1
|
Guo J, He X, Bai Y, Sun H, Yang J. Virulence factors of Salmonella Typhi: interplay between the bacteria and host macrophages. Arch Microbiol 2025; 207:89. [PMID: 40095029 DOI: 10.1007/s00203-025-04297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Salmonella Typhi (S. Typhi) is a Gram-negative bacterium that exclusively infects humans and causes typhoid fever- a major global public health concern responsible for approximately 9 million infections and 110,000 deaths annually. Macrophages, a key component of the innate immune system, play essential roles in pathogen clearance, antigen presentation, immune regulation, and tissue repair. As one of the primary targets of S. Typhi infection, macrophages significantly influence disease onset and progression. S. Typhi expresses a range of virulence factors, including the virulence-associated (Vi) capsule, outer membrane proteins (OMPs), flagella, fimbriae, type III secretion systems (T3SSs) and other genes encoded on Salmonella pathogenicity islands (SPIs), as well as toxins, regulatory factors, and virulence plasmids. These virulence factors facilitate S. Typhi's intracellular survival within macrophages by mediating processes such as adhesion, invasion, nutrient acquisition and immune evasion, ultimately enabling systemic infection. This review explores the role and molecular mechanisms of S. Typhi virulence factors in counteracting macrophage antimicrobial functions, providing insights for future research on typhoid pathogenesis and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
2
|
Sharma N, Das A, Nair AV, Sethi P, Negi VD, Chakravortty D, Marathe SA. CRISPR-Cas system positively regulates virulence of Salmonella enterica serovar Typhimurium. Gut Pathog 2024; 16:63. [PMID: 39462402 PMCID: PMC11514906 DOI: 10.1186/s13099-024-00653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Salmonella, a foodborne pathogen, possesses a type I-E clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. We investigated the system's role in regulating Salmonella virulence by deleting the CRISPR arrays and Cas operon. RESULTS Our study demonstrates invasion and proliferation defects of CRISPR-Cas knockout strains in intestinal epithelial cells and macrophages owing to the repression of invasion and virulence genes. However, proliferation defects were not observed in the Gp91phox-/- macrophages, suggesting the system's role in the pathogens' antioxidant defense. We deduced that the CRISPR-Cas system positively regulates H2O2 importer (OmpW), catalase (katG), peroxidase (ahpC), and superoxide dismutase (soda and sodCI), thereby protecting the cells from oxidative radicals. The knockout strains were attenuated in in-vivo infection models (Caenorhabditis elegans and BALB/c mice) due to hypersensitivity against antimicrobial peptides, complement proteins, and oxidative stress. The attenuation in virulence was attributed to the suppression of LPS modifying (pmr) genes, antioxidant genes, master regulators, and effectors of the SPI-1 (invasion) and SPI-2 (proliferation) islands in knockout strains. The regulation could be attributed to the partial complementarity of the CRISPR spacers with these genes. CONCLUSIONS Overall, our study extends our understanding of the role of the CRISPR-Cas system in Salmonella pathogenesis and its virulence determinants.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Ankita Das
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Palash Sethi
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Vidya Devi Negi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
3
|
Kelly SD, Allas MJ, Goodridge LD, Lowary TL, Whitfield C. Structure, biosynthesis and regulation of the T1 antigen, a phase-variable surface polysaccharide conserved in many Salmonella serovars. Nat Commun 2024; 15:6504. [PMID: 39090110 PMCID: PMC11294581 DOI: 10.1038/s41467-024-50957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mikel Jason Allas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Achi SC, McGrosso D, Tocci S, Ibeawuchi SR, Sayed IM, Gonzalez DJ, Das S. Proteome profiling identifies a link between the mitochondrial pathways and host-microbial sensor ELMO1 following Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592405. [PMID: 38746404 PMCID: PMC11092768 DOI: 10.1101/2024.05.03.592405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The host EnguLfment and cell MOtility protein 1 (ELMO1) is a cytosolic microbial sensor that facilitates bacterial sensing, internalization, clearance, and inflammatory responses. We have shown previously that ELMO1 binds bacterial effector proteins, including pathogenic effectors from Salmonella and controls host innate immune signaling. To understand the ELMO1-regulated host pathways, we have performed liquid chromatography Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the global quantification of proteins regulated by ELMO1 in macrophages during Salmonella infection. Comparative proteome analysis of control and ELMO1-depleted murine J774 macrophages after Salmonella infection quantified more than 7000 proteins with a notable enrichment in mitochondrial-related proteins. Gene ontology enrichment analysis revealed 19 upregulated and 11 downregulated proteins exclusive to ELMO1-depleted cells during infection, belonging to mitochondrial functions, metabolism, vesicle transport, and the immune system. By assessing the cellular energetics via Seahorse analysis, we found that Salmonella infection alters mitochondrial metabolism, shifting it from oxidative phosphorylation to glycolysis. Importantly, these metabolic changes are significantly influenced by the depletion of ELMO1. Furthermore, ELMO1 depletion resulted in a decreased ATP rate index following Salmonella infection, indicating its importance in counteracting the effects of Salmonella on immunometabolism. Among the proteins involved in mitochondrial pathways, mitochondrial fission protein DRP1 was significantly upregulated in ELMO1-depleted cells and in ELMO1-KO mice intestine following Salmonella infection. Pharmacological Inhibition of DRP1 revealed the link of the ELMO1-DRP1 pathway in regulating the pro-inflammatory cytokine TNF-α following infection. The role of ELMO1 has been further characterized by a proteome profile of ELMO1-depleted macrophage infected with SifA mutant and showed the involvement of ELMO1-SifA on mitochondrial function, metabolism and host immune/defense responses. Collectively, these findings unveil a novel role for ELMO1 in modulating mitochondrial functions, potentially pivotal in modulating inflammatory responses. Significance Statement Host microbial sensing is critical in infection and inflammation. Among these sensors, ELMO1 has emerged as a key regulator, finely tuning innate immune signaling and discriminating between pathogenic and non-pathogenic bacteria through interactions with microbial effectors like SifA of Salmonella . In this study, we employed Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the proteome alterations mediated by ELMO1 in macrophages following WT and SifA mutant Salmonella infection. Our findings highlight a substantial enrichment of host proteins associated with metabolic pathways and mitochondrial functions. Notably, we validated the mitochondrial fission protein DRP1 that is upregulated in ELMO1-depleted macrophages and in ELMO1 knockout mice intestine after infection. Furthermore, we demonstrated that Salmonella -induced changes in cellular energetics are influenced by the presence of ELMO1. This work shed light on a possible novel link between mitochondrial dynamics and microbial sensing in modulating immune responses.
Collapse
|
5
|
Schulte M, Grotheer L, Hensel M. Bright individuals: Applications of fluorescent protein-based reporter systems in single-cell cellular microbiology. Mol Microbiol 2024; 121:605-617. [PMID: 38234267 DOI: 10.1111/mmi.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Activation and function of virulence functions of bacterial pathogens are highly dynamic in time and space, and can show considerable heterogeneity between individual cells in pathogen populations. To investigate the complex events in host-pathogen interactions, single cell analyses are required. Fluorescent proteins (FPs) are excellent tools to follow the fate of individual bacterial cells during infection, and can also be deployed to use the pathogen as a sensor for its specific environment in host cells or host organisms. This Resources describes design and applications of dual fluorescence reporters (DFR) in cellular microbiology. DFR feature constitutively expressed FPs for detection of bacterial cells, and FPs expressed by an environmentally regulated promoter for interrogation of niche-specific cues or nutritional parameters. Variations of the basic design allow the generation of DFR that can be used to analyze, on single cell level, bacterial proliferation during infection, subcellular localization of intracellular bacteria, stress response, or persister state. We describe basic considerations for DFR design and review recent applications of DFR in cellular microbiology.
Collapse
Affiliation(s)
- Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Luisa Grotheer
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
6
|
Scharte F, Franzkoch R, Hensel M. Flagella-mediated cytosolic motility of Salmonella enterica Paratyphi A aids in evasion of xenophagy but does not impact egress from host cells. Mol Microbiol 2024; 121:413-430. [PMID: 37278220 DOI: 10.1111/mmi.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Typhoidal serovars like Paratyphi A (SPA) are human restricted and cause severe systemic diseases, while many serovars like Typhimurium (STM) have a broad host range, and usually lead to self-limiting gastroenteritis. There are key differences between typhoidal and non-typhoidal Salmonella in pathogenesis, but underlying mechanisms remain largely unknown. Transcriptomes and phenotypes in epithelial cells revealed induction of motility, flagella and chemotaxis genes for SPA but not STM. SPA exhibited cytosolic motility mediated by flagella. In this study, we applied single-cell microscopy to analyze triggers and cellular consequences of cytosolic motility. Live-cell imaging (LCI) revealed that SPA invades host cells in a highly cooperative manner. Extensive membrane ruffling at invasion sites led to increased membrane damage in nascent Salmonella-containing vacuole, and subsequent cytosolic release. After release into the cytosol, motile bacteria showed the same velocity as under culture conditions in media. Reduced capture of SPA by autophagosomal membranes was observed by LCI and electron microscopy. Prior work showed that SPA does not use flagella-mediated motility for cell exit via the intercellular spread. However, cytosolic motile SPA was invasion-primed if released from host cells. Our results reveal flagella-mediated cytosolic motility as a possible xenophagy evasion mechanism that could drive disease progression and contributes to the dissemination of systemic infection.
Collapse
Affiliation(s)
- Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, iBiOs-Integrated Bioimaging Facility, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- Universität Osnabrück, CellNanOs-Center of Cellular Nanoanalytics, Osnabrück, Germany
| |
Collapse
|
7
|
Sarkhel R, Priyadarsini S, Mahawar M. Nutrient limitation and oxidative stress induce the promoter of acetate operon in Salmonella Typhimurium. Arch Microbiol 2024; 206:126. [PMID: 38411730 DOI: 10.1007/s00203-024-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the β-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in β galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.
Collapse
Affiliation(s)
- Ratanti Sarkhel
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swagatika Priyadarsini
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Indian Council of Agricultural Research- National Research Centre on Camel, Bikaner, Rajasthan, India.
| | - Manish Mahawar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
8
|
Geddes-McAlister J, Hansmeier N. Quantitative Proteomics of the Intracellular Bacterial Pathogen Salmonella enterica Serovar Typhimurium. Methods Mol Biol 2024; 2813:107-115. [PMID: 38888773 DOI: 10.1007/978-1-0716-3890-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.
Collapse
Affiliation(s)
- Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada.
- Canadian Proteomics and Artificial Intelligence Consortium, Guelph, ON, Canada.
| | | |
Collapse
|
9
|
Fels U, Willems P, De Meyer M, Gevaert K, Van Damme P. Shift in vacuolar to cytosolic regime of infecting Salmonella from a dual proteome perspective. PLoS Pathog 2023; 19:e1011183. [PMID: 37535689 PMCID: PMC10426988 DOI: 10.1371/journal.ppat.1011183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/15/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
By applying dual proteome profiling to Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters with its epithelial host (here, S. Typhimurium infected human HeLa cells), a detailed interdependent and holistic proteomic perspective on host-pathogen interactions over the time course of infection was obtained. Data-independent acquisition (DIA)-based proteomics was found to outperform data-dependent acquisition (DDA) workflows, especially in identifying the downregulated bacterial proteome response during infection progression by permitting quantification of low abundant bacterial proteins at early times of infection when bacterial infection load is low. S. Typhimurium invasion and replication specific proteomic signatures in epithelial cells revealed interdependent host/pathogen specific responses besides pointing to putative novel infection markers and signalling responses, including regulated host proteins associated with Salmonella-modified membranes.
Collapse
Affiliation(s)
- Ursula Fels
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Patrick Willems
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Mitosch K, Beyß M, Phapale P, Drotleff B, Nöh K, Alexandrov T, Patil KR, Typas A. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella. PLoS Biol 2023; 21:e3002198. [PMID: 37594988 PMCID: PMC10468081 DOI: 10.1371/journal.pbio.3002198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pathogenic bacteria proliferating inside mammalian host cells need to rapidly adapt to the intracellular environment. How they achieve this and scavenge essential nutrients from the host has been an open question due to the difficulties in distinguishing between bacterial and host metabolites in situ. Here, we capitalized on the inability of mammalian cells to metabolize mannitol to develop a stable isotopic labeling approach to track Salmonella enterica metabolites during intracellular proliferation in host macrophage and epithelial cells. By measuring label incorporation into Salmonella metabolites with liquid chromatography-mass spectrometry (LC-MS), and combining it with metabolic modeling, we identify relevant carbon sources used by Salmonella, uncover routes of their metabolization, and quantify relative reaction rates in central carbon metabolism. Our results underline the importance of the Entner-Doudoroff pathway (EDP) and the phosphoenolpyruvate carboxylase for intracellularly proliferating Salmonella. More broadly, our metabolic labeling strategy opens novel avenues for understanding the metabolism of pathogens inside host cells.
Collapse
Affiliation(s)
- Karin Mitosch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Computational Systems Biotechnology, Aachen, Germany
| | - Prasad Phapale
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Theodore Alexandrov
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- BioInnovation Institute, Copenhagen, Denmark
| | - Kiran R. Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
11
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Meng K, Yang J, Xue J, Lv J, Zhu P, Shi L, Li S. A host E3 ubiquitin ligase regulates Salmonella virulence by targeting an SPI-2 effector involved in SIF biogenesis. MLIFE 2023; 2:141-158. [PMID: 38817622 PMCID: PMC10989757 DOI: 10.1002/mlf2.12063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 06/01/2024]
Abstract
Salmonella Typhimurium creates an intracellular niche for its replication by utilizing a large cohort of effectors, including several that function to interfere with host ubiquitin signaling. Although the mechanism of action of many such effectors has been elucidated, how the interplay between the host ubiquitin network and bacterial virulence factors dictates the outcome of infection largely remains undefined. In this study, we found that the SPI-2 effector SseK3 inhibits SNARE pairing to promote the formation of a Salmonella-induced filament by Arg-GlcNAcylation of SNARE proteins, including SNAP25, VAMP8, and Syntaxin. Further study reveals that host cells counteract the activity of SseK3 by inducing the expression of the E3 ubiquitin ligase TRIM32, which catalyzes K48-linked ubiquitination on SseK3 and targets its membrane-associated portion for degradation. Hence, TRIM32 antagonizes SNAP25 Arg-GlcNAcylation induced by SseK3 to restrict Salmonella-induced filament biogenesis and Salmonella replication. Our study reveals a mechanism by which host cells inhibit bacterial replication by eliminating specific virulence factors.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jin Yang
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Juan Xue
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jun Lv
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Liuliu Shi
- School of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Shan Li
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
14
|
Schulte M, Hensel M, Miskiewicz K. Exposure to stressors and antimicrobials induces cell-autonomous ultrastructural heterogeneity of an intracellular bacterial pathogen. Front Cell Infect Microbiol 2022; 12:963354. [DOI: 10.3389/fcimb.2022.963354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Despite their clonality, intracellular bacterial pathogens commonly show remarkable physiological heterogeneity during infection of host cells. Physiological heterogeneity results in distinct ultrastructural morphotypes, but the correlation between bacterial physiological state and ultrastructural appearance remains to be established. In this study, we showed that individual cells of Salmonella enterica serovar Typhimurium are heterogeneous in their ultrastructure. Two morphotypes based on the criterion of cytoplasmic density were discriminated after growth under standard culture conditions, as well as during intracellular lifestyle in mammalian host cells. We identified environmental conditions which affect cytoplasmic densities. Using compounds generating oxygen radicals and defined mutant strains, we were able to link the occurrence of an electron-dense ultrastructural morphotype to exposure to oxidative stress and other stressors. Furthermore, by combining ultrastructural analyses of Salmonella during infection and fluorescence reporter analyses for cell viability, we provided evidence that two characterized ultrastructural morphotypes with electron-lucent or electron-dense cytoplasm represent viable cells. Moreover, the presence of electron-dense types is stress related and can be experimentally induced only when amino acids are available in the medium. Our study proposes ultrastructural morphotypes as marker for physiological states of individual intracellular pathogens providing a new marker for single cell analyses.
Collapse
|
15
|
Curreli S, Benedetti F, Yuan W, Munawwar A, Cocchi F, Gallo RC, Sherman NE, Zella D. Characterization of the interactome profiling of Mycoplasma fermentans DnaK in cancer cells reveals interference with key cellular pathways. Front Microbiol 2022; 13:1022704. [PMID: 36386669 PMCID: PMC9651203 DOI: 10.3389/fmicb.2022.1022704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/10/2024] Open
Abstract
Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas E. Sherman
- Biomolecular Analysis Facility Core, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Kim JS, Liu L, Davenport B, Kant S, Morrison TE, Vazquez-Torres A. Oxidative stress activates transcription of Salmonella pathogenicity island-2 genes in macrophages. J Biol Chem 2022; 298:102130. [PMID: 35714768 PMCID: PMC9270255 DOI: 10.1016/j.jbc.2022.102130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.
Collapse
Affiliation(s)
- Ju-Sim Kim
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Lin Liu
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Bennett Davenport
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Sashi Kant
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Thomas E Morrison
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Andres Vazquez-Torres
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA.
| |
Collapse
|
17
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
18
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
19
|
Schulte M, Hensel M. Flow Cytometry-Based Single Cell Analyses of Bacterial Adaptation to Intracellular Environments. Methods Mol Biol 2022; 2427:105-117. [PMID: 35619029 DOI: 10.1007/978-1-0716-1971-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since decades, flow cytometry (FC) is a powerful technique to perform single cell analyses with high accuracy and throughput. Moreover, FC is the method of choice to study bacterial cell heterogeneity and complements single-cell imaging techniques. The complex experimental approaches for FC sample preparation and the subsequent FC adjustment and gating strategy demand careful considerations to be successful when analyzing complex microbial populations, especially when liberated populations of intracellular bacterial pathogens, or bacterial pathogens inside intact host cells are analyzed. Here, we provide a set of experimental protocols for FC sample preparation of (1) in vitro cultured bacterial cells, (2) liberated intracellular bacteria from host cells, or (3) preparation of intact infected phagocytic or epithelial cells commonly used as host cells in infection biology. Since sample preparation, cytometer adjustment, and gating strategy are essential for experimental success, we aim to provide our expertise to support application of FC by other researchers.
Collapse
Affiliation(s)
- Marc Schulte
- Abteilung Mikrobiologie and CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Fachbereich Biologie/Chemie, Universität Osnabrück Barbarastr, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie and CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Fachbereich Biologie/Chemie, Universität Osnabrück Barbarastr, Osnabrück, Germany.
| |
Collapse
|
20
|
Ibarra-Valencia MA, Espino-Solis GP, Estrada BE, Corzo G. Immunomodulatory Responses of Two Synthetic Peptides against Salmonella Typhimurium Infection. Molecules 2021; 26:5573. [PMID: 34577046 PMCID: PMC8466354 DOI: 10.3390/molecules26185573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 μg/mL, and in RAW 264.7 cells at 0.31 μg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 μg/mL and in RAW 264.7 cells at 150 μg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 μg/mL) and MCP-1 (10 μg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 μg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25-10 μg/mL) or FA1 (18.75-75 μg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 μg/mL, respectively. On the other hand, stimulation with 1.25 and 10 μg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.
Collapse
Affiliation(s)
- Marco Antonio Ibarra-Valencia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico
| | - Gerardo Pável Espino-Solis
- Laboratorio de Investigación Traslacional and Laboratorio Nacional de Citometría de Flujo-UACH, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (G.P.E.-S.); (B.E.E.)
| | - Blanca Elisa Estrada
- Laboratorio de Investigación Traslacional and Laboratorio Nacional de Citometría de Flujo-UACH, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (G.P.E.-S.); (B.E.E.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico
| |
Collapse
|
21
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
22
|
Röder J, Felgner P, Hensel M. Single-cell analyses reveal phosphate availability as critical factor for nutrition of Salmonella enterica within mammalian host cells. Cell Microbiol 2021; 23:e13374. [PMID: 34160116 DOI: 10.1111/cmi.13374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023]
Abstract
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen and acquisition of nutrients from host cells is essential for survival and proliferation of intracellular STM. The nutritional environment of intracellular STM is only partially understood. We deploy bacteria harbouring reporter plasmids to interrogate the environmental cues acting on intracellular STM, and flow cytometry allows analyses on level of single STM. Phosphorus is a macro-element for cellular life, and in STM inorganic phosphate (Pi ), homeostasis is mediated by the two-component regulatory system PhoBR, resulting in expression of the high affinity phosphate transporter pstSCAB-phoU. Using fluorescent protein reporters, we investigated Pi availability for intracellular STM at single-cell level over time. We observed that Pi concentration in the Salmonella-containing vacuole (SCV) is limiting and activates the promoter of pstSCAB-phoU encoding a high affinity phosphate uptake system. Correlation between reporter activation by STM in defined media and in host cells indicates Pi concentration less 10 μM within the SCV. STM proliferating within the SCV experience increasing Pi limitations. Activity of the Salmonella pathogenicity island 2 (SPI2)-encoded type III secretion system (T3SS) is crucial for efficient intracellular proliferation, and SPI2-T3SS-mediated endosomal remodelling also reliefs Pi limitation. STM that are released from SCV to enter the cytosol of epithelial cells did not indicate Pi limitations. Addition of Pi to culture media of infected cells partially relieved Pi limitations in the SCV, as did inhibition of intracellular proliferation. We conclude that availability of Pi is critical for intracellular lifestyle of STM, and Pi acquisition is maintained by multiple mechanisms. Our work demonstrates the use of bacterial pathogens as sensitive single-cell reporters for their environment in host cell or host organisms. TAKE AWAY: Salmonella strains were engineered to report their intracellular niche and the availability of inorganic phosphate (Pi ) on level of single intracellular bacteria Within the Salmonella-containing vacuole (SCV), Pi is limited and limitation increases with bacterial proliferation Salmonella located in host cell cytosol are not limited in Pi availability Remodelling of the host cell endosomal system mediated by T3SS-2 reliefs Pi limitation in the SCV.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,CellNanOs-Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
23
|
Reuter T, Scharte F, Franzkoch R, Liss V, Hensel M. Single cell analyses reveal distinct adaptation of typhoidal and non-typhoidal Salmonella enterica serovars to intracellular lifestyle. PLoS Pathog 2021; 17:e1009319. [PMID: 34143852 PMCID: PMC8244875 DOI: 10.1371/journal.ppat.1009319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/30/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella. Typhoidal Salmonella enterica serovars Typhi (STY) and Paratyphi A (SPA) cause a major disease burden to the human population. The restriction of these pathogens to human hosts limits experimental analyses of molecular mechanisms of diseases. S. enterica serovar Typhimurium is commonly used as surrogate model for typhoidal Salmonella (TS), and allowed the identification of virulence factors for intracellular lifestyle of S. enterica in mammalian host cells. If virulence factors, such as the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) have similar roles for intracellular lifestyle of TS is largely unknown. We analyzed, on single cell level, the intracellular activities of STY and SPA in comparison to STM. STY and SPA deploy SPI2-T3SS to actively manipulate their host cells, but with far lower frequency than STM. Our work supports a model of TS as stealth pathogens that persist in host cells.
Collapse
Affiliation(s)
- Tatjana Reuter
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- iBiOs–integrated Bioimaging Facility Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- iBiOs–integrated Bioimaging Facility Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
24
|
The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress. Commun Biol 2021; 4:520. [PMID: 33947954 PMCID: PMC8096953 DOI: 10.1038/s42003-021-02049-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
During infectious diseases, small subpopulations of bacterial pathogens enter a non-replicating (NR) state tolerant to antibiotics. After phagocytosis, intracellular Salmonella enterica serovar Typhimurium (STM) forms persisters able to subvert immune defenses of the host. Physiological state and sensing properties of persisters are difficult to analyze, thus poorly understood. Here we deploy fluorescent protein reporters to detect intracellular NR persister cells, and to monitor their stress response on single cell level. We determined metabolic properties of NR STM during infection and demonstrate that NR STM persisters sense their environment and respond to stressors. Since persisters showed a lower stress response compared to replicating (R) STM, which was not consequence of lower metabolic capacity, the persistent state of STM serves as protective niche. Up to 95% of NR STM were metabolically active at beginning of infection, very similar to metabolic capacity of R STM. Sensing and reacting to stress with constant metabolic activity supports STM to create a more permissive environment for recurrent infections. Stress sensing and response of persister may be targeted by new antimicrobial approaches. Schulte et al. show that non-replicating Salmonella enterica serovar Typhimurium persisters, which are tolerant to antibiotics, sense their environment and respond to stressors. This study suggests that stress sensing and response of persisters may be targeted as an antimicrobial strategy.
Collapse
|
25
|
Röder J, Felgner P, Hensel M. Comprehensive Single Cell Analyses of the Nutritional Environment of Intracellular Salmonella enterica. Front Cell Infect Microbiol 2021; 11:624650. [PMID: 33834004 PMCID: PMC8021861 DOI: 10.3389/fcimb.2021.624650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The facultative intracellular pathogen Salmonella enterica Typhimurium (STM) resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). STM is able to obtain all nutrients required for rapid proliferation, although being separated from direct access to host cell metabolites. The formation of specific tubular membrane compartments, called Salmonella-induced filaments (SIFs) are known to provides bacterial nutrition by giving STM access to endocytosed material and enabling proliferation. Additionally, STM expresses a range of nutrient uptake system for growth in nutrient limited environments to overcome the nutrition depletion inside the host. By utilizing dual fluorescence reporters, we shed light on the nutritional environment of intracellular STM in various host cells and distinct intracellular niches. We showed that STM uses nutrients of the host cell and adapts uniquely to the different nutrient conditions. In addition, we provide further evidence for improved nutrient supply by SIF formation or presence in the cytosol of epithelial cells, and the correlation of nutrient supply to bacterial proliferation.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs – Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
26
|
Cohen E, Azriel S, Auster O, Gal A, Zitronblat C, Mikhlin S, Scharte F, Hensel M, Rahav G, Gal-Mor O. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog 2021; 17:e1009451. [PMID: 33739988 PMCID: PMC8011750 DOI: 10.1371/journal.ppat.1009451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds. During Salmonella enterica evolution, many different ecological niches have been effectively occupied by this highly diverse bacterial pathogen. While many S. enterica serovars successfully maintained their ability to infect and colonize in a wide-array of host species, a few biotypes have evolved to colonize and cause a disease in only one or a small group of hosts. The evolutionary dynamic and the mechanisms shaping the host-specificity of Salmonella adapted strains are important to better understand Salmonella pathogenicity and its ecology, but still not fully understood. Here, we report genetic and phenotypic characterization of a S. Typhimurium strain that was isolated from several wild sparrows in Israel. This strain presented unique phenotypic profile that included impaired biofilm formation, high sensitivity to oxidative stress and reduced intracellular replication in non-phagocytic cells. In addition, while this strain was able to cause high inflammatory disease in an avian host, it was highly attenuated in the mouse model. Genome analysis identified that specific genetic signatures found in the sparrow strain are more frequently associated with poultry isolates than clinical isolates of S. Typhimurium. These genetic features are expected to accumulatively contribute toward the adaptation of this strain to birds.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shalevet Azriel
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Oren Auster
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Adiv Gal
- Faculty of Sciences, Kibbutzim College, Tel-Aviv Israel
| | | | | | - Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
27
|
Schulte M, Olschewski K, Hensel M. Fluorescent protein-based reporters reveal stress response of intracellular Salmonella enterica at level of single bacterial cells. Cell Microbiol 2020; 23:e13293. [PMID: 33222378 DOI: 10.1111/cmi.13293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Intracellular bacteria such as Salmonella enterica are confronted with a broad array of defence mechanisms of their mammalian host cells. The ability to sense host cell-imposed damages, and to mount efficient stress responses are crucial for survival and proliferation of intracellular pathogens. The various combinations of host defence mechanisms acting on intracellular bacteria and their individual response also explain the occurrence of distinct subpopulations of intracellular S. enterica such as dormant or persisting, slowly or rapidly replicating cells. Here we describe a set of fluorescence protein (FP)-based reporter strains that were used to monitor the expression of cytoplasmic or periplasmic stress response systems of single bacterial cells. This is mediated by a fast-maturing FP as reporter for induction of stress response genes. We evaluated slower maturing FPs for a second function, that is, the analysis of the status of intracellular proliferation of pathogens. The combination of two FPs allows, at level of single bacterial cells, the interrogation of stress response and intracellular proliferation. Application of these reporters to S. enterica allowed us to detect and quantify distinct intracellular subpopulations with different levels of stress response and proliferation.
Collapse
Affiliation(s)
- Marc Schulte
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Katharina Olschewski
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
28
|
Chen J, Karanth S, Pradhan AK. Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2020; 2:100045. [DOI: 10.1016/j.jafr.2020.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Xie Z, Zhang Y, Huang X. Evidence and speculation: the response of Salmonella confronted by autophagy in macrophages. Future Microbiol 2020; 15:1277-1286. [PMID: 33026883 DOI: 10.2217/fmb-2020-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from self-limited gastroenteritis to typhoid fever. Macrophages are immune cells that engulf and restrict Salmonella. These cells will carry Salmonella into the circulatory system and provoke a systemic infection. Therefore, the interaction between macrophages and intracellular Salmonella is vital for its pathogenicity. As one of the immune responses of macrophages, autophagy, along with the fusion of autophagosomes with lysosomes, occupies an important position in eliminating Salmonella. However, Salmonella that can overcome cellular defensive responses and infect neighboring cells must derive strategies to escape autophagy. This review introduces novel findings on Salmonella and macrophage autophagy as a mechanism against infection and explores the strategies used by Salmonella to escape autophagy.
Collapse
Affiliation(s)
- Zhongyi Xie
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.,International Genome Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ying Zhang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
30
|
Sukumaran A, Woroszchuk E, Ross T, Geddes-McAlister J. Proteomics of host-bacterial interactions: new insights from dual perspectives. Can J Microbiol 2020; 67:213-225. [PMID: 33027598 DOI: 10.1139/cjm-2020-0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass-spectrometry (MS)-based proteomics is a powerful and robust platform for studying the interactions between biological systems during health and disease. Bacterial infections represent a significant threat to global health and drive the pursuit of novel therapeutic strategies to combat emerging and resistant pathogens. During infection, the interplay between a host and pathogen determines the ability of the microbe to survive in a hostile environment and promotes an immune response by the host as a protective measure. It is the protein-level changes from either biological system that define the outcome of infection, and MS-based proteomics provides a rapid and effective platform to identify such changes. In particular, proteomics detects alterations in protein abundance, quantifies protein secretion and (or) release, measures an array of post-translational modifications that influence signaling cascades, and profiles protein-protein interactions through protein complex and (or) network formation. Such information provides new insight into the role of known and novel bacterial effectors, as well as the outcome of host cell activation. In this Review, we highlight the diverse applications of MS-based proteomics in profiling the relationship between bacterial pathogens and the host. Our work identifies a plethora of strategies for exploring mechanisms of infection from dual perspectives (i.e., host and pathogen), and we suggest opportunities to extrapolate the current knowledgebase to other biological systems for applications in therapeutic discovery.
Collapse
Affiliation(s)
- Arjun Sukumaran
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elizabeth Woroszchuk
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Taylor Ross
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
31
|
Begić M, Josić D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis 2020; 41:1718-1739. [PMID: 32901923 DOI: 10.1002/elps.202000106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Almost all known foodborne pathogens are able to form biofilms as one of the strategies for survival under harsh living conditions, to ward off the inhibition and the disinfection during food production, transport and storage, as well as during cleaning and sanitation of corresponding facilities. Biofilms are communities where microbial cells live under constant intracellular interaction and communication. Members of the biofilm community are embedded into extracellular matrix that contains polysaccharides, DNA, lipids, proteins, and small molecules that protect microorganisms and enable their intercellular communication under stress conditions. Membrane vesicles (MVs) are produced by both Gram positive and Gram negative bacteria. These lipid membrane-enveloped nanoparticles play an important role in biofilm genesis and in communication between different biofilm members. Furthermore, MVs are involved in other important steps of bacterial life like cell wall modeling, cellular division, and intercellular communication. They also carry toxins and virulence factors, as well as nucleic acids and different metabolites, and play a key role in host infections. After entering host cells, MVs can start many pathologic processes and cause serious harm and cell death. Prevention and inhibition of both biofilm formation and shedding of MVs by foodborne pathogens has a very important role in food production, storage, and food safety in general. Better knowledge of biofilm formation and maintaining, as well as the role of microbial vesicles in this process and in the process of host cells' infection is essential for food safety and prevention of both food spoilage and host infection.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Djuro Josić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
32
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
33
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
34
|
Galeev A, Suwandi A, Bakker H, Oktiviyari A, Routier FH, Krone L, Hensel M, Grassl GA. Proteoglycan-Dependent Endo-Lysosomal Fusion Affects Intracellular Survival of Salmonella Typhimurium in Epithelial Cells. Front Immunol 2020; 11:731. [PMID: 32411142 PMCID: PMC7201003 DOI: 10.3389/fimmu.2020.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
Proteoglycans (PGs) are glycoconjugates which are predominately expressed on cell surfaces and consist of glycosaminoglycans (GAGs) linked to a core protein. An initial step of GAGs assembly is governed by the β-D-xylosyltransferase enzymes encoded in mammals by the XylT1/XylT2 genes. PGs are essential for the interaction of a cell with other cells as well as with the extracellular matrix. A number of studies highlighted a role of PGs in bacterial adhesion, invasion, and immune response. In this work, we investigated a role of PGs in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection of epithelial cells. Gentamicin protection and chloroquine resistance assays were applied to assess invasion and replication of S. Typhimurium in wild-type and xylosyltransferase-deficient (ΔXylT2) Chinese hamster ovary (CHO) cells lacking PGs. We found that S. Typhimurium adheres to and invades CHO WT and CHO ΔXylT2 cells at comparable levels. However, 24 h after infection, proteoglycan-deficient CHO ΔXylT2 cells are significantly less colonized by S. Typhimurium compared to CHO WT cells. This proteoglycan-dependent phenotype could be rescued by addition of PGs to the cell culture medium, as well as by complementation of the XylT2 gene. Chloroquine resistance assay and immunostaining revealed that in the absence of PGs, significantly less bacteria are associated with Salmonella-containing vacuoles (SCVs) due to a re-distribution of endocytosed gentamicin. Inhibition of endo-lysosomal fusion by a specific inhibitor of phosphatidylinositol phosphate kinase PIKfyve significantly increased S. Typhimurium burden in CHO ΔXylT2 cells demonstrating an important role of PGs for PIKfyve dependent vesicle fusion which is modulated by Salmonella to establish infection. Overall, our results demonstrate that PGs influence survival of intracellular Salmonella in epithelial cells via modulation of PIKfyve-dependent endo-lysosomal fusion.
Collapse
Affiliation(s)
- Alibek Galeev
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ade Oktiviyari
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Lena Krone
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| |
Collapse
|
35
|
Alberdi L, Vergnes A, Manneville JB, Tembo DL, Fang Z, Zhao Y, Schroeder N, Dumont A, Lagier M, Bassereau P, Redondo-Morata L, Gorvel JP, Méresse S. Regulation of kinesin-1 activity by the Salmonella enterica effectors PipB2 and SifA. J Cell Sci 2020; 133:133/9/jcs239863. [PMID: 32409568 DOI: 10.1242/jcs.239863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, Salmonella effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments. In particular, they allow the formation of tubules from the vacuole and their extension along the microtubule cytoskeleton, and thus promote membrane exchanges and nutrient supply. We have developed in vitro and in cellulo assays to better understand the specific role played by these two effectors in the recruitment and regulation of kinesin-1. Our results reveal a specific interaction between the two effectors and indicate that, contrary to what studies on infected cells suggested, interaction with PipB2 is sufficient to relieve the autoinhibition of kinesin-1. Finally, they suggest the involvement of other Salmonella effectors in the control of the activity of this molecular motor.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | | | - Ziyan Fang
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yaya Zhao
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Nina Schroeder
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Dumont
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Margaux Lagier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 1 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
36
|
Göser V, Kehl A, Röder J, Hensel M. Role of the ESCRT‐III complex in controlling integrity of the
Salmonella
‐containing vacuole. Cell Microbiol 2020; 22:e13176. [DOI: 10.1111/cmi.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Vera Göser
- Abt. MikrobiologieFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
| | - Alexander Kehl
- Abt. MikrobiologieFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
- Institut für HygieneUniversität Münster Münster Germany
- CellNanOs, Center for Cellular NanoanalyticsFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
| | - Jennifer Röder
- Abt. MikrobiologieFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
| | - Michael Hensel
- Abt. MikrobiologieFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
- CellNanOs, Center for Cellular NanoanalyticsFachbereich Biologie/Chemie, Universität Osnabrück Osnabrück Germany
| |
Collapse
|
37
|
Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere 2019; 4:4/6/e00796-19. [PMID: 31826974 PMCID: PMC6908425 DOI: 10.1128/msphere.00796-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella. In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism. The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S. Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S. Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S. Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S. Typhimurium and cellular functions and virulence. IMPORTANCE We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella. In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism.
Collapse
|