral immune cells. Comprehensive understanding of the dynamic interaction between molecular host responses in H. pylori-related diseases and the inflammation process may facilitate further development of immune-based therapy.
Collapse
|
8
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
9
|
Riva A, Gray EH, Azarian S, Zamalloa A, McPhail MJ, Vincent RP, Williams R, Chokshi S, Patel VC, Edwards LA. Faecal cytokine profiling as a marker of intestinal inflammation in acutely decompensated cirrhosis. JHEP Rep 2020; 2:100151. [PMID: 32838247 PMCID: PMC7391986 DOI: 10.1016/j.jhepr.2020.100151] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Gut dysbiosis and inflammation perpetuate loss of gut barrier integrity (GBI) and pathological bacterial translocation (BT) in cirrhosis, contributing to infection risk. Little is known about gut inflammation in cirrhosis and how this differs in acute decompensation (AD). We developed a novel approach to characterise intestinal immunopathology by quantifying faecal cytokines (FCs) and GBI markers. METHODS Faeces and plasma were obtained from patients with stable cirrhosis (SC; n = 16), AD (n = 47), and healthy controls (HCs; n = 31). A panel of 15 cytokines and GBI markers, including intestinal fatty-acid-binding protein-2 (FABP2), d-lactate, and faecal calprotectin (FCAL), were quantified by electrochemiluminescence/ELISA. Correlations between analytes and clinical metadata with univariate and multivariate analyses were performed. RESULTS Faecal (F) IL-1β, interferon gamma, tumour necrosis factor alpha, IL-21, IL-17A/F, and IL-22 were significantly elevated in AD vs. SC (q <0.01). F-IL-23 was significantly elevated in AD vs. HC (p = 0.0007). FABP2/d-lactate were significantly increased in faeces in AD vs. SC and AD vs. HC (p <0.0001) and in plasma (p = 0.0004; p = 0.011). F-FABP2 correlated most strongly with disease severity (Spearman's rho: Child-Pugh 0.466; p <0.0001; model for end-stage liver disease 0.488; p <0.0001). FCAL correlated with plasma IL-21, IL-1β, and IL-17F only and none of the faecal analytes. F-cytokines and F-GBI markers were more accurate than plasma in discriminating AD from SC. CONCLUSIONS FC profiling represents an innovative approach to investigating the localised intestinal cytokine micro-environment in cirrhosis. These data reveal that AD is associated with a highly inflamed and permeable gut barrier. FC profiles are very different from the classical innate-like features of systemic inflammation. There is non-specific upregulation of TH1/TH17 effector cytokines and those known to mediate intestinal barrier damage. This prevents mucosal healing in AD and further propagates BT and systemic inflammation. LAY SUMMARY The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- AUROC, area under the receiver operating characteristic
- BT, bacterial translocation
- Bacterial translocation
- CLIF-C AD, Chronic Liver Failure Consortium-acute decompensation
- Chronic liver disease
- Cytokines
- DS, discriminant score
- FABP2, fatty-acid-binding protein-2
- FCAL, faecal calprotectin
- FDR, false discovery rate
- FL, faecal lysate
- FWER, family-wise error rate
- GVB, gut vascular barrier
- Gut inflammation
- HC, healthy control
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- Intestinal barrier function
- MELD, model for end-stage liver disease
- OPLS-DA, orthogonal projection to latent structures discriminant analysis
- PAMP, pathogen-associated molecular pattern
- PCA, principal component analysis
- ROC, receiver operating characteristic
- SC, stable cirrhosis
- UKELD, United Kingdom model for end-stage liver disease
Collapse
Affiliation(s)
- Antonio Riva
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elizabeth H. Gray
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sarah Azarian
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Mark J.W. McPhail
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Royce P. Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, UK
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Roger Williams
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishal C. Patel
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lindsey A. Edwards
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
10
|
Pietschke K, Holstein J, Meier K, Schäfer I, Müller-Hermelink E, Gonzalez-Menendez I, Quintanilla-Martinez L, Ghoreschi FC, Solimani F, Ghoreschi K. The inflammation in cutaneous lichen planus is dominated by IFN-ϒ and IL-21-A basis for therapeutic JAK1 inhibition. Exp Dermatol 2020; 30:262-270. [PMID: 33113249 DOI: 10.1111/exd.14226] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous lichen planus (CLP) and psoriasis (PSO) are both common chronic inflammatory skin diseases for which development of new treatments requires the identification of key targets. While PSO is a typical Th17/IL-17-disorder, there is some evidence that Th1/IFN-ɣ dominate the inflammatory process in CLP. Nonetheless, the immunopathogenesis of CLP is not fully explained and key immunological factors still have to be recognized. In this study, we compared the immune signature of CLP lesions with the well-characterized inflammation present in PSO skin. First, we analysed the histological and immunohistological characteristics of CLP and PSO. Second, we assessed the cytokine expression (IL1A, IL1B, IL4, IL6, IL8, IL10, IL17A, IL19, IL21, IL22, IL23A, IL13, IFNG, TNF, IL12A, IL12B and IL36G) of lesional skin of CLP with PSO by qPCR. Histology revealed a similar epidermal thickness in CLP and PSO. Immunohistochemically, both diseases presented with an inflammatory infiltrate mainly composed by CD3+ CD4+ T cells rather than CD3+ CD8+ . Importantly, mRNA analysis showed a distinct cytokine signature: while levels of IL12B, IL1A, IL6 and IL23 were similar between the two groups, the characteristic PSO-associated cytokines IL8, IL17A, IL22, IL19 and IL36G were expressed at very low levels in CLP. In contrast, CLP lesional skin was dominated by the expression of IFNG, IL21, IL4, IL12A and TNF. Immunohistochemistry confirmed the dominance of IL-21, IFN-ɣ and also pSTAT1 in the dermal infiltrate of CLP, while IL-17A was more present in PSO. Collectively, this study improves our understanding of the immunological factors dominating CLP. The dominating cytokines and signalling proteins identified suggest that anti-cytokine therapeutics like JAK inhibitors may be beneficial in CLP.
Collapse
Affiliation(s)
- Katharina Pietschke
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tubingen, Germany
| | - Julia Holstein
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tubingen, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Iris Schäfer
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tubingen, Germany
| | - Eva Müller-Hermelink
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls University, Tubingen, Germany.,Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tubingen and Comprehensive Cancer Center, Tubingen University Hospital, Tubingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tubingen and Comprehensive Cancer Center, Tubingen University Hospital, Tubingen, Germany
| | - Franziska C Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Solaymani-Mohammadi S, Eckmann L, Singer SM. Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Front Cell Infect Microbiol 2019; 9:401. [PMID: 31867283 PMCID: PMC6904299 DOI: 10.3389/fcimb.2019.00401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
Parasitic diseases cause significant morbidity and mortality in the developing and underdeveloped countries. No efficacious vaccines are available against most parasitic diseases and there is a critical need for developing novel vaccine strategies for care. IL-21 is a pleiotropic cytokine whose functions in protection and immunopathology during parasitic diseases have been explored in limited ways. IL-21 and its cognate receptor, IL-21R, are highly expressed in parasitized organs of infected humans as well in murine models of the human parasitic diseases. Prior studies have indicated the ability of the IL-21/IL-21R signaling axis to regulate the effector functions (e.g., cytokine production) of T cell subsets by enhancing the expression of T-bet and STAT4 in human T cells, resulting in an augmented production of IFN-γ. Mice deficient for either IL-21 (Il21−/−) or IL-21R (Il21r−/−) showed significantly reduced inflammatory responses following parasitic infections as compared with their WT counterparts. Targeting the IL-21/IL-21R signaling axis may provide a novel approach for the development of new therapeutic agents for the prevention of parasite-induced immunopathology and tissue destruction.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
12
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|