1
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
2
|
Coplen CP, Jergovic M, Terner EL, Bradshaw CM, Uhrlaub JL, Nikolich JŽ. Virological, innate, and adaptive immune profiles shaped by variation in route and age of host in murine cytomegalovirus infection. J Virol 2024; 98:e0198623. [PMID: 38619272 PMCID: PMC11092346 DOI: 10.1128/jvi.01986-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
Human cytomegalovirus (hCMV) is a ubiquitous facultative pathogen, which establishes a characteristic latent and reactivating lifelong infection in immunocompetent hosts. Murine CMV (mCMV) infection is widely used as an experimental model of hCMV infection, employed to investigate the causal nature and extent of CMV's contribution to inflammatory, immunological, and health disturbances in humans. Therefore, mimicking natural human infection in mice would be advantageous to hCMV research. To assess the role of route and age at infection in modeling hCMV in mice, we infected prepubescent and young sexually mature C57BL/6 (B6) mice intranasally (i.n., a likely physiological route in humans) and intraperitoneally (i.p., a frequently used experimental route, possibly akin to transplant-mediated infection). In our hands, both routes led to comparable early viral loads and tissue spreads. However, they yielded differential profiles of innate and adaptive systemic immune activation. Specifically, the younger, prepubescent mice exhibited the strongest natural killer cell activation in the blood in response to i.p. infection. Further, the i.p. infected animals (particularly those infected at 12 weeks) exhibited larger anti-mCMV IgG and greater expansion of circulating CD8+ T cells specific for both acute (non-inflationary) and latent phase (inflationary) mCMV epitopes. By contrast, tissue immune responses were comparable between i.n. and i.p. groups. Our results illustrate a distinction in the bloodborne immune response profiles across infection routes and ages and are discussed in light of physiological parameters of interaction between CMV, immunity, inflammation, and health over the lifespan. IMPORTANCE The majority of experiments modeling human cytomegalovirus (hCMV) infection in mice have been carried out using intraperitoneal infection in sexually mature adult mice, which stands in contrast to the large number of humans being infected with human CMV at a young age, most likely via bodily fluids through the nasopharyngeal/oral route. This study examined the impact of the choice of age and route of infection in modeling CMV infection in mice. By comparing young, prepubescent to older sexually mature counterparts, infected either via the intranasal or intraperitoneal route, we discovered substantial differences in deployment and response intensity of different arms of the immune system in systemic control of the virus; tissue responses, by contrast, appeared similar between ages and infection routes.
Collapse
Affiliation(s)
- Christopher P. Coplen
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Mladen Jergovic
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Elana L. Terner
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Christine M. Bradshaw
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Janko Ž. Nikolich
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| |
Collapse
|
3
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
4
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
5
|
Regional immunity of chicken adipose tissue responds to secondary immunity induced by Newcastle disease vaccine via promoting immune activation and weakening lipid metabolism. Poult Sci 2023; 102:102646. [PMID: 37031585 PMCID: PMC10105486 DOI: 10.1016/j.psj.2023.102646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Adipose tissue (AT) is considered as a regional immune organ and plays an important role in the anti-infection immune response. However, the function and mechanism of chicken AT in response to secondary immune response remain poorly understood. Here, we used mRNA and microRNA (miRNA) sequencing technology to survey the transcriptomic landscape of chicken abdominal adipose tissue (AAT) during the first and second immunization with Newcastle disease virus (NDV) vaccine, and carried out bioinformatics analysis, such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, protein-protein interaction (PPI) analysis, and miRNA-mRNA integrated analysis. The results indicated that chicken AAT actively responded to the secondary immune response. DNA replication and cytoskeleton regulation as the regulatory functions of immune activation changed significantly, and weakened lipid metabolism was an effective strategy for the secondary immunity. Mechanically, the regulatory network between the differentially expressed miRNAs (DEMs) and their targeted differentially expressed genes (DEGs), such as miR-206/miR-499-5p-nuclear receptor subfamily 4 group A member 3 (NR4A3)/methylsterol monooxygenase 1 (MSMO1) pathway, was one of the potential key mechanisms by which AAT responded to the secondary immune response. In conclusion, regional immunity of chicken AT responds to secondary immunity by promoting immune activation and weakening lipid metabolism, and this study can instruct future research on antiviral strategy.
Collapse
|
6
|
Wanjalla CN, Gabriel CL, Fuseini H, Bailin SS, Mashayekhi M, Simmons J, Warren CM, Glass DR, Oakes J, Gangula R, Wilfong E, Priest S, Temu T, Newell EW, Pakala S, Kalams SA, Gianella S, Smith D, Harrison DG, Mallal SA, Koethe JR. CD4 + T cells expressing CX3CR1, GPR56, with variable CD57 are associated with cardiometabolic diseases in persons with HIV. Front Immunol 2023; 14:1099356. [PMID: 36865544 PMCID: PMC9971959 DOI: 10.3389/fimmu.2023.1099356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Persons with HIV (PWH) on long-term antiretroviral therapy (ART) have a higher incidence and prevalence of cardiometabolic diseases attributed, in part, to persistent inflammation despite viral suppression. In addition to traditional risk factors, immune responses to co-infections such as cytomegalovirus (CMV) may play an unappreciated role in cardiometabolic comorbidities and offer new potential therapeutic targets in a subgroup of individuals. We assessed the relationship of CX3CR1+, GPR56+, and CD57+/- T cells (termed CGC+) with comorbid conditions in a cohort of 134 PWH co-infected with CMV on long-term ART. We found that PWH with cardiometabolic diseases (non-alcoholic fatty liver disease, calcified coronary arteries, or diabetes) had higher circulating CGC+CD4+ T cells compared to metabolically healthy PWH. The traditional risk factor most correlated with CGC+CD4+ T cell frequency was fasting blood glucose, as well as starch/sucrose metabolites. While unstimulated CGC+CD4+ T cells, like other memory T cells, depend on oxidative phosphorylation for energy, they exhibited higher expression of carnitine palmitoyl transferase 1A compared to other CD4+ T cell subsets, suggesting a potentially greater capacity for fatty acid β-oxidation. Lastly, we show that CMV-specific T cells against multiple viral epitopes are predominantly CGC+. Together, this study suggests that among PWH, CGC+ CD4+ T cells are frequently CMV-specific and are associated with diabetes, coronary arterial calcium, and non-alcoholic fatty liver disease. Future studies should assess whether anti-CMV therapies could reduce cardiometabolic disease risk in some individuals.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hubaida Fuseini
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samuel S. Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua Simmons
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher M. Warren
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David R. Glass
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jared Oakes
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin Wilfong
- Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tecla Temu
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Evan W. Newell
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Suman Pakala
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sara Gianella
- Department of Medicine, University of California, San Diego, CA, United States
| | - David Smith
- Department of Medicine, University of California, San Diego, CA, United States
| | - David G. Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Infectious Disease Section, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
7
|
Yamawaka T, Kitamoto H, Nojima M, Kazama T, Wagatsuma K, Ishigami K, Yamamoto S, Honzawa Y, Matsuura M, Seno H, Nakase H. The association between antigenemia, histology with immunohistochemistry, and mucosal PCR in the diagnosis of ulcerative colitis with concomitant human cytomegalovirus infection. J Gastroenterol 2023; 58:44-52. [PMID: 36287269 PMCID: PMC9825535 DOI: 10.1007/s00535-022-01931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) colitis can be involved in active ulcerative colitis (UC) in patients refractory to steroid and immunosuppressive drugs. Histological examination with colonic biopsy specimens and antigenemia assays are the standard tests for diagnosing HCMV enterocolitis, and we have previously reported the usefulness of mucosal polymerase chain reaction (PCR) methods. However, the associations among histopathological tests, antigenemia assays, and mucosal PCR are unknown. METHODS We retrospectively analyzed 82 UC patients who underwent mucosal biopsy from inflamed colonic tissues for histological evaluation and mucosal PCR to detect HCMV. We analyzed the relationships between the HCMV-DNA copy number in colonic mucosa and other HCMV tests. RESULTS In total, 131 HCMV mucosal PCR tests from 82 UC patients were positive. The HCMV-DNA copy number was significantly higher in patients with positive immunohistochemistry (IHC) (p < 0.01) and was correlated with the number of positive cells for the antigenemia (C7-HRP, p < 0.01; C10/11, p < 0.01). Receiver operating characteristic curve analysis confirmed 1300 copies/μg of HCMV-DNA as the best diagnostic cut-off value to predict positive results of antigenemia (area under the curve = 0.80, 95% CI 0.68-0.93). HCMV-DNA copy number also correlated with the total UCEIS score (p = 0.013) and the bleeding score (p = 0.014). For each individual patient, a positive correlation between the change in total UCEIS score and HCMV-DNA copy number was observed (p = 0.040). CONCLUSION The antigenemia assay and histopathological test with IHC were significantly associated with the HCMV-DNA copy number in colonic tissues. Moreover, endoscopic examination with the UCEIS can help diagnose the HCMV colitis in UC patients.
Collapse
Affiliation(s)
- Tsukasa Yamawaka
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Hiroki Kitamoto
- Department of Gastroenterology and Hepatology, Kyoto University School of Medicine, Kyoto, Japan
| | - Masanori Nojima
- Center for Translational Research, Institute of Medical Science Hospital, University of Tokyo, Tokyo, Japan
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Keisuke Ishigami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Shuji Yamamoto
- Department of Gastroenterology and Hepatology, Kyoto University School of Medicine, Kyoto, Japan
| | - Yusuke Honzawa
- Department of Gastroenterology and Hepatology, Kyoto University School of Medicine, Kyoto, Japan
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University School of Medicine, Kyoto, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To summarize the state of chronic, treated HIV infection and its contribution to accelerated aging, and to evaluate recent research relevant to the study and treatment of aging and senescence. RECENT FINDINGS Chronic treated HIV-1 infection is associated with significant risk of end-organ impairment, non-AIDS-associated malignancies, and accelerated physiologic aging. Coupled with the chronologic aging of the HIV-1-positive population, the development of therapies that target these processes is of great clinical importance. Age-related diseases are partly the result of cellular senescence. Both immune and nonimmune cell subsets are thought to mediate this senescent phenotype, a state of stable cell cycle arrest characterized by sustained release of pro-inflammatory mediators. Recent research in the field of aging has identified a number of 'senotherapeutics' to combat aging-related diseases, pharmacologic agents that act either by selectively promoting the death of senescent cells ('senolytics') or modifying senescent phenotype ('senomorphics'). SUMMARY Senescence is a hallmark of aging-related diseases that is characterized by stable cell cycle arrest and chronic inflammation. Chronic HIV-1 infection predisposes patients to aging-related illnesses and is similarly marked by a senescence-like phenotype. A better understanding of the role of HIV-1 in aging will inform the development of therapeutics aimed at eliminating senescent cells that drive accelerated physiologic aging.
Collapse
|
9
|
Schnittman SR, Hunt PW. Clinical consequences of asymptomatic cytomegalovirus in treated human immunodeficency virus infection. Curr Opin HIV AIDS 2021; 16:168-176. [PMID: 33833209 PMCID: PMC8238090 DOI: 10.1097/coh.0000000000000678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Despite antiretroviral therapy (ART)-mediated viral suppression, people with human immunodeficiency virus (HIV) (PWH) have increased morbidity and mortality. Immune activation and inflammation persist on ART and predict these complications. Over 90% of PWH have cytomegalovirus (CMV) co-infection, and CMV is considered a plausible contributor to this persistent immune activation. RECENT FINDINGS A detailed understanding of the link between CMV and multimorbidity is needed, particularly as research moves toward identifying potential targeted therapeutics to attenuate inflammation-mediated morbidity and mortality in treated HIV. We review the literature on the association between CMV and immune activation as well as multiple end-organ complications including cardiovascular disease, venous thromboembolic disease, metabolic complications, gastrointestinal dysfunction, central nervous system involvement, birth sex-related differences, and the relation to the HIV reservoir. We conclude with a discussion of ongoing therapeutic efforts to target CMV. SUMMARY As CMV is a plausible driver of multiple comorbidities through persistent immune activation in treated HIV, future research is needed and planned to address its causal role as well as to test novel therapeutics in this setting.
Collapse
Affiliation(s)
- Samuel R Schnittman
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
10
|
Hutchinson JA, Kronenberg K, Riquelme P, Wenzel JJ, Glehr G, Schilling HL, Zeman F, Evert K, Schmiedel M, Mickler M, Drexler K, Bitterer F, Cordero L, Beyer L, Bach C, Koestler J, Burkhardt R, Schlitt HJ, Hellwig D, Werner JM, Spang R, Schmidt B, Geissler EK, Haferkamp S. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat Commun 2021; 12:1439. [PMID: 33664251 PMCID: PMC7933278 DOI: 10.1038/s41467-021-21572-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment of advanced melanoma with combined PD-1/CTLA-4 blockade commonly causes serious immune-mediated complications. Here, we identify a subset of patients predisposed to immune checkpoint blockade-related hepatitis who are distinguished by chronic expansion of effector memory CD4+ T cells (TEM cells). Pre-therapy CD4+ TEM cell expansion occurs primarily during autumn or winter in patients with metastatic disease and high cytomegalovirus (CMV)-specific serum antibody titres. These clinical features implicate metastasis-dependent, compartmentalised CMV reactivation as the cause of CD4+ TEM expansion. Pre-therapy CD4+ TEM expansion predicts hepatitis in CMV-seropositive patients, opening possibilities for avoidance or prevention. 3 of 4 patients with pre-treatment CD4+ TEM expansion who received αPD-1 monotherapy instead of αPD-1/αCTLA-4 therapy remained hepatitis-free. 4 of 4 patients with baseline CD4+ TEM expansion given prophylactic valganciclovir and αPD-1/αCTLA-4 therapy remained hepatitis-free. Our findings exemplify how pathogen exposure can shape clinical reactions after cancer therapy and how this insight leads to therapeutic innovations.
Collapse
Affiliation(s)
- James A. Hutchinson
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Kronenberg
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Paloma Riquelme
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen J. Wenzel
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Gunther Glehr
- grid.7727.50000 0001 2190 5763Institute of Functional Genomics and Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Hannah-Lou Schilling
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Zeman
- grid.411941.80000 0000 9194 7179Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- grid.411941.80000 0000 9194 7179Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Schmiedel
- grid.411941.80000 0000 9194 7179Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marion Mickler
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Bitterer
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Laura Cordero
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Beyer
- grid.411941.80000 0000 9194 7179Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Bach
- grid.411668.c0000 0000 9935 6525Department of Medicine V, University Hospital Erlangen, Erlangen, Germany
| | - Josef Koestler
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- grid.411941.80000 0000 9194 7179Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans J. Schlitt
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Hellwig
- grid.411941.80000 0000 9194 7179Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jens M. Werner
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- grid.7727.50000 0001 2190 5763Institute of Functional Genomics and Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Edward K. Geissler
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany ,Personalised Tumour Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology, Regensburg, Germany
| | - Sebastian Haferkamp
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Guo B, Xu P, Chai D, Cao L, Liu L, Song T, Hu S, Chen Y, Yan X, Xu T. gB co-immunization with GP96 enhances pulmonary-resident CD8 T cells and exerts a long-term defence against MCMV pneumonitis. J Cell Mol Med 2020; 24:14426-14440. [PMID: 33155438 PMCID: PMC7754068 DOI: 10.1111/jcmm.16065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection in the respiratory tract leads to pneumonitis in immunocompromised hosts without available vaccine. Considering cytomegalovirus (CMV) mainly invades through the respiratory tract, CMV-specific pulmonary mucosal vaccine development that provides a long-lasting protection against CMV challenge gains our attention. In this study, N-terminal domain of GP96 (GP96-NT) was used as a mucosal adjuvant to enhance the induction of pulmonary-resident CD8 T cells elicited by MCMV glycoprotein B (gB) vaccine. Mice were intranasally co-immunized with 50 μg pgB and equal amount of pGP96-NT vaccine 4 times at 2-week intervals, and then i.n. challenged with MCMV at 16 weeks after the last immunization. Compared with pgB immunization alone, co-immunization with pgB/pGP96-NT enhanced a long-lasting protection against MCMV pneumonitis by significantly improved pneumonitis pathology, enhanced bodyweight, reduced viral burdens and increased survival rate. Moreover, the increased CD8 T cells were observed in lung but not spleen from pgB/pGP96-NT co-immunized mice. The increments of pulmonary CD8 T cells might be mainly due to non-circulating pulmonary-resident CD8 T-cell subset expansion but not circulating CD8 T-cell populations that home to inflammation site upon MCMV challenge. Finally, the deterioration of MCMV pneumonitis by depletion of pulmonary site-specific CD8 T cells in mice that were pgB/pGP96-NT co-immunization might be a clue to interpret the non-circulating pulmonary-resident CD8 T subset expansion. These data might uncover a promising long-lasting prophylactic vaccine strategy against MCMV-induced pneumonitis.
Collapse
Affiliation(s)
- Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peifeng Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lei Cao
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lin Liu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, New York, NY, USA
| | - Shuqun Hu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuling Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianliang Yan
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tie Xu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Emergency, Nanjing Jiangning Hospital, Nanjing, China
| |
Collapse
|
12
|
Abassi L, Cicin-Sain L. The avid competitors of memory inflation. Curr Opin Virol 2020; 44:162-168. [PMID: 33039898 DOI: 10.1016/j.coviro.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
Cytomegaloviruses (CMV) coevolve with their hosts and latently persist in the vast majority of adult mammals. Therefore, persistent T-cell responses to CMV antigens during virus latency offer a fascinating perspective on the evolution of the T-cell repertoire in natural settings. We addressed here the life-long interactions between CMV antigens presented on MHC-I molecules and the CD8 T-cell response. We present the mechanistic evidence from the murine model of CMV infection and put it in context of clinical laboratory results. We will highlight the remarkable parallels in T-cell responses between the two biological systems, and focus in particular on memory inflation as a result of competitive processes, both between viral antigenic peptides and between T-cell receptors on the host's cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Leila Abassi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Germany; Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Germany.
| |
Collapse
|
13
|
Zeeb M, Kerrinnes T, Cicin-Sain L, Guzman CA, Puppe W, Schulz TF, Peters A, Berger K, Castell S, Karch A. Seropositivity for pathogens associated with chronic infections is a risk factor for all-cause mortality in the elderly: findings from the Memory and Morbidity in Augsburg Elderly (MEMO) Study. GeroScience 2020; 42:1365-1376. [PMID: 32648237 PMCID: PMC7525922 DOI: 10.1007/s11357-020-00216-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Immunostimulation by chronic infection has been linked to an increased risk for different non-communicable diseases, which in turn are leading causes of death in high- and middle-income countries. Thus, we investigated if a positive serostatus for pathogens responsible for common chronic infections is individually or synergistically related to reduced overall survival in community dwelling elderly. We used data of 365 individuals from the German MEMO (Memory and Morbidity in Augsburg Elderly) cohort study with a median age of 73 years at baseline and a median follow-up of 14 years. We examined the effect of a positive serostatus at baseline for selected pathogens associated with chronic infections (Helicobacter pylori, Borrelia burgdorferi sensu lato, Toxoplasma gondii, cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1/2, and human herpesvirus 6) on all-cause mortality with multivariable parametric survival models. We found a reduced survival time in individuals with a positive serostatus for Helicobacter pylori (accelerated failure time (AFT) - 15.92, 95% CI - 29.96; - 1.88), cytomegalovirus (AFT - 22.81, 95% CI - 36.41; - 9.22) and Borrelia burgdorferi sensu lato (AFT - 25.25, 95% CI - 43.40; - 7.10), after adjusting for potential confounders. The number of infectious agents an individual was seropositive for had a linear effect on all-cause mortality (AFT per additional infection - 12.42 95% CI - 18.55; - 6.30). Our results suggest an effect of seropositivity for Helicobacter pylori, cytomegalovirus, and Borrelia burgdorferi sensu lato on all-cause mortality in older community dwelling individuals. Further research with larger cohorts and additional biomarkers is required, to assess mediators and molecular pathways of this effect.
Collapse
Affiliation(s)
- Marius Zeeb
- Institute for Medical Information Science, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
- Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Tobias Kerrinnes
- Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), a joint venture of HZI and MHH, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Puppe
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany
- Institute for Virology, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas F Schulz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany
- Institute for Virology, Hannover Medical School (MHH), Hannover, Germany
| | - Annette Peters
- Institute for Medical Information Science, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- German Research Center for Environmental Health, Munich, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Stefanie Castell
- Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Collins N. Dietary Regulation of Memory T Cells. Int J Mol Sci 2020; 21:ijms21124363. [PMID: 32575427 PMCID: PMC7352243 DOI: 10.3390/ijms21124363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Memory T cells are a fundamental component of immunological memory, providing rapid and potent host protection against secondary challenges. As such, memory T cells are key targets in the design of vaccination strategies and cancer immunotherapies, making it critical to understand the factors and mechanisms that regulate their biology. Diet is an environmental feature that impacts virtually all aspects of host physiology. However, the influence of specific dietary regiments and nutritional components on the immune system is only just starting to be uncovered. This article will review literature regarding the impact of diet and nutrition on memory T cell development, maintenance and function. It was recently shown that caloric restriction without undernutrition enhances memory T cell function, while diets high in fiber are also beneficial. However, memory T cell responses are dysfunctional in extreme nutritional states, such as undernutrition and diet-induced obesity. Therefore, diet and host nutritional status are major regulators of memory T cell biology and host fitness. To define the dietary balance required to promote optimal memory T cell responses could allow for the implementation of rational diet-based therapies that prevent or treat disease. Furthermore, that certain dietary regiments can enhance memory T cell function indicates the possibility of harnessing the underlying mechanisms in the design of novel vaccination strategies and cancer immunotherapies.
Collapse
Affiliation(s)
- Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Moss P. "The ancient and the new": is there an interaction between cytomegalovirus and SARS-CoV-2 infection? IMMUNITY & AGEING 2020; 17:14. [PMID: 32501397 PMCID: PMC7251217 DOI: 10.1186/s12979-020-00185-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023]
Abstract
The SARS-CoV-2 pandemic represents one of the greatest infectious challenges to humanity in recent history. One of the striking features of infection is the heterogeneous clinical response with worse outcomes observed in older patients and those with underlying health conditions. To date the potential impact of previous infection history has been poorly investigated as a potential determinant of risk. Cytomegalovirus (CMV), a persistent herpesvirus infection whose prevalence increases with age, is a major modulator of immune function and several observations suggest that infection might act to influence clinical outcome following SARS-CoV-2 infection. In particular, CMV is associated with the acceleration of immune senescence and has been linked to a range of cardiovascular and metabolic disorders. This review addresses mechanisms by which cytomegalovirus infection may act to worsen the clinical outcome of SARS-CoV-2 infection, discusses how these potential links could be investigated, and assesses the potential significance of any findings that emerge.
Collapse
Affiliation(s)
- Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
16
|
Garcia-Valtanen P, Guzman-Genuino RM, Hayball JD, Diener KR. Polyinosinic: Polycytidylic Acid and Murine Cytomegalovirus Modulate Expression of Murine IL-10 and IL-21 in White Adipose Tissue. Viruses 2020; 12:v12050569. [PMID: 32455939 PMCID: PMC7290755 DOI: 10.3390/v12050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid (poly(I:C)) or whole replicative murine cytomegalovirus (MCMV), could stimulate the expression of IL-10 in murine WAT using in vivo and ex vivo approaches. Our results showed that in vivo responses to systemic administration of poly(I:C) resulted in high levels of endogenously-produced IL-10 and IL-21 in WAT. In ex vivo WAT explants, a subset of B-cells increased their endogenous IL-10 expression in response to poly(I:C). Finally, MCMV replication in WAT explants resulted in decreased IL-10 levels, opposite to the effect seen with poly(I:C). Moreover, downregulation of IL-10 correlated with relatively lower number of Bregs. To our knowledge, this is the first report of IL-10 expression by WAT and WAT-associated B-cells in response to viral stimuli.
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Experimental Therapeutics Laboratory, UniSA Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.M.G.-G.); (J.D.H.)
- Correspondence: (P.G.-V.); (K.R.D.); Tel.: +61-(08)-8302-2374 (P.G.-V.); +61-(08)-8302-7393 (K.R.D.)
| | - Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, UniSA Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.M.G.-G.); (J.D.H.)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, UniSA Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.M.G.-G.); (J.D.H.)
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia
| | - Kerrilyn R. Diener
- Experimental Therapeutics Laboratory, UniSA Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.M.G.-G.); (J.D.H.)
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia
- Correspondence: (P.G.-V.); (K.R.D.); Tel.: +61-(08)-8302-2374 (P.G.-V.); +61-(08)-8302-7393 (K.R.D.)
| |
Collapse
|
17
|
Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging. GeroScience 2020; 42:495-504. [PMID: 32162210 PMCID: PMC7205956 DOI: 10.1007/s11357-020-00170-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the largest and most ubiquitous latent persistent viruses. Most humans are infected with CMV early in life, and all immunocompetent humans spend several decades living with CMV. In the vast majority of the hosts, CMV does not cause manifest disease, and CMV therefore can be considered part of normal aging for 50–90% of the human population worldwide. Experimental, clinical, and epidemiological studies suggest that CMV carriage can have nuanced outcomes, including both potentially harmful and potentially beneficial impacts on the host. We here present a summary of the 7th International Workshop on CMV and Immunosenescence, covering various aspects of the interplay between CMV and its mammalian hosts in the context of virus spread, immune evasion, antiviral immunity, as well as the impact on health span and aging.
Collapse
|
18
|
Abstract
Inflammation is a broad term that refers to a collection of carefully balanced programs in the body. These pathways are essential for detecting invading microorganisms, controlling the spread of infection, and instructing appropriate immune responses to eliminate pathogens. During aging there is deterioration of important regulatory mechanisms, giving rise to persistent low-grade inflammation that drives chronic conditions such as metabolic dysregulation, immune senescence, and cognitive decline. Understanding this aspect of the pathobiology of aging is key to uncovering the source(s) and cause(s) of age-related inflammation that underlies disease.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Physiology, University of California, 1550 4th St, San Francisco, CA, 94158, USA
| |
Collapse
|
19
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|