1
|
Mora-Bitria L, Asquith B. Germline natural killer cell receptors modulating the T cell response. Front Immunol 2024; 15:1477991. [PMID: 39559364 PMCID: PMC11570266 DOI: 10.3389/fimmu.2024.1477991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
In addition to their central role during innate responses, NK cells regulate adaptive immunity through various mechanisms. A wide array of innate receptors has been involved in the NK cell regulatory function. However, the clinical implications of these regulatory pathways are poorly understood. Here, we review the experimental evidence on the effects of NK cells on T cells and their positive and negative consequences for disease outcome during T cell responses in humans.
Collapse
Affiliation(s)
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College
London, London, United Kingdom
| |
Collapse
|
2
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
3
|
Roe K. Immunoregulatory natural killer cells. Clin Chim Acta 2024; 558:117896. [PMID: 38583553 DOI: 10.1016/j.cca.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
This review discusses a broader scope of functional roles for NK cells. Despite the well-known cytolytic and inflammatory roles of NK cells against tumors and pathogenic diseases, extensive evidence demonstrates certain subsets of NK cells have defacto immunoregulatory effects and have a role in inducing anergy or lysis of antigen-activated T cells and regulating several autoimmune diseases. Furthermore, recent evidence suggests certain subsets of immunoregulatory NK cells can cause anergy or lysis of antigen-activated T cells to regulate hyperinflammatory diseases, including multisystem inflammatory syndrome. Several pathogens induce T cell and NK cell exhaustion and/or suppression, which impair the immune system's control of the replication speed of virulent pathogens and tumors and result in extensive antigens and antigen-antibody immune complexes, potentially inducing to some extent a Type III hypersensitivity immune reaction. The Type III hypersensitivity immune reaction induces immune cell secretion of proteinases, which can cleave specific proteins to create autoantigens which activate T cells to initiate autoimmune and/or hyperinflammatory diseases. Furthermore, pathogen induced NK cell exhaustion and/or suppression will inhibit NK cells which would have induced the anergy or lysis of activated T cells to regulate autoimmune and hyperinflammatory diseases. Autoimmune and hyperinflammatory diseases can be consequences of the dual lymphocyte exhaustion and/or suppression effects during infections, by creating autoimmune and/or hyperinflammatory diseases, while also impairing immunoregulatory lymphocytes which otherwise would have regulated these diseases.
Collapse
Affiliation(s)
- Kevin Roe
- Retired USPTO, San Jose, CA, United States of America.
| |
Collapse
|
4
|
Padoan B, Casar C, Krause J, Schultheiss C, Baumdick ME, Niehrs A, Zecher BF, Pujantell M, Yuki Y, Martin M, Remmerswaal EBM, Dekker T, van der Bom-Baylon ND, Noble JA, Carrington M, Bemelman FJ, van Lier RAW, Binder M, Gagliani N, Bunders MJ, Altfeld M. NKp44/HLA-DP-dependent regulation of CD8 effector T cells by NK cells. Cell Rep 2024; 43:114089. [PMID: 38615318 PMCID: PMC11416720 DOI: 10.1016/j.celrep.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.
Collapse
Affiliation(s)
- Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Britta F Zecher
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pujantell
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janelle A Noble
- Department of Pediatrics UCSF, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
5
|
Nathalie G, Bonamichi BDSF, Kim J, Jeong J, Kang H, Hartland ER, Eveline E, Lee J. NK cell-activating receptor NKp46 does not participate in the development of obesity-induced inflammation and insulin resistance. Mol Cells 2024; 47:100007. [PMID: 38238205 PMCID: PMC11004397 DOI: 10.1016/j.mocell.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/06/2024] Open
Abstract
Recent evidence establishes a pivotal role for obesity-induced inflammation in precipitating insulin resistance and type-2 diabetes. Central to this process is the proinflammatory M1 adipose-tissue macrophages (ATMs) in epididymal white adipose tissue (eWAT). Notably, natural killer (NK) cells are a crucial regulator of ATMs since their cytokines induce ATM recruitment and M1 polarization. The importance of NK cells is shown by the strong increase in NK-cell numbers in eWAT, and by studies showing that removing and expanding NK cells respectively improve and worsen obesity-induced insulin resistance. It has been suggested that NK cells are activated by unknown ligands on obesity-stressed adipocytes that bind to NKp46 (encoded by Ncr1), which is an activating NK-cell receptor. This was supported by a study showing that NKp46-knockout mice have improved obesity-induced inflammation/insulin resistance. We therefore planned to use the NKp46-knockout mice to further elucidate the molecular mechanism by which NKp46 mediates eWAT NK-cell activation in obesity. We confirmed that obesity increased eWAT NKp46+ NK-cell numbers and NKp46 expression in wild-type mice and that NKp46-knockout ablated these responses. Unexpectedly, however, NKp46-knockout mice demonstrated insulin resistance similar to wild-type mice, as shown by fasting blood glucose/insulin levels and glucose/insulin tolerance tests. Obesity-induced increases in eWAT ATM numbers and proinflammatory gene expression were also similar. Thus, contrary to previously published results, NKp46 does not regulate obesity-induced insulin resistance. It is therefore unclear whether NKp46 participates in the development of obesity-induced inflammation and insulin resistance. This should be considered when elucidating the obesity-mediated molecular mechanisms that activate NK cells.
Collapse
Affiliation(s)
- Gracia Nathalie
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | | | - Jieun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jiwon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Haneul Kang
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Emirrio Reinaldie Hartland
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Eveline Eveline
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS) and Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Jin Y, He Y, Liu B, Zhang X, Song C, Wu Y, Hu W, Yan Y, Chen N, Ding Y, Ou Y, Wu Y, Zhang M, Xing S. Single-cell RNA sequencing reveals the dynamics and heterogeneity of lymph node immune cells during acute and chronic viral infections. Front Immunol 2024; 15:1341985. [PMID: 38352870 PMCID: PMC10863051 DOI: 10.3389/fimmu.2024.1341985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The host immune response determines the differential outcome of acute or chronic viral infections. The comprehensive comparison of lymphoid tissue immune cells at the single-cell level between acute and chronic viral infections is largely insufficient. Methods To explore the landscape of immune responses to acute and chronic viral infections, single-cell RNA sequencing(scRNA-seq), scTCR-seq and scBCR-seq were utilized to evaluate the longitudinal dynamics and heterogeneity of lymph node CD45+ immune cells in mouse models of acute (LCMV Armstrong) and chronic (LCMV clone 13) viral infections. Results In contrast with acute viral infection, chronic viral infection distinctly induced more robust NK cells and plasma cells at the early stage (Day 4 post-infection) and acute stage (Day 8 post-infection), respectively. Moreover, chronic viral infection exerted decreased but aberrantly activated plasmacytoid dendritic cells (pDCs) at the acute phase. Simultaneously, there were significantly increased IgA+ plasma cells (MALT B cells) but differential usage of B-cell receptors in chronic infection. In terms of T-cell responses, Gzma-high effector-like CD8+ T cells were significantly induced at the early stage in chronic infection, which showed temporally reversed gene expression throughout viral infection and the differential usage of the most dominant TCR clonotype. Chronic infection also induced more robust CD4+ T cell responses, including follicular helper T cells (Tfh) and regulatory T cells (Treg). In addition, chronic infection compromised the TCR diversity in both CD8+ and CD4+ T cells. Discussion In conclusion, gene expression and TCR/BCR immune repertoire profiling at the single-cell level in this study provide new insights into the dynamic and differential immune responses to acute and chronic viral infections.
Collapse
Affiliation(s)
- Yubei Jin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yudan He
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaohui Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Caimei Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yunchen Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wenjing Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yiwen Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Nuo Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yingying Ding
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Ou
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yixiu Wu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Tibbs TN, Donoghue LJ, Buzzelli AA, Misumi I, DeMonia M, Ferris MT, Kelada SN, Whitmire JK. Mice with FVB-derived sequence on chromosome 17 succumb to disseminated virus infection due to aberrant NK cell and T cell responses. iScience 2023; 26:108348. [PMID: 38026197 PMCID: PMC10665959 DOI: 10.1016/j.isci.2023.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Lauren J. Donoghue
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ashlyn A. Buzzelli
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Maggie DeMonia
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samir N.P. Kelada
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K. Whitmire
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
9
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Guan X, Lu Y, Zhang Y, Zhan P, Chen Z, Wang C, Yin Z. Tumor-associated NK cells facilitate tumor growth via NKp46 in immunocompetent murine hepatocellular carcinoma. Immunol Lett 2023; 258:8-19. [PMID: 37121554 DOI: 10.1016/j.imlet.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Natural killer(NK) cells comprise one subset of the innate lymphoid cells family. Despite reported anti-tumor activity of NK cells, their tangible contribution to tumor control remains controversial. This is due to the incomplete understanding of NK alterations within tumor microenvironment(TME). Here we showed, using murine hepatocellular carcinoma(HCC) model, that early NK cells deletion markedly attenuated tumor growth in a CD8+ T cells dependent manner. This effect was accompanied by an enhanced CD8+ T cells effector function in tumor rather than circulating blood. Then, we demonstrated that abundant NKp46+ NK subset, but not NKp46- NK, were recruited towards tumor microenvironment during tumor progression. Frequency of intratumor NKP46+ NK cells were inversely related to CD8+ T cells activation, and positively correlated with tumor growth. Intratumor NKp46+ NK cells exhibited dysfunction and increased expression of inhibitory receptors, when compared with NKp46- NK cells. Blockade of NK cells-associated NKp46 effectively attenuated HCC growth. Infusion of tumor-derived NKp46+ NK cells markedly enhanced HCC growth in vivo, in contrast to tumor cells inoculation alone. The further mechanistic investigations unveiled that NK cells boosted tumor growth by NKp46-mediated impairment of CD8+T cells effector function. Overall, this work supported a previously unappreciated regulatory property of tumor-associated NK cells in HCC, and NKp46 as a potential target against HCC in clinical setting.
Collapse
Affiliation(s)
- Xiangqian Guan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China
| | - Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhigao Chen
- Clinical Medical college, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chuanzheng Wang
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China; Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Albeituni S, Oak N, Tillman HS, Stroh A, Keenan C, Bloom M, Nichols KE. Cellular and transcriptional impacts of Janus kinase and/or IFN-gamma inhibition in a mouse model of primary hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1137037. [PMID: 37228616 PMCID: PMC10204641 DOI: 10.3389/fimmu.2023.1137037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Primary hemophagocytic lymphohistiocytosis (pHLH) is an inherited inflammatory syndrome driven by the exuberant activation of interferon-gamma (IFNg)-producing CD8 T cells. Towards this end, ruxolitinib treatment or IFNg neutralization (aIFNg) lessens immunopathology in a model of pHLH in which perforin-deficient mice (Prf1-/-) are infected with Lymphocytic Choriomeningitis virus (LCMV). However, neither agent completely eradicates inflammation. Two studies combining ruxolitinib with aIFNg report conflicting results with one demonstrating improvement and the other worsening of disease manifestations. As these studies used differing doses of drugs and varying LCMV strains, it remained unclear whether combination therapy is safe and effective. Methods We previously showed that a ruxolitinib dose of 90 mg/kg lessens inflammation in Prf1-/- mice infected with LCMV-Armstrong. To determine whether this dose controls inflammation induced by a different LCMV strain, we administered ruxolitinib at 90mg/kg to Prf1-/- mice infected with LCMV-WE. To elucidate the impacts of single agent versus combination therapy, Prf1-/- animals were infected with LCMV, treated or not with ruxolitinib, aIFNg or both agents, and analyzed for disease features and the transcriptional impacts of therapy within purified CD8 T cells. Results Ruxolitinib is well-tolerated and controls disease regardless of the viral strain used. aIFNg, administered alone or with ruxolitinib, is most effective at reversing anemia and reducing serum IFNg levels. In contrast, ruxolitinib appears better than aIFNg, and equally or more effective than combination therapy, at lessening immune cell expansion and cytokine production. Each treatment targets distinct gene expression pathways with aIFNg downregulating IFNg, IFNa, and IL-6-STAT3 pathways, and ruxolitinib downregulating IL-6-STAT3, glycolysis, and reactive oxygen species pathways. Unexpectedly, combination therapy is associated with upregulation of genes driving cell survival and proliferation. Conclusions Ruxolitinib is tolerated and curtails inflammation regardless of the inciting viral strain and whether it is given alone or in combination with aIFNg. When administered at the doses used in this study, the combination of ruxolitinb and aIFNg appears no better than treatment with either drug alone in lessening inflammation. Further studies are warranted to elucidate the optimal doses, schedules, and combinations of these agents for the treatment of patients with pHLH.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Heather S. Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alexa Stroh
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Camille Keenan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Mackenzie Bloom
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
12
|
Yamada T, Tateishi R, Iwai M, Tanaka M, Ijichi H, Sano M, Koike K, Todo T. Overcoming resistance of stroma-rich pancreatic cancer with focal adhesion kinase inhibitor combined with G47Δ and immune checkpoint inhibitors. Mol Ther Oncolytics 2022; 28:31-43. [PMID: 36619294 PMCID: PMC9801088 DOI: 10.1016/j.omto.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.
Collapse
Affiliation(s)
- Tomoharu Yamada
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Corresponding author Tomoki Todo, M.D., Ph.D., Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
13
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
14
|
Dhaliwal M, Tyagi R, Malhotra P, Barman P, Loganathan SK, Sharma J, Sharma K, Mondal S, Rawat A, Singh S. Mechanisms of Immune Dysregulation in COVID-19 Are Different From SARS and MERS: A Perspective in Context of Kawasaki Disease and MIS-C. Front Pediatr 2022; 10:790273. [PMID: 35601440 PMCID: PMC9119432 DOI: 10.3389/fped.2022.790273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses have led to three major outbreaks to date-Severe Acute Respiratory Syndrome (SARS; 2002), Middle East Respiratory Syndrome (MERS; 2012) and the ongoing pandemic, Coronavirus Disease (COVID-19; 2019). Coronavirus infections are usually mild in children. However, a few children with MERS had presented with a severe phenotype in the acute phase resulting in progressive pneumonic changes with increasing oxygen dependency and acute respiratory distress requiring ventilatory support. A subset of children with a history of SARS-CoV-2 infection develops a multisystem hyper-inflammatory phenotype known as Multisystem Inflammatory Syndrome in Children (MIS-C). This syndrome occurs 4-6 weeks after infection with SARS-CoV-2 and has been reported more often from areas with high community transmission. Children with MIS-C present with high fever and often have involvement of cardiovascular, gastrointestinal and hematologic systems leading to multiorgan failure. This is accompanied by elevation of pro-inflammatory cytokines such as IL-6 and IL-10. MIS-C has several similarities with Kawasaki disease (KD) considering children with both conditions present with fever, rash, conjunctival injection, mucosal symptoms and swelling of hands and feet. For reasons that are still not clear, both KD and MIS-C were not reported during the SARS-CoV and MERS-CoV outbreaks. As SARS-CoV-2 differs from SARS-CoV by 19.5% and MERS by 50% in terms of sequence identity, differences in genomic and proteomic profiles may explain the varied disease immunopathology and host responses. Left untreated, MIS-C may lead to severe abdominal pain, ventricular dysfunction and shock. Immunological investigations reveal reduced numbers of follicular B cells, increased numbers of terminally differentiated CD4+T lymphocytes, and decreased IL-17A. There is still ambiguity about the clinical and immunologic risk factors that predispose some children to development of MIS-C while sparing others. Host-pathogen interactions in SARS, MERS and COVID-19 are likely to play a crucial role in the clinical phenotypes that manifest. This narrative review focuses on the immunological basis for development of MIS-C syndrome in the ongoing SARS-CoV-2 pandemic. To the best of our knowledge, these aspects have not been reviewed before.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Surjit Singh
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Diniz MO, Schurich A, Chinnakannan SK, Duriez M, Stegmann KA, Davies J, Kucykowicz S, Suveizdyte K, Amin OE, Alcock F, Cargill T, Barnes E, Maini MK. NK cells limit therapeutic vaccine-induced CD8 +T cell immunity in a PD-L1-dependent manner. Sci Transl Med 2022; 14:eabi4670. [PMID: 35417187 DOI: 10.1126/scitranslmed.abi4670] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A better understanding of mechanisms that regulate CD8+T cell responses to therapeutic vaccines is needed to develop approaches to enhance vaccine efficacy for chronic viral infections and cancers. We show here that NK cell depletion enhanced antigen-specific T cell responses to chimp adenoviral vector (ChAdOx) vaccination in a mouse model of chronic HBV infection (CHB). Probing the mechanism underlying this negative regulation, we observed that CHB drove parallel up-regulation of programmed cell death ligand 1 (PD-L1) on liver-resident NK cells and programmed cell death 1 (PD-1) on intrahepatic T cells. PD-L1-expressing liver-resident NK cells suppressed PD-1hiCD8+T cells enriched within the HBV-specific response to therapeutic vaccination. Cytokine activation of NK cells also induced PD-L1, and combining cytokine activation with PD-L1 blockade resulted in conversion of NK cells into efficient helpers that boosted HBV-specific CD8+T cell responses to therapeutic vaccination in mice and to chronic infection in humans. Our findings delineate an immunotherapeutic combination that can boost the response to therapeutic vaccination in CHB and highlight the broader importance of PD-L1-dependent regulation of T cells by cytokine-activated NK cells.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Anna Schurich
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Senthil K Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Marion Duriez
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kerstin A Stegmann
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jessica Davies
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Stephanie Kucykowicz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kornelija Suveizdyte
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Frances Alcock
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| |
Collapse
|
16
|
Fumagalli V, Venzin V, Di Lucia P, Moalli F, Ficht X, Ambrosi G, Giustini L, Andreata F, Grillo M, Magini D, Ravà M, Friedrich C, Fontenot JD, Bousso P, Gilmore SA, Khan S, Baca M, Vivier E, Gasteiger G, Kuka M, Guidotti LG, Iannacone M. Group 1 ILCs regulate T cell-mediated liver immunopathology by controlling local IL-2 availability. Sci Immunol 2022; 7:eabi6112. [PMID: 35213210 DOI: 10.1126/sciimmunol.abi6112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Magini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | | | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | | | | | | | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France.,Innate Pharma Research Laboratories, Innate Pharma, Marseille 13276, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille 13005, France
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
17
|
NK cell frequencies, function and correlates to vaccine outcome in BNT162b2 mRNA anti-SARS-CoV-2 vaccinated healthy and immunocompromised individuals. Mol Med 2022; 28:20. [PMID: 35135470 PMCID: PMC8822735 DOI: 10.1186/s10020-022-00443-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .
Collapse
|
18
|
Pugh J, Guethlein L, Parham P. Abundant CpG-sequences in human genomes inhibit KIR3DL2-expressing NK cells. PeerJ 2021; 9:e12258. [PMID: 34760351 PMCID: PMC8574216 DOI: 10.7717/peerj.12258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Killer Immunoglobulin-like Receptors (KIR) comprise a diverse, highly polymorphic family of cell-surface glycoproteins that are principally expressed by Natural Killer (NK) cells. These innate immune lymphocytes fulfill vital functions in human reproduction and immune responses to viral infection. KIR3DL2 is an inhibitory NK cell receptor that recognizes a common epitope of the HLA-A3 and HLA-A11 class I glycoproteins of the major histocompatibility complex. KIR3DL2 also binds exogenous DNA containing the CpG motif. This interaction causes internalization of the KIR-DNA. Exogenous CpG-DNA typically activates NK cells, but the specificity of KIR3DL2-DNA binding and internalization is unclear. We hypothesized that KIR3DL2 binds exogenous DNA in a sequence-specific manner that differentiates pathogen DNA from self-DNA. In testing this hypothesis, we surveyed octameric CpG-DNA sequences in the human genome, and in reference genomes of all bacteria, fungi, viruses, and parasites, with focus on medically relevant species. Among all pathogens, the nucleotides flanking CpG motifs in the genomes of parasitic worms that infect humans are most divergent from those in the human genome. We cultured KIR3DL2+NKL cells with the commonest CpG-DNA sequences in either human or pathogen genomes. DNA uptake was negatively correlated with the most common CpG-DNA sequences in the human genome. These CpG-DNA sequences induced inhibitory signaling in KIR3DL2+NKL cells. In contrast, KIR3DL2+NKL cells lysed more malignant targets and produced more IFNγ after culture with CpG-DNA sequences prevalent in parasitic worms. By applying functional immunology to evolutionary genomics, we conclude that KIR3DL2 allows NK cells to differentiate self-DNA from pathogen DNA.
Collapse
Affiliation(s)
- Jason Pugh
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci 2021; 42:789-801. [PMID: 34311992 PMCID: PMC8364504 DOI: 10.1016/j.tips.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Vaccination serves as a cornerstone of global health. Successful prevention of infection or disease by vaccines is achieved through elicitation of pathogen-specific antibodies and long-lived memory T cells. However, several microbial threats to human health have proven refractory to past vaccine efforts. These shortcomings have been attributed to either inefficient triggering of memory T and B cell responses or to the unfulfilled need to stimulate non-conventional forms of immunological memory. Natural killer (NK) cells have recently emerged as both key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. We discuss potential methods to modulate these functions of NK cells to enhance vaccine success.
Collapse
Affiliation(s)
- Andrew Cox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura M Canaday
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nora Lakes
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Gardner G, Fraker CA. Natural Killer Cells as Key Mediators in Type I Diabetes Immunopathology. Front Immunol 2021; 12:722979. [PMID: 34489972 PMCID: PMC8417893 DOI: 10.3389/fimmu.2021.722979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
The immunopathology of type I diabetes (T1D) presents a complicated case in part because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-producing cells (β cells) and thus lifelong reliance on exogenous insulin. However, that explanation obscures much of the underlying mechanism, and the actual precipitating events along with the associated actors (latent viral infection, diverse immune cell types and their roles) are not completely understood. Notably, there is a malfunctioning in the regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated attack. Further examination has revealed the likelihood of an imbalance in distinct subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the catalyst of adaptive immune system malfunction. The contributions of components outside the immune system, including environmental factors such as chronic viral infection also need more consideration, and much of the recent literature investigating the origins of this disease have focused on these factors. In this review, the details of the immunopathology of T1D regarding NK cell disfunction is discussed, along with how those mechanisms stand within the context of general autoimmune disorders. Finally, the rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI) induced diabetes are discussed as their exceptional pathology offers insight into the evolution of the disease as a whole.
Collapse
Affiliation(s)
| | - Christopher A. Fraker
- Tissue and Biomedical Engineering Laboratory, Leonard M. Miller School of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
Host genetic control of natural killer cell diversity revealed in the Collaborative Cross. Proc Natl Acad Sci U S A 2021; 118:2018834118. [PMID: 33649222 DOI: 10.1073/pnas.2018834118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are innate effectors armed with cytotoxic and cytokine-secreting capacities whose spontaneous antitumor activity is key to numerous immunotherapeutic strategies. However, current mouse models fail to mirror the extensive immune system variation that exists in the human population which may impact on NK cell-based therapies. We performed a comprehensive profiling of NK cells in the Collaborative Cross (CC), a collection of novel recombinant inbred mouse strains whose genetic diversity matches that of humans, thereby providing a unique and highly diverse small animal model for the study of immune variation. We demonstrate that NK cells from CC strains displayed a breadth of phenotypic and functional variation reminiscent of that reported for humans with regards to cell numbers, key marker expression, and functional capacities. We took advantage of the vast genetic diversity of the CC and identified nine genomic loci through quantitative trait locus mapping driving these phenotypic variations. SNP haplotype patterns and variant effect analyses identified candidate genes associated with lung NK cell numbers, frequencies of CD94+ NK cells, and expression levels of NKp46. Thus, we demonstrate that the CC represents an outstanding resource to study NK cell diversity and its regulation by host genetics.
Collapse
|
23
|
Bigley AB, Spade S, Agha NH, Biswas S, Tang S, Malik MH, Dai L, Masoumi S, Patiño-Escobar B, Hale M, DiPierro G, Martell R, Hann B, Shah N, Wiita AP, Liu X. FcεRIγ-negative NK cells persist in vivo and enhance efficacy of therapeutic monoclonal antibodies in multiple myeloma. Blood Adv 2021; 5:3021-3031. [PMID: 34357379 PMCID: PMC8361460 DOI: 10.1182/bloodadvances.2020002440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) are a central component of therapy for hematologic malignancies. Widely used mAb agents in multiple myeloma (MM) include daratumumab and elotuzumab. However, not all patients respond to these agents, and resistance is a significant clinical issue. A recently discovered subset of human natural killer (NK) cells lacking expression of FcεRIγ (g-NK cells) was found to have a multifold increase in antibody-dependent effector functions after CD16 crosslinking. In this study, we tested the capacity of g-NK cells to enhance the efficacy of therapeutic mAbs against MM. In vitro, we found that g-NK cells have strikingly superior anti-myeloma cytotoxicity compared with conventional NK (cNK) cells when combined with daratumumab or elotuzumab (∼sixfold; P < .001). In addition, g-NK cells naturally expressed minimal surface CD38 and SLAMF7, which reduced the incidence of therapeutic fratricide. In tumor-naïve murine models, the persistence of g-NK cells in blood and spleen was >10 times higher than that of cNK cells over 31 days (P < .001). In vivo efficacy studies showed that the combination of daratumumab and g-NK cells led to a >99.9% tumor reduction (by flow cytometry analysis) compared with the combination of daratumumab and cNK cells (P < .001). Moreover, treatment with daratumumab and g-NK cells led to complete elimination of myeloma burden in 5 of 7 mice. Collectively, these results underscore the unique ability of g-NK cells to potentiate the activity of therapeutic mAbs and overcome limitations of current off-the-shelf NK cell therapies without the need for cellular irradiation or genetic engineering.
Collapse
Affiliation(s)
| | | | - Nadia H Agha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| | - Suni Tang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| | - Muhammad H Malik
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| | - Lu Dai
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| | - Shalaleh Masoumi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| | - Bonell Patiño-Escobar
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; and
- Department of Laboratory Medicine and
| | - Martina Hale
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; and
- Department of Laboratory Medicine and
| | | | | | | | - Nina Shah
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; and
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; and
- Department of Laboratory Medicine and
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX
| |
Collapse
|
24
|
Rose DL, Reagin KL, Oliva KE, Tompkins SM, Klonowski KD. Enhanced generation of influenza-specific tissue resident memory CD8 T cells in NK-depleted mice. Sci Rep 2021; 11:8969. [PMID: 33903648 PMCID: PMC8076325 DOI: 10.1038/s41598-021-88268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8+ T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8+ T cell memory. NK cell ablation increased the number of influenza-specific memory CD8+ T cells in the respiratory tract and lung-draining lymph node. Interestingly, animals depleted of NK cells during primary influenza infection were protected as well as their NK-intact counterparts despite significantly fewer reactivated CD8+ T cells infiltrating the respiratory tract after lethal, heterosubtypic challenge. Instead, protection in NK-deficient animals seems to be conferred by rapid reactivation of an enlarged pool of lung tissue-resident (TRM) memory cells within two days post challenge. Further interrogation of how NK cell ablation enhances respiratory TRM indicated that TRM development is independent of global and NK cell derived IFN-γ. These data suggest that reduction in NK cell activation after vaccination with live, non-lethal influenza virus increases compartmentalized, broadly protective memory CD8+ T cell generation and decreases the risk of CD8+ T cell-mediated pathology following subsequent influenza infections.
Collapse
Affiliation(s)
- David L Rose
- Department of Shared Resources, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Katie L Reagin
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
25
|
Huang Z, Kang SG, Li Y, Zak J, Shaabani N, Deng K, Shepherd J, Bhargava R, Teijaro JR, Xiao C. IFNAR1 signaling in NK cells promotes persistent virus infection. SCIENCE ADVANCES 2021; 7:7/13/eabb8087. [PMID: 33771858 PMCID: PMC7997497 DOI: 10.1126/sciadv.abb8087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of type 1 interferon (IFN-I) signaling promotes the control of persistent virus infection, but the underlying mechanisms remain poorly understood. Here, we report that genetic ablation of Ifnar1 specifically in natural killer (NK) cells led to elevated numbers of T follicular helper cells, germinal center B cells, and plasma cells and improved antiviral T cell function, resulting in hastened virus clearance that was comparable to IFNAR1 neutralizing antibody treatment. Antigen-specific B cells and antiviral antibodies were essential for the accelerated control of LCMV Cl13 infection following IFNAR1 blockade. IFNAR1 signaling in NK cells promoted NK cell function and general killing of antigen-specific CD4 and CD8 T cells. Therefore, inhibition of IFN-I signaling in NK cells enhances CD4 and CD8 T cell responses, promotes humoral immune responses, and thereby facilitates the control of persistent virus infection.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Bioscience/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaiyuan Deng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- School of Medicine, Nankai University, Tianjin 30071, China
| | - Jovan Shepherd
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol 2020; 109:185-194. [PMID: 33095941 DOI: 10.1002/jlb.3mr0820-685r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.
Collapse
Affiliation(s)
- Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Wang Y, Zhang Y, Tang T, Zhao W, Fu S, Zhang Z, Fu Y, Xu J, Ding H, Han X, Jiang Y. Natural killer cell counts in primary HIV infection predicts disease progression and immune restoration after treatment. Virology 2020; 550:89-98. [PMID: 32920454 DOI: 10.1016/j.virol.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
The relationship between NK cell counts during primary infection and disease progression or immune restoration after antiretroviral treatment (ART) was explored. We followed 462 individuals with HIV infection and measured their NK, CD4+ T, CD8+ T cell counts and viral loads. Our data showed that individuals with high NK cell counts had much lower viral loads and higher CD4+ T cell counts. NK cell counts during primary infection were negatively correlated with viral set-point and viral loads at one-year-infection point, and positively correlated with CD4+ T cell counts at one-year-infection and one-year-ART point. Moreover, the NK cell counts during primary infection can predict HIV disease progression and immune restoration after ART. In conclusion, NK cell counts during primary infection represents a potential predictive biomarker to predict HIV disease prognosis in the clinic.
Collapse
Affiliation(s)
- Yue Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Yufei Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Tian Tang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Wen Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Shuai Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.
| |
Collapse
|
28
|
Rosen HR, Golden-Mason L. Control of HCV Infection by Natural Killer Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037101. [PMID: 31871225 PMCID: PMC7447067 DOI: 10.1101/cshperspect.a037101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host defense against invading pathogens within the liver is dominated by innate immunity. Natural killer (NK) cells have been implicated at all stages of hepatitis C virus (HCV) infection, from providing innate protection to contributing to treatment-induced clearance. Decreased NK cell levels, altered NK cell subset distribution, activation marker expression, and functional polarization toward a cytolytic phenotype are hallmarks of chronic HCV infection. Interferon α (IFN-α) is a potent activator of NK cells; therefore, it is not surprising that NK cell activation has been identified as a key factor associated with sustained virological response (SVR) to IFN-α-based therapies. Understanding the role of NK cells, macrophages, and other innate immune cells post-SVR remains paramount for prevention of disease pathogenesis and progression. Novel strategies to treat liver disease may be aimed at targeting these cells.
Collapse
Affiliation(s)
- Hugo R Rosen
- Department of Medicine, University of Southern California (USC), Los Angeles, California 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, California 90033, USA
| | - Lucy Golden-Mason
- Department of Medicine, University of Southern California (USC), Los Angeles, California 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, California 90033, USA
| |
Collapse
|
29
|
Woyciechowski S, Weißert K, Ammann S, Aichele P, Pircher H. NK1.1 + innate lymphoid cells in salivary glands inhibit establishment of tissue-resident memory CD8 + T cells in mice. Eur J Immunol 2020; 50:1952-1958. [PMID: 32734619 DOI: 10.1002/eji.202048741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
NK1.1+ cells found in salivary glands (SG) represent a unique cell population of innate lymphoid cells (ILC) with characteristics of both conventional NK cells and ILC1. Here, we demonstrate that these NK1.1+ cells limit the accumulation and differentiation of virus-specific tissue-resident memory CD8+ T cells (TRM cells) in SG of mice infected with lymphocytic choriomeningitis virus (LCMV). The negative regulation of LCMV-specific CD8+ TRM cells by NK1.1+ cells in SG is independent of NKG2D, NKp46, TRAIL, and perforin. Moreover, analysis of NKp46iCre+ Eomesfl/fl mice revealed that Eomes-dependent conventional NK cells are dispensable for negative regulation. Since the SG are prone to autoimmune reactions, regulation of TRM cells by tissue-resident ILC may be particularly important to prevent immunopathology in this organ.
Collapse
Affiliation(s)
- Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
30
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|
31
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
32
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
33
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
34
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|