1
|
Soverina S, Gilliland HN, Olive AJ. Pathogenicity and virulence of Mycobacterium abscessus. Virulence 2025; 16:2508813. [PMID: 40415550 PMCID: PMC12118445 DOI: 10.1080/21505594.2025.2508813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus (Mab) are an increasing cause of human disease. While the majority of immunocompetent hosts control Mab infections, the robust survival of Mab within the environment has shaped survival in human cells to help drive persistence and cause inflammatory damage in susceptible individuals. With high intrinsic resistance to antibiotics, there is an important need to fully understand how Mab causes infection, define protective host pathways that control disease, and develop new strategies to treat those at high risk. This review will examine the existing literature related to host-Mab interactions with a focus on virulence, the host response, and therapy development. The goal is to highlight key gaps in our understanding and describe novel approaches to encourage new research avenues that better define the pathogenesis and host response against this increasingly important human pathogen.
Collapse
Affiliation(s)
- Soledad Soverina
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Haleigh N. Gilliland
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Li J, Li J, Li A, Tan Z, Fan J, He S, Guo Q, Xu L, Chu H. The Rough Morphotype of Mycobacterium abscessus Enhances Its Virulence Through ROS/p65/NLRP3/GSDMD-Mediated Macrophage Pyroptosis. Clin Exp Pharmacol Physiol 2025; 52:e70034. [PMID: 40251468 DOI: 10.1111/1440-1681.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 04/20/2025]
Abstract
The rough morphotype of Mycobacterium abscessus exhibits significantly higher virulence compared to the smooth morphotype, yet the underlying molecular mechanisms remain incompletely understood. Pyroptosis in macrophages plays a pivotal role in lung tissue damage; however, its specific involvement in Mycobacterium abscessus infection remains to be fully clarified. In this study, we identified that the rough morphotype of Mycobacterium abscessus upregulates the ROS/p65/NLRP3/GSDMD signalling pathway, thereby mediating pyroptosis in THP-1-derived macrophages. This heightened ability to induce macrophage pyroptosis is attributed to the bacterium's capacity to sustain intracellular viability and proliferation. These findings offer valuable insights into the virulence mechanisms of Mycobacterium abscessus and provide a foundation for future therapeutic interventions.
Collapse
Affiliation(s)
- Jingren Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Juan Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Liyun Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Basher M, Gur M, Meir M. Insights on the Pathogenesis of Mycobacterium abscessus Infection in Patients with Cystic Fibrosis. J Clin Med 2025; 14:3492. [PMID: 40429486 PMCID: PMC12112745 DOI: 10.3390/jcm14103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
People with CF (pwCF) have a significant risk for pulmonary infections with non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus (Mab). Mab is an emerging pathogen, which causes pulmonary infections in patients with chronic lung diseases, particularly CF; Mab pulmonary disease leads to progressive pulmonary dysfunction and increased morbidity and mortality. Despite advances in CF care, including CFTR modulators (CFTRm), Mab continues to pose a therapeutic challenge, with significant long-term medical burden. This review provides insights into the complex host-pathogen interplay of Mab infections in pwCF. It provides a detailed overview of Mab bacterial virulence factors, including biofilm formation, secretion systems, the virulence-associated rough morphotype, and antibiotic resistance mechanisms. This review also summarizes features conferring susceptibility of the CF host to Mab infections, alongside the contribution of the CF-host environment to the pathogenesis of Mab infection, such as antibiotic-derived microbial selection, within-host mycobacterial evolution, and interactions with co-pathogens such as Pseudomonas aeruginosa (PA). Finally, the therapeutic implications and novel treatments for Mab are discussed, considering the complex host-pathogen interplay.
Collapse
Affiliation(s)
- Mai Basher
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Gur
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Pediatric Pulmonary Institute and CF Center, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Meir
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
- Pediatric Infectious Diseases Unit, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
4
|
Dartois V, Lan T, Ganapathy US, Wong CF, Sarathy JP, Jimenez DC, Alshiraihi IM, Lam H, Rodriguez S, Xie M, Soto-Ojeda M, Jackson M, Wheat W, Dillman NC, Kostenkova K, Schmitt J, Mann L, Richter A, Imming P, Sarathy J, Kaya F, Paruchuri S, Tatek B, Folvar C, Proietto J, Zimmerman M, Gonzalez-Juarrero M, Aldrich CC, Dick T. Next-generation rifamycins for the treatment of mycobacterial infections. Proc Natl Acad Sci U S A 2025; 122:e2423842122. [PMID: 40310456 PMCID: PMC12067261 DOI: 10.1073/pnas.2423842122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 05/02/2025] Open
Abstract
Mycobacterium abscessus is a rapidly growing nontuberculous Mycobacterium causing severe pulmonary infections, especially in immunocompromised individuals and patients with underlying lung conditions like cystic fibrosis (CF). While rifamycins are the pillar of tuberculosis treatment, their efficacy against M. abscessus lung disease is severely compromised by intrabacterial ADP-ribosylation. Additionally, rifamycins induce cytochrome P450 3A4 (CYP3A4), a major human drug-metabolizing enzyme, further limiting their use in patients with comorbidities that require treatment with CYP3A4 substrates such as CF and HIV coinfection. We chemically reengineered rifabutin to enhance its potency against M. abscessus by blocking intrabacterial inactivation and eliminate drug-drug interactions by removing induction of CYP3A4 gene expression. We have designed and profiled a series of C25-substituted derivatives resistant to intracellular inactivation and lacking CYP3A4 induction, while retaining excellent pharmacological properties. Against Mycobacterium tuberculosis, devoid of ADP-ribosyltransferase, the frontrunners are equipotent to rifabutin, suggesting superior clinical utility since they no longer come with the drug interaction liability typical of rifamycins. Prioritized compounds demonstrated superior antibacterial activity against a panel of M. abscessus clinical isolates, were highly bactericidal against replicating and drug-tolerant nonreplicating bacteria in caseum surrogate and were active against intracellular bacteria. As single agents, these rifamycins were as effective as a standard-of-care four-drug combination in a murine model of M. abscessus lung infection.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ07110
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ07110
| | - Chui Fann Wong
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Jickky P. Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Diana C. Jimenez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Ilham M. Alshiraihi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Ha Lam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Suyapa Rodriguez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Maritza Soto-Ojeda
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - William Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Nathan C. Dillman
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Kateryna Kostenkova
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Jake Schmitt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Lea Mann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)06120, Germany
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ07110
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Sindhuja Paruchuri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Betelhem Tatek
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Camilla Folvar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Julianna Proietto
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ07110
- Department of Microbiology and Immunology, Georgetown University, Washington, DC20057
| |
Collapse
|
5
|
Zhang M, Qi L, Li J, Yuan N, Zhai Y, Hao M, Zhou D, Liu W, Jin Y, Wang A. SIRT2 inhibition enhances mitochondrial apoptosis in Brucella-infected bovine placental trophoblast cells. Vet Res 2025; 56:97. [PMID: 40317067 PMCID: PMC12049057 DOI: 10.1186/s13567-025-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 05/04/2025] Open
Abstract
Brucella is a successful pathogen that employs a plethora of immune evasion mechanisms. This contributes to pathogenesis and persistence and limits the efficacy of available treatments. An increasing understanding of host‒pathogen interactions suggests that integrating host-directed strategies with existing anti-Brucella treatments could lead to more effective bacterial clearance and a reduction in drug-resistant strains. SIRT2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase found in mammals. It can deacetylate various transcription factors and regulatory proteins, playing crucial roles in host‒pathogen interactions and pathogen infection-induced apoptosis. In this study, we investigated the role of SIRT2 in Brucella-induced cell apoptosis using bovine placental trophoblast cells. Our results indicate that B. abortus A19 infection upregulates SIRT2 protein expression and significantly induces mitochondrial apoptosis in these cells. Furthermore, inhibition of SIRT2 exacerbates B. abortus A19-induced mitochondrial apoptosis and markedly inhibits intracellular bacterial survival. These results prove the role of SIRT2 in Brucella pathogenesis and the mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - NingQiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China.
| |
Collapse
|
6
|
Lv H, Li X, Peng Q, Niu X, Meng C, Niu L, Zhang S, Li P, Jiao H, Wang Z, Zhou Z. SodC is responsible for oxidative stress resistance and pathogenicity of Corynebacterium pseudotuberculosis, and the sodC-deleted C. pseudotuberculosis vaccine provides immunity in mice. Vet Microbiol 2025; 304:110484. [PMID: 40120522 DOI: 10.1016/j.vetmic.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Corynebacterium pseudotuberculosis causes chronic inflammatory infectious diseases in animals and humans. Resistance to adverse environments, including oxidative stress, is required for the survival and pathogenicity of C. pseudotuberculosis. Superoxide dismutase (SOD) is a key enzyme to resist oxidative stress. However, the role of SODs in C. pseudotuberculosis has not been reported. In this study, we addressed this question using C. pseudotuberculosis XH02, sodA deleted (XH02ΔsodA), and sodC deleted (XH02ΔsodC) strains. We found that sodA or sodC deletion reduced the pathogenicity of C. pseudotuberculosis in mice, decreased bacterial loads and histopathological lesions in the infected organs. In addition, the deletion of sodC in C. pseudotuberculosis significantly decreased IL-1β secretion, lactate dehydrogenase (LDH) release, and propidium iodide (PI) uptake of the infected J774A.1 macrophages. Furthermore, sodC deletion weakened the biofilm formation ability of C. pseudotuberculosis, reduced the survival of C. pseudotuberculosis within macrophages, and decreased the ability of C. pseudotuberculosis to resist oxidative stress. We observed that mutations at H94E, H96E, H111A, and H166E reduced the enzyme activity of SodC and reduced the resistance to oxidative stress. Finally, XH02ΔsodC immunization in mice increased specific IgG level and CD4+/CD8+ T cells ratio, and protected mice against C. pseudotuberculosis challenge. Thus, this study confirmed that SodC is an important virulence-related factor of C. pseudotuberculosis, and plays crucial roles in oxidative stress resistance. XH02ΔsodC can be used as a potential candidate attenuated vaccine to prevent and control C. pseudotuberculosis infection.
Collapse
Affiliation(s)
- Hong Lv
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xincan Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Qiuyue Peng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaoxin Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Chi Meng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Luting Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Sixin Zhang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Pei Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zuoyong Zhou
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| |
Collapse
|
7
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
10
|
Shahi A, Kidane D. Decoding mitochondrial DNA damage and repair associated with H. pylori infection. Front Cell Infect Microbiol 2025; 14:1529441. [PMID: 39906209 PMCID: PMC11790445 DOI: 10.3389/fcimb.2024.1529441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial genomic stability is critical to prevent various human inflammatory diseases. Bacterial infection significantly increases oxidative stress, driving mitochondrial genomic instability and initiating inflammatory human disease. Oxidative DNA base damage is predominantly repaired by base excision repair (BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review, we summarize the molecular mechanisms of spontaneous and H. pylori infection-associated oxidative mtDNA damage, mtDNA replication stress, and its impact on innate immune signaling. Additionally, we discuss how mutations located on mitochondria targeting sequence (MTS) of BER genes may contribute to mtDNA genome instability and innate immune signaling activation. Overall, the review summarizes evidence to understand the dynamics of mitochondria genome and the impact of mtBER in innate immune response during H. pylori-associated pathological outcomes.
Collapse
Affiliation(s)
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
11
|
Touré H, Durand N, Rincheval V, Girard-Misguich F, Guénal I, Herrmann JL, Szuplewski S. Remote disruption of intestinal homeostasis by Mycobacterium abscessus is detrimental to Drosophila survival. Sci Rep 2024; 14:30775. [PMID: 39730463 DOI: 10.1038/s41598-024-80994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis. Mechanistically, Mabs remotely induces a self-damaging oxidative burst, leading to excessive differentiation of intestinal stem cells into enterocytes. We demonstrated that the subsequent increased intestinal renewal is mediated by both the Notch and JAK/STAT pathways and is deleterious to Drosophila survival. In conclusion, this work highlights that the ability of Mabs to induce an exacerbated and self-damaging response in the host contributes to its pathogenesis.
Collapse
Affiliation(s)
- Hamadoun Touré
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| | - Nicolas Durand
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | | | - Fabienne Girard-Misguich
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Jean-Louis Herrmann
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, 92380, Garches, France
| | | |
Collapse
|
12
|
Chen X, Wang L, Cheng Q, Deng Z, Tang Y, Yan Y, Xie L, Li X. Multiple myeloma exosomal miRNAs suppress cGAS-STING antiviral immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167457. [PMID: 39134287 DOI: 10.1016/j.bbadis.2024.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Liwen Wang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Qian Cheng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Zuqun Deng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yishu Tang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yuhan Yan
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Linzhi Xie
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China.
| |
Collapse
|
13
|
Yang H, Sun P, Zhou S, Tang Y, Li S, Li W, Yu X, Liu H, Wu Y. Chlamydia psittaci infection induces IFN-I and IL-1β through the cGAS-STING-IRF3/NLRP3 pathway via mitochondrial oxidative stress in human macrophages. Vet Microbiol 2024; 299:110292. [PMID: 39581075 DOI: 10.1016/j.vetmic.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Chlamydia psittaci (C. psittaci) is a multi-host pathogen that elicits robust innate immune responses in macrophages. Chlamydiae target host mitochondria to manipulate the cellular fate and metabolic functions. However, the effect of C. psittaci on the host mitochondria remains obscure. This study investigated how C. psittaci, post-infection in human macrophages, induces mitochondrial oxidative stress and damage to activate the cGAS-STING-IRF3/NLRP3 pathway for IFN-I and IL-1β production. Results demonstrate that C. psittaci increased mitochondrial ROS (mtROS) production. This induced the release of oxidized mitochondrial DNA (mtDNA) into the cytoplasm of macrophages. It also augmented IFN-I and IL-1β production dependent on the cGAS-STING pathway. Macrophages pre-treated with mtROS inhibitor mito-TEMPO displayed reduced oxidized mtDNA. This consequently lowered IFN-I and IL-1β production via the cGAS-STING pathway induced by C. psittaci. Additionally, we found that mtROS production may inhibit C. psittaci proliferation through the synergistic action of IFN-I and IL-1β. In conclusion, our study reveals that C. psittaci induces mtROS production leading to mtDNA release. This activates the cGAS-STING-IRF3/NLRP3 pathway to increase IFN-I and IL-1β production. This study elucidates a novel mechanism of bacterial pathogen activation in the cGAS-STING pathway. This reveals the molecular mechanisms underlying the immune response to C. psittaci infection and proposes potential targets for the treatment of C. psittaci related diseases.
Collapse
Affiliation(s)
- Hongyu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Peiyuan Sun
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shi Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Xiang Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Hanying Liu
- Health Management Medicine Center, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
14
|
Roh T, Seo W, Won M, Yang WS, Sapkota A, Park EJ, Yun SH, Jeon SM, Kim KT, Lee B, Ryu G, Lee SH, Shin JM, Shin HJ, Kim YJ, Lee Y, Chung C, Song IC, Song HK, Jo EK. The inflammasome-activating poxvirus peptide IAMP29 promotes antimicrobial and anticancer responses. Exp Mol Med 2024; 56:2475-2490. [PMID: 39511430 PMCID: PMC11612179 DOI: 10.1038/s12276-024-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
Poxviruses are implicated in a variety of infectious diseases; however, little is known about the molecular mechanisms that underlie the immune response during poxvirus infection. We investigated the function and mechanisms of the monkeypox virus envelope protein (A30L) and its core peptide (IAMP29) during the activation of innate immune responses. The A30L protein and its core peptide, IAMP29 (a 29-amino-acid inflammasome-activating peptide encompassing His40 to Asp69 of A30L), strongly activated the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome by inducing the production of mitochondrial reactive oxygen species in human monocytes. Specifically, IAMP29 triggered metabolic reprogramming toward glycolysis and interacted with pyruvate kinase M isoforms (PKM1 and PKM2), thus activating the NLRP3 inflammasome and interleukin (IL)-1β production in human monocytes and murine macrophages. In human primary monocyte-derived macrophages, IAMP29-induced inflammasome activation promoted an antimicrobial response to rapidly growing non-tuberculous mycobacteria. Furthermore, IAMP29 exhibited cytotoxic activity against leukemia cells, which was mediated by pyroptosis and apoptosis. These findings provide insights into the immunological function of the poxvirus envelope peptide and suggest its therapeutic potential.
Collapse
Affiliation(s)
- Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Wonhyoung Seo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Minho Won
- Department of Biochemistry, Chungnam National University College of Natural Sciences, Daejeon, Republic of Korea
| | - Woo Seok Yang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sung-Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bomi Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Gyoungah Ryu
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Shi W, Zhou Q, Lu L, Zhang Y, Zhang H, Pu Y, Yin L. Copper induced cytosolic escape of mitochondrial DNA and activation of cGAS-STING-NLRP3 pathway-dependent pyroptosis in C8-D1A cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117085. [PMID: 39321529 DOI: 10.1016/j.ecoenv.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Copper, a vital mineral nutrient, possesses redox qualities that make it both beneficial and toxic to organisms. Excessive environmental copper exposure can result in neurological damage and cognitive decline in humans. Astrocytes, the predominant glial cells in the brain, are particularly vulnerable to pollutants, but the mechanism of copper-induced damage to astrocytes remains elusive. The aim of this study was to determine the role of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in initiating NLRP3 inflammasome-induced astrocyte pyroptosis and chronic inflammation under conditions of copper overload. Our findings indicated that copper exposure elevated mitochondrial ROS (mtROS) levels, resulting in mitochondrial damage in astrocytes. This damage caused the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activated the cGAS-STING pathway. This activation resulted in interactions between STING and NLRP3 proteins, facilitating the assembly of the NLRP3 inflammasome and inducing pyroptosis. Furthermore, depletion of mtROS mitigated copper-induced mitochondrial damage in astrocytes and reduced mtDNA leakage. Pharmacological inhibition of STING or STING transfection further reversed copper-induced pyroptosis and the inflammatory response. In conclusion, this study demonstrated that the leakage of mtDNA into the cytoplasm and the subsequent activation of the cGAS-STING-NLRP3 pathway may be potential mechanisms underlying copper-induced pyroptosis in astrocytes. These findings provided new insights into the toxicity of copper.
Collapse
Affiliation(s)
- Wei Shi
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Qian Zhou
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Lu Lu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Ying Zhang
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hu Zhang
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Yuepu Pu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Lihong Yin
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
16
|
Sapkota A, Park EJ, Kim YJ, Heo JB, Nguyen TQ, Heo BE, Kim JK, Lee SH, Kim SI, Choi YJ, Roh T, Jeon SM, Jang M, Heo HJ, Whang J, Paik S, Yuk JM, Kim JM, Song GY, Jang J, Jo EK. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed Pharmacother 2024; 179:117313. [PMID: 39167844 DOI: 10.1016/j.biopha.2024.117313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Mycobacteroides abscessus (Mabc) is a rapidly growing nontuberculous mycobacterium that poses a considerable challenge as a multidrug-resistant pathogen causing chronic human infection. Effective therapeutics that enhance protective immune responses to Mabc are urgently needed. This study introduces trans-3,5,4'-trimethoxystilbene (V46), a novel resveratrol analogue with autophagy-activating properties and antimicrobial activity against Mabc infection, including multidrug-resistant strains. Among the resveratrol analogues tested, V46 significantly inhibited the growth of both rough and smooth Mabc strains, including multidrug-resistant strains, in macrophages and in the lungs of mice infected with Mabc. Additionally, V46 substantially reduced Mabc-induced levels of pro-inflammatory cytokines and chemokines in both macrophages and during in vivo infection. Mechanistic analysis showed that V46 suppressed the activation of the protein kinase B/Akt-mammalian target of rapamycin signaling pathway and enhanced adenosine monophosphate-activated protein kinase signaling in Mabc-infected cells. Notably, V46 activated autophagy and the nuclear translocation of transcription factor EB, which is crucial for antimicrobial host defenses against Mabc. Furthermore, V46 upregulated genes associated with autophagy and lysosomal biogenesis in Mabc-infected bone marrow-derived macrophages. The combination of V46 and rifabutin exerted a synergistic antimicrobial effect. These findings identify V46 as a candidate host-directed therapeutic for Mabc infection that activates autophagy and lysosomal function via transcription factor EB.
Collapse
Affiliation(s)
- Asmita Sapkota
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong Beom Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University, School of Medicine, Daegu, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Soo In Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yoon-Jung Choi
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Taylor Roh
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Min Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Marnpyung Jang
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hae Joon Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center & Basic Research Section, The Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
17
|
Ying S, Jihong R, Wen S, Chunfang W. Mycobacterium intracellulare mediates macrophage pyroptosis by activating AIM2 and NLRP3 inflammasomes. Vet Res Commun 2024; 48:3445-3454. [PMID: 39145856 DOI: 10.1007/s11259-024-10505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Clinically, the incidence of nontuberculous mycobacteria (NTM) lung disease is on the rise, and Mycobacterium intracellulare (M. intracellulare) has attracted much attention as a common opportunistic pathogen in clinical practice. So it is very important to study its immunopathogenic mechanism. In this study, the mechanism of M. intracellulare induced pyroptosis of macrophage was investigated. As shown in Fig. 1, the secretion of IL-1β and IL-18 in J774A.1 cells increased with time after M. intracellulare infection and was affected by caspase-1 activation and K + efflux, while caspase-1 was significantly expressed in infected cells. Further from Fig. 2, NLRP3,AIM2,ASC proteins were significantly expressed in J774A.1 cells after infection, indicating that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasome were involved in the infection process. In addition, when caspase-1 activity and K + efflux were inhibited, the expression of related proteins was significantly reduced. It indicates that the activation of NLRP3 and AIM2 is regulated by caspase-1 and K+. Figure 3, the percentage of dead cells with cell membrane damage increases after infection and cleavage of GSDMD proteins occurs. In summary, infection of J774A.1 cells with M. intracellulare induces pyroptosis, and this process is mediated by caspase-1. Our study provides information for further understanding of the molecular mechanism of M. intracellulare infection.
Collapse
Affiliation(s)
- Sun Ying
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ren Jihong
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sun Wen
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wang Chunfang
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Street, Changchun City, Jilin Province, 130118, China.
| |
Collapse
|
18
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
19
|
Ahn JH, Jung DH, Kim DY, Lee TS, Kim YJ, Lee YJ, Seo IS, Kim WG, Cho YJ, Shin SJ, Park JH. Impact of IL-1β on lung pathology caused by Mycobacterium abscessus infection and its association with IL-17 production. Microbes Infect 2024; 26:105351. [PMID: 38724000 DOI: 10.1016/j.micinf.2024.105351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Mycobacterium abscessus (MAB), a non-tuberculous mycobacterium (NTM), causes chronic pulmonary inflammation in humans. The NLRP3 inflammasome is a multi-protein complex that triggers IL-1β maturation and pyroptosis through the cleavage of caspase-1. In this study, we investigated the roles of NLRP3 and IL-1β in the host's defense against MAB. The IL-1β production by MAB was completely abolished in NLRP3, but not NLRC4, deficient macrophages. The NLRP3 inflammasome components, which are ASC and caspase-1 were also found to be essential for IL-1β production in response to MAB. NLRP3 and IL-1β deficiency did not affect the intracellular growth of MAB in macrophages, and the bacterial burden in lungs of NLRP3- and IL-1β-deficient mice was also comparable to the burden observed in WT mice. In contrast, IL-1β deficiency ameliorated lung pathology in MAB-infected mice. Notably, the lung homogenates of IL-1β-deficient mice had reduced levels of IL-17, but not IFN-γ and IL-4 when compared with WT counterparts. Furthermore, in vitro co-culture analysis showed that IL-1β signaling was essential for IL-17 production in response to MAB. Finally, we observed that the anti-IL-17 antibody administration moderately mitigated MAB-induced lung pathology. These findings indicated that IL-1β production contribute to MAB-induced lung pathology via the elevation of IL-17 production.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wan-Gyu Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Jin Cho
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; NODCURE, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
20
|
Ferrell KC, Stewart EL, Counoupas C, Triccas JA. Colony morphotype governs innate and adaptive pulmonary immune responses to Mycobacterium abscessus infection in C3HeB/FeJ mice. Eur J Immunol 2024; 54:e2350610. [PMID: 38576227 DOI: 10.1002/eji.202350610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.
Collapse
Affiliation(s)
- Kia C Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Li D, Mo R, Li X, Cheng R, Xie J, Li H, Yang Y, Li S, Li H, Yan Z, Wei S, Idris A, Li X, Feng R. Mammalian orthoreovirus capsid protein σ3 antagonizes RLR-mediated antiviral responses by degrading MAVS. mSphere 2024; 9:e0023624. [PMID: 38757961 PMCID: PMC11332348 DOI: 10.1128/msphere.00236-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.
Collapse
Affiliation(s)
- Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiaoyi Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongrong Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shasha Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
22
|
Bartlett HP, Dawson CC, Glickman CM, Osborn DW, Evans CR, Garcia BJ, Frost LC, Cummings JE, Whittel N, Slayden RA, Holder JW. Targeting intracellular nontuberculous mycobacteria and M. tuberculosis with a bactericidal enzymatic cocktail. Microbiol Spectr 2024; 12:e0353423. [PMID: 38534149 PMCID: PMC11064574 DOI: 10.1128/spectrum.03534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
To address intracellular mycobacterial infections, we developed a cocktail of four enzymes that catalytically attack three layers of the mycobacterial envelope. This cocktail is delivered to macrophages, through a targeted liposome presented here as ENTX_001. Endolytix Cocktail 1 (EC1) leverages mycobacteriophage lysin enzymes LysA and LysB, while also including α-amylase and isoamylase for degradation of the mycobacterial envelope from outside of the cell. The LysA family of proteins from mycobacteriophages has been shown to cleave the peptidoglycan layer, whereas LysB is an esterase that hydrolyzes the linkage between arabinogalactan and mycolic acids of the mycomembrane. The challenge of gaining access to the substrates of LysA and LysB provided exogenously was addressed by adding amylase enzymes that degrade the extracellular capsule shown to be present in Mycobacterium tuberculosis. This enzybiotic approach avoids antimicrobial resistance, specific receptor-mediated binding, and intracellular DNA surveillance pathways that limit many bacteriophage applications. We show this cocktail of enzymes is bactericidal in vitro against both rapid- and slow-growing nontuberculous mycobacteria (NTM) as well as M. tuberculosis strains. The EC1 cocktail shows superior killing activity when compared to previously characterized LysB alone. EC1 is also powerfully synergistic with standard-of-care antibiotics. In addition to in vitro killing of NTM, ENTX_001 demonstrates the rescue of infected macrophages from necrotic death by Mycobacteroides abscessus and Mycobacterium avium. Here, we demonstrate shredding of mycobacterial cells by EC1 into cellular debris as a mechanism of bactericide.IMPORTANCEThe world needs entirely new forms of antibiotics as resistance to chemical antibiotics is a critical problem facing society. We addressed this need by developing a targeted enzyme therapy for a broad range of species and strains within mycobacteria and highly related genera including nontuberculous mycobacteria such as Mycobacteroides abscessus, Mycobacterium avium, Mycobacterium intracellulare, as well as Mycobacterium tuberculosis. One advantage of this approach is the ability to drive our lytic enzymes through encapsulation into macrophage-targeted liposomes resulting in attack of mycobacteria in the cells that harbor them where they hide from the adaptive immune system and grow. Furthermore, this approach shreds mycobacteria independent of cell physiology as the drug targets the mycobacterial envelope while sidestepping the host range limitations observed with phage therapy and resistance to chemical antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason E. Cummings
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicholas Whittel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Richard A. Slayden
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
23
|
Guzman RM, Savolainen NG, Hayden OM, Lee M, Osbron CA, Liu Z, Yang H, Shaw DK, Omsland A, Goodman AG. Drosophila melanogaster Sting mediates Coxiella burnetii infection by reducing accumulation of reactive oxygen species. Infect Immun 2024; 92:e0056022. [PMID: 38363133 PMCID: PMC10929449 DOI: 10.1128/iai.00560-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The Gram-negative bacterium Coxiella burnetii is the causative agent of query fever in humans and coxiellosis in livestock. C. burnetii infects a variety of cell types, tissues, and animal species including mammals and arthropods, but there is much left to be understood about the molecular mechanisms at play during infection in distinct species. Human stimulator of interferon genes (STING) induces an innate immune response through the induction of type I interferons (IFNs), and IFN promotes or suppresses C. burnetii replication, depending on tissue type. Drosophila melanogaster contains a functional STING ortholog (Sting) which activates NF-κB signaling and autophagy. Here, we sought to address the role of D. melanogaster Sting during C. burnetii infection to uncover how Sting regulates C. burnetii infection in flies. We show that Sting-null flies exhibit higher mortality and reduced induction of antimicrobial peptides following C. burnetii infection compared to control flies. Additionally, Sting-null flies induce lower levels of oxidative stress genes during infection, but the provision of N-acetyl-cysteine (NAC) in food rescues Sting-null host survival. Lastly, we find that reactive oxygen species levels during C. burnetii infection are higher in Drosophila S2 cells knocked down for Sting compared to control cells. Our results show that at the host level, NAC provides protection against C. burnetii infection in the absence of Sting, thus establishing a role for Sting in protection against oxidative stress during C. burnetii infection.
Collapse
Affiliation(s)
- Rosa M. Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nathan G. Savolainen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Olivia M. Hayden
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hong Yang
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
24
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
25
|
Kong E, Zhang Y, Geng X, Zhao Y, Yue W, Feng X. Inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage in hepatic ischemia-reperfusion injury mice. Int Immunopharmacol 2024; 128:111474. [PMID: 38185036 DOI: 10.1016/j.intimp.2023.111474] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) typically manifests during subtotal hepatectomy and inflicts substantial damage to liver function in the perioperative period. Although the central role of cGAS-STING-mediated immune inflammation in hepatocyte damage during hepatic IRI is acknowledged, the precise regulatory mechanisms remain elusive. The current study aims to elucidate how Sirt3 inhibition activates the cGAS-STING pathway and exacerbates hepatocyte damage in hepatic IRI. We established both in vivo and in vitro models by creating hepatic IRI mice model and subjecting AML-12 hepatocyte cell lines to oxygen-glucose deprivation/reperfusion (OGD/R). Hepatic IRI compromised liver and mitochondrial function while elevating cytosolic mitochondrial DNA (mtDNA) levels in hepatocytes. Additionally, both in vivo hepatic IRI and in vitro OGD/R induced increased phosphorylation and activation of cGAS, STING, and IRF3, accompanied by heightened levels of pro-inflammatory factors, including TNF-α, IL-1β, and type I interferon (IFN-β). Importantly, knockdown of cGAS or STING through siRNA effectively attenuated hepatic IRI-induced inflammation and ameliorated liver function in both experimental settings, underscoring the dynamic involvement of the cGAS-STING pathway in hepatic IRI-induced inflammation. Furthermore, we observed a significant reduction in Sirt3 expression following hepatic IRI, both in vivo and in vitro. Then we generated Sirt3-deficient mice and applied Sirt3 knockdown in AML-12 hepatocytes. Notably, Sirt3 deficiency led to increased phosphorylation and activation of cGAS, STING, and IRF3, coupled with elevated TNF-α, IL-1β, and IFN-β levels in both in vivo and in vitro conditions. Moreover, upon silencing various downstream targets of Sirt3, such as transcription factors Sp1, Pu1, and p65, we observed that specifically knocking down p65 in AML-12 hepatocytes reduced cGAS mRNA levels. Co-immunoprecipitation assays confirmed a direct interaction between Sirt3 and p65. The absence of Sirt3 significantly increased nuclear translocation of p65 in mice, whereas Sirt3 knockdown in AML-12 hepatocytes heightened nuclear translocation of p65. ChIP-PCR assays demonstrated that Sirt3 deficiency notably enhanced the binding of p65 to two cGAS promoters, ultimately promoting cGAS transcription. Collectively, our results underscored that inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage by increasing cytosolic mtDNA and promoting nuclear translocation of p65 to promote cGAS transcription in hepatic IRI. These findings hold promise for potential therapeutic interventions in hepatic IRI by targeting the Sirt3-cGAS-STING axis, offering new avenues for the development of clinical strategies to mitigate liver damage during the perioperative period.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Yang Zhang
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yuanyuan Zhao
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Wei Yue
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| | - Xudong Feng
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| |
Collapse
|
26
|
Zou S, Wang B, Yi K, Su D, Chen Y, Li N, Geng Q. The critical roles of STING in mitochondrial homeostasis. Biochem Pharmacol 2024; 220:115938. [PMID: 38086488 DOI: 10.1016/j.bcp.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The stimulator of interferon genes (STING) is a crucial signaling hub in the immune system's antiviral and antimicrobial defense by detecting exogenous and endogenous DNA. The multifaceted functions of STING have been uncovered gradually during past decades, including homeostasis maintenance and overfull immunity or inflammation induction. However, the subcellular regulation of STING and mitochondria is poorly understood. The main functions of STING are outlined in this review. Moreover, we discuss how mitochondria and STING interact through multiple mechanisms, including the release of mitochondrial DNA (mtDNA), modulation of mitochondria-associated membrane (MAM) and mitochondrial dynamics, alterations in mitochondrial metabolism, regulation of reactive oxygen species (ROS) production, and mitochondria-related cell death. Finally, we discuss how STING is crucial to disease development, providing a novel perspective on its role in cellular physiology and pathology.
Collapse
Affiliation(s)
- Shishi Zou
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Dandan Su
- Department of Neurology, Wuhan University Renmin Hospital, 430060, China
| | - Yukai Chen
- Department of Oncology, Wuhan University Renmin Hospital, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| |
Collapse
|
27
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
28
|
Escobar-Chavarría O, Benitez-Guzman A, Jiménez-Vázquez I, Carrisoza-Urbina J, Arriaga-Pizano L, Huerta-Yépez S, Baay-Guzmán G, Gutiérrez-Pabello JA. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023; 12:2079. [PMID: 37626889 PMCID: PMC10453650 DOI: 10.3390/cells12162079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium bovis is a facultative intracellular bacterium that produces cellular necrosis in granulomatous lesions in bovines. Although M. bovis-induced inflammation actively participates in granuloma development, its role in necrotic cell death and in bovine macrophages has not been fully explored. In this study, we evaluate the effect of M. bovis AN5 and its culture filtrate protein extract (CFPE) on inflammasome activation in bovine macrophages and its consequences on cell death. Our results show that both stimuli induce necrotic cell death starting 4 h after incubation. CFPE treatment and M. bovis infection also induce the maturation of IL-1β (>3000 pg/mL), oligomerization of ASC (apoptosis-associated speck-like protein containing CARD), and activation of caspase-1, following the canonical activation pathway of the NLRP3 inflammasome. Inhibiting the oligomerization of NLRP3 and caspase-1 decreases necrosis among the infected or CFPE-stimulated macrophages. Furthermore, histological lymph node sections of bovines naturally infected with M. bovis contained cleaved gasdermin D, mainly in macrophages and giant cells within the granulomas. Finally, the induction of cell death (apoptosis and pyroptosis) decreased the intracellular bacteria count in the infected bovine macrophages, suggesting that cell death helps to control the intracellular growth of the mycobacteria. Our results indicate that M. bovis induces pyroptosis-like cell death that is partially related to the NLRP3 inflammasome activation and that the cell death process could control bacterial growth.
Collapse
Affiliation(s)
- Omar Escobar-Chavarría
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Alejandro Benitez-Guzman
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Itzel Jiménez-Vázquez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Jacobo Carrisoza-Urbina
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sara Huerta-Yépez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (S.H.-Y.); (G.B.-G.)
| | - José A. Gutiérrez-Pabello
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (O.E.-C.); (A.B.-G.); (I.J.-V.); (J.C.-U.)
| |
Collapse
|
29
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
30
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
31
|
Zhu X, Xu Y, Wang J, Xue Z, Qiu T, Chen J. Loss of NLRP3 reduces oxidative stress and polarizes intratumor macrophages to attenuate immune attack on endometrial cancer. Front Immunol 2023; 14:1165602. [PMID: 37077909 PMCID: PMC10106583 DOI: 10.3389/fimmu.2023.1165602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionThe interaction between endometrial cancer (EMC) cells and intratumoral macrophages plays a significant role in the development of the disease. PYD domains-containing protein 3 (NLRP3) inflammasome formation triggers caspase-1/IL-1β signaling pathways and produces reactive oxygen species (ROS) in macrophages. However, the role of NLRP3-regulated ROS production in macrophage polarization and the subsequent growth and metastasis of EMC remains unknown.MethodsWe conducted bioinformatic analysis to compare NLRP3 levels in intratumoral macrophages from EMC and normal endometrium. In vitro experiments involved knocking out NLRP3 in macrophages to shift the polarization from an anti-inflammatory M1-like phenotype to a proinflammatory M2-like phenotype and reduce ROS production. The impact of NLRP3 depletion on the growth, invasion, and metastasis of co-cultured EMC cells was assessed. We also evaluated the effect of NLRP3 depletion in macrophages on the growth and metastasis of implanted EMC cells in mice.ResultsOur bioinformatic analysis showed significantly lower NLRP3 levels in intratumoral macrophages from EMC than those from normal endometrium. Knocking out NLRP3 in macrophages shifted their polarization to a proinflammatory M2-like phenotype and significantly reduced ROS production. NLRP3 depletion in M2-polarized macrophages increased the growth, invasion, and metastasis of co-cultured EMC cells. NLRP3 depletion in M1-polarized macrophages reduced phagocytic potential, which resulted in weakened immune defense against EMC. Additionally, NLRP3 depletion in macrophages significantly increased the growth and metastasis of implanted EMC cells in mice, likely due to compromised phagocytosis by macrophages and a reduction in cytotoxic CD8+ T cells.DiscussionOur results suggest that NLRP3 plays a significant role in regulating macrophage polarization, oxidative stress, and immune response against EMC. NLRP3 depletion alters the polarization of intratumoral macrophages, leading to weakened immune defense against EMC cells. The reduction in ROS production by the loss of NLRP3 may have implications for the development of novel treatment strategies for EMC.
Collapse
Affiliation(s)
| | | | | | | | - Tian Qiu
- *Correspondence: Tian Qiu, ; Jing Chen, ;
| | - Jing Chen
- *Correspondence: Tian Qiu, ; Jing Chen, ;
| |
Collapse
|
32
|
Zhang X, Du J, Huo S, Li B, Zhang J, Song M, Shao B, Li Y. Hexafluoropropylene oxide trimer acid causes fibrosis in mice liver via mitochondrial ROS/cGAS-STING/NLRP3-mediated pyroptosis. Food Chem Toxicol 2023; 174:113706. [PMID: 36871880 DOI: 10.1016/j.fct.2023.113706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) causes hepatotoxicity, however, its underlying mechanisms have not been conclusively determined. We investigated the effects of HFPO-TA on mice liver after 28 days of orally administered 0 or 0.5 mg/kg/d HFPO-TA. Administration of HFPO-TA induced mitochondrial ROS (mtROS) overexpression, cGAS-STING signaling activation, pyroptosis and fibrosis in mice liver. To determine the HFPO-TA-associated hepatotoxic mechanisms, mtROS, cGAS-STING signaling and pyroptosis intervention assays were performed in HFPO-TA-exposed mice liver. First, mtROS was found to be an upstream regulatory target of cGAS-STING signaling, pyroptosis and fibrosis. Second, cGAS-STING signaling was established to be an upstream regulatory mechanism of pyroptosis and fibrosis. Finally, pyroptosis was shown to regulate fibrosis. The above results confirm that HFPO-TA causes mice liver fibrosis via mtROS/cGAS-STING/NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Tan Z, Fan J, He S, Zhang Z, Chu H. sRNA21, a novel small RNA, protects Mycobacterium abscessus against oxidative stress. J Gene Med 2023:e3492. [PMID: 36862004 DOI: 10.1002/jgm.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND During infection, Mycobacterium abscessus encounters numerous environmental changes and adapts to them using a variety of complex mechanisms. Non-coding small RNAs (sRNAs) have been shown in other bacteria to be involved in post-transcriptional regulatory pathways, including environmental stress adaptation. However, the potential role of sRNAs in the resistance to oxidative stress in M. abscessus was not clearly described. METHODS In the present study, we analyzed putative sRNAs identified by RNA-sequencing (RNA-seq) experiments in M. abscessus ATCC_19977 under oxidative stress, and the transcription profiles of sRNAs with differential expression were verified by quantitative reverse transcription-PCR (qRT-PCR). Six sRNA overexpression strains were constructed, and the differences in growth curves between these strains and the control strain were verified. An upregulated sRNA under oxidative stress was selected and named sRNA21. The survival ability of the sRNA21 overexpression strain was assessed, and computer-based approaches were used to predict the targets and pathways regulated by sRNA21. The total ATP production and NAD+ /NADH ratio of the sRNA21 overexpression strain were measured. The expression level of antioxidase-related genes and the activity of antioxidase were tested to confirm the interaction of sRNA21 with the predicted target genes in silico. RESULTS In total, 14 putative sRNAs were identified under oxidative stress, and the qRT-PCR analysis of six sRNAs showed comparable results to RNA-seq assays. Overexpression of sRNA21 in M. abscessus increased cell growth rate and intracellular ATP level before and after peroxide exposure. The expression of genes encoding alkyl hydroperoxidase and superoxide dismutase was significantly increased, and superoxide dismutase activity was enhanced in the sRNA21 overexpression strain. Meanwhile, after sRNA21 overexpression, the intracellular NAD+ /NADH ratio decreased, indicating changes in redox homeostasis. CONCLUSIONS Our findings show that sRNA21 is an oxidative stress-induced sRNA that increases M. abscessus survival and promotes the expression of antioxidant enzymes under oxidative stress. These findings may provide new insights into the adaptive transcriptional response of M. abscessus to oxidative stress.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Karam J, Blanchet FP, Vivès É, Boisguérin P, Boudehen YM, Kremer L, Daher W. Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. iScience 2023; 26:106042. [PMID: 36818301 PMCID: PMC9929602 DOI: 10.1016/j.isci.2023.106042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium abscessus (Mab) is an increasingly recognized pulmonary pathogen. How Mab is internalized by macrophages and establishes infection remains unknown. Here, we show that Mab uptake is significantly reduced in macrophages pre-incubated with neutralizing anti-CD81 antibodies or in cells in which the large extracellular loop (LEL) of CD81 has been deleted. Saturation of Mab with either soluble GST-CD81-LEL or CD81-LEL-derived peptides also diminished internalization of the bacilli. The mycobacterial alkyl hydroperoxide reductase C (AhpC) was unveiled as a major interactant of CD81-LEL. Pre-exposure of macrophages with soluble AhpC inhibited mycobacterial uptake whereas overexpression of AhpC in Mab enhanced its internalization. Importantly, pre-incubation of macrophages with anti-CD81-LEL antibodies inhibited phagocytosis of AhpC-coated beads, indicating that AhpC is a direct interactant of CD81-LEL. Conditional depletion of AhpC in Mab correlated with decreased internalization of Mab. These compelling data unravel a previously unexplored role for CD81/AhpC to promote uptake of pathogenic mycobacteria by host cells.
Collapse
Affiliation(s)
- Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Fabien P. Blanchet
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Éric Vivès
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
35
|
Liu H, Zhu Z, Xue Q, Yang F, Li Z, Xue Z, Cao W, He J, Guo J, Liu X, Shaw AE, King DP, Zheng H. Innate sensing of picornavirus infection involves cGAS-STING-mediated antiviral responses triggered by mitochondrial DNA release. PLoS Pathog 2023; 19:e1011132. [PMID: 36745686 PMCID: PMC9934381 DOI: 10.1371/journal.ppat.1011132] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication. SVV infection caused the opening of mitochondrial permeability transition pore (mPTP) and led to voltage-dependent anion channel 1 (VDAC1)- and BCL2 antagonist/killer 1 (Bak) and Bak/BCL2-associated X (Bax)-dependent mtDNA leakage into the cytoplasm, while EV-A71 and FMDV infection induced mPTP opening and resulted in VDAC1-dependent mtDNA release. The released mtDNA bound to cGAS and activated cGAS-mediated antiviral immune response. cGAS was essential for inhibiting EV-A71, SVV, and FMDV replication by regulation of IFN-β production. cGAS deficiency contributed to higher mortality of EV-A71- or FMDV-infected mice. In addition, we found that SVV 2C protein was responsible for decreasing cGAS expression through the autophagy pathway. The 9th and 153rd amino acid sites in 2C were critical for induction of cGAS degradation. Furthermore, we also show that EV-A71, CA16, and EMCV 2C antagonize the cGAS-stimulator of interferon genes (STING) pathway through interaction with STING, and highly conserved amino acids Y155 and S156 were critical for this inhibitory effect. In conclusion, these data reveal novel mechanisms of picornaviruses to block the antiviral effect mediated by the cGAS-STING signaling pathway, which will provide insights for developing antiviral strategies against picornaviruses.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zongqiang Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Andrew E. Shaw
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Donald P. King
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail:
| |
Collapse
|
36
|
Lin X, Jia W, Feng G, Su Y, Kang Y, Zhang C, Liu W, Lu Z, Xue D. The role of APTX4870 peptide in reducing cellular inflammatory responses by inhibiting Mycobacterium tuberculosis-derived mycolic acid-induced cytotoxicity. Front Microbiol 2022; 13:993897. [DOI: 10.3389/fmicb.2022.993897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a serious zoonotic disease caused by Mycobacterium tuberculosis (M.tb) and the M.tb complex. Mycolic acid is an extracellular carbohydrate polymer produced, secreted, and accumulated outside the cells of various Mycobacterium tuberculosis strains. Mycolic acid produced by Mycobacterium plays an important role in infection. However, there have been few reports on drugs that inhibit mycolic acid-induced cytotoxicity. The purpose of this study was to investigate the role of the panned peptide in Mycobacterium-derived mycolic acid (M.tb-MA)-induced cell injury. The heptapeptide (APTX4870) was isolated from various phage libraries using phage display (Ph.D-7, Ph.D-12, and Ph.D-C7C). The efficacy of APTX4870 against mycolic acid was demonstrated by evaluating clinical samples and conducting in vitro and Vivo. APTX4870 inhibited apoptosis, increased autophagy to decrease inflammation, and reduced M.tb-MA-induced lung damage. These findings suggest that this heptapeptide, which selectively targets M.tb-MA, might be exploited as a potential novel M.tb therapeutic treatment.
Collapse
|
37
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
38
|
Alternatives to Antibiotics against Mycobacterium abscessus. Antibiotics (Basel) 2022; 11:antibiotics11101322. [PMID: 36289979 PMCID: PMC9598287 DOI: 10.3390/antibiotics11101322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus complex is extremely difficult to treat. Intrinsic and acquired bacterial resistance makes this species one of the most challenging pathogens and treatments last from months to years, associated with potential risky antibiotic toxicity and a high number of failures. Nonantibiotic antimicrobial agents against this microorganism have recently been studied so as to offer an alternative to current drugs. This review summarizes recent research on different strategies such as host modulation using stem cells, photodynamic therapy, antibiofilm therapy, phage therapy, nanoparticles, vaccines and antimicrobial peptides against M. abscessus both in vitro and in vivo.
Collapse
|
39
|
A Novel Leucyl-tRNA Synthetase Inhibitor, MRX-6038, Expresses Anti-Mycobacterium abscessus Activity In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0060122. [PMID: 35969055 PMCID: PMC9487484 DOI: 10.1128/aac.00601-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Therapeutic options for Mycobacterium abscessus infections are extremely limited, and new drugs are needed. The anti-M. abscessus activity of MRX-6038, a new leucyl-tRNA synthetase inhibitor, was evaluated in vitro and in vivo. Antimicrobial susceptibility testing was performed on 12 nontuberculosis mycobacteria (NTM) reference strains and 227 clinical NTM isolates. A minimum bactericidal concentration assay was conducted to distinguish the bactericidal versus bacteriostatic activity of MRX-6038. The synergy between MRX-6038 and 12 clinically important antibiotics was determined using a checkerboard assay. The activity of MRX-6038 against M. abscessus residing inside macrophages was also evaluated. Finally, the potency of MRX-6038 in vivo was determined in a neutropenic mouse model that mimicked a pulmonary M. abscessus infection. MRX-6038 exhibited high anti-M. abscessus activity against extracellular M. abscessus in culture, with a MIC50 of 0.063 mg/L and a MIC90 of 0.125 mg/L. Fifty percent of the activity was bactericidal, and fifty percent was bacteriostatic. A synergy between MRX-6038 and clarithromycin or azithromycin was found in 25% of strains. No antagonism was evident between MRX-6038 and 12 antibiotics commonly used to treat NTM infections. MRX-6038 also exhibited activity against intracellular NTM, which caused a significant reduction in the bacterial load in the lungs of M. abscessus-infected neutropenic mice. In conclusion, MRX-6038 was active against M. abscessusin vitro and in vivo, and it represents a potential candidate for incorporation into strategies by which M. abscessus infections are treated.
Collapse
|
40
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
41
|
Salmonella Induces the cGAS-STING-Dependent Type I Interferon Response in Murine Macrophages by Triggering mtDNA Release. mBio 2022; 13:e0363221. [PMID: 35604097 PMCID: PMC9239183 DOI: 10.1128/mbio.03632-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) elicited strong innate immune responses in macrophages. To activate innate immunity, pattern recognition receptors (PRRs) in host cells can recognize highly conserved pathogen-associated molecular patterns (PAMPs). Here, we showed that S. Typhimurium induced a robust type I interferon (IFN) response in murine macrophages. Exposure of macrophages to S. Typhimurium activated a Toll-like receptor 4 (TLR4)-dependent type I IFN response. Next, we showed that type I IFN and IFN-stimulated genes (ISGs) were elicited in a TBK1-IFN-dependent manner. Furthermore, cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and immune adaptor protein stimulator of interferon genes (STING) were also required for the induction of type I IFN response during infection. Intriguingly, S. Typhimurium infection triggered mitochondrial DNA (mtDNA) release into the cytosol to activate the type I IFN response. In addition, we also showed that bacterial DNA was enriched in cGAS during infection, which may contribute to cGAS activation. Finally, we showed that cGAS and STING deficient mice and cells were more susceptible to S. Typhimurium infection, signifying the critical role of the cGAS-STING pathway in host defense against S. Typhimurium infection. In conclusion, in addition to TLR4-dependent innate immune response, we demonstrated that S. Typhimurium induced the type I IFN response in a cGAS-STING-dependent manner and the S. Typhimurium-induced mtDNA release was important for the induction of type I IFN. This study elucidated a new mechanism by which bacterial pathogen activated the cGAS-STING pathway and also characterized the important role of cGAS-STING during S. Typhimurium infection.
Collapse
|
42
|
Zhao W, Deng Z, Barkema HW, Xu M, Gao J, Liu G, Lin Y, Kastelic JP, Han B. Nrf2 and NF-κB/NLRP3 inflammasome pathways are involved in Prototheca bovis infections of mouse mammary gland tissue and mammary epithelial cells. Free Radic Biol Med 2022; 184:148-157. [PMID: 35417750 DOI: 10.1016/j.freeradbiomed.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Prototheca bovis is a serious pathogen for animals, but pathogenesis of P. bovis mastitis is unclear. The objective was to characterize how P. bovis induces inflammatory responses in mouse mammary gland tissue and mammary epithelial cells (mMECs). Prototheca bovis damaged mammary gland tissue and mitochondrial structure, and induced oxidative stress, as evident by significant increases in mtROS and MDA concentrations and significant decreases in T-SOD activity in both mammary gland tissue and mMECs. Expression of Nrf2, HO-1 and Keap1 proteins was significantly changed in mammary gland tissue and mMECs after P. bovis infection. Additionally, cytokines (IL-1β, IL-6 and IL-18) and protein expressions in NF-κB and in the NLRP3 inflammasome pathway were significantly increased in mammary gland tissue and mMECs. In the P. bovis group, treatment with N-acetyl-l-cysteine (NAC) significantly decreased protein expression in NF-κB and the NLRP3 inflammasome pathway, as well as IL-1β, IL-6 and IL-18, whereas protein expression in the Nrf2 pathway was significantly changed. Inhibition of NF-κB or NLRP3 significantly decreased expression of IL-1β and IL-18 proteins in mMECs infected with P. bovis. Additionally, activating Nrf2 inhibited expression of NLRP3 and IL-1β. In conclusion, P. bovis induced an inflammatory response via the NF-κB/NLRP3 inflammasome pathway; however, scavenging ROS or activating Nrf2 mitigated the inflammatory response in infected mMECs.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maolin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
43
|
Kang M, Kim HW, Yu AR, Yang JS, Lee SH, Lee JW, Yoon HS, Lee BS, Park HW, Lee SK, Lee S, Whang J, Kim JS. Comparison of Macrophage Immune Responses and Metabolic Reprogramming in Smooth and Rough Variant Infections of Mycobacterium mucogenicum. Int J Mol Sci 2022; 23:ijms23052488. [PMID: 35269631 PMCID: PMC8910348 DOI: 10.3390/ijms23052488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium mucogenicum (Mmuc), a rapidly growing nontuberculous mycobacterium (NTM), can infect humans (posttraumatic wound infections and catheter-related sepsis). Similar to other NTM species, Mmuc exhibits colony morphologies of rough (Mmuc-R) and smooth (Mmuc-S) types. Although there are several case reports on Mmuc infection, no experimental evidence supports that the R-type is more virulent. In addition, the immune response and metabolic reprogramming of Mmuc have not been studied on the basis of morphological characteristics. Thus, a standard ATCC Mmuc strain and two clinical strains were analyzed, and macrophages were generated from mouse bone marrow. Cytokines and cell death were measured by ELISA and FACS, respectively. Mitochondrial respiration and glycolytic changes were measured by XF seahorse. Higher numbers of intracellular bacteria were found in Mmuc-R-infected macrophages than in Mmuc-S-infected macrophages. Additionally, Mmuc-R induced higher levels of the cytokines TNF-α, IL-6, IL-12p40, and IL-10 and induced more BMDM necrotic death. Furthermore, our metabolic data showed marked glycolytic and respiratory differences between the control and each type of Mmuc infection, and changes in these parameters significantly promoted glucose metabolism, extracellular acidification, and oxygen consumption in BMDMs. In conclusion, at least in the strains we tested, Mmuc-R is more virulent, induces a stronger immune response, and shifts bioenergetic metabolism more extensively than the S-type. This study is the first to report differential immune responses and metabolic reprogramming after Mmuc infection and might provide a fundamental basis for additional studies on Mmuc pathogenesis.
Collapse
Affiliation(s)
- Minji Kang
- Department of Medical Science, Chungnam National University, Daejeon 35365, Korea;
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - A-Reum Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Jeong Seong Yang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
| | - Seung Heon Lee
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
| | - Byung Soo Lee
- Department of Ophthalmology, Konyang University Hospital and College of Medicine, Daejeon 35365, Korea;
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea;
| | - Seungwan Lee
- Department of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Korea;
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Korea; (J.S.Y.); (S.H.L.)
- Correspondence: (J.W.); (J.-S.K.); Tel.: +82-43-249-4974 (J.W.); +82-42-600-8648 (J.-S.K.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; (H.W.K.); (A.-R.Y.); (J.W.L.); (H.S.Y.)
- Correspondence: (J.W.); (J.-S.K.); Tel.: +82-43-249-4974 (J.W.); +82-42-600-8648 (J.-S.K.)
| |
Collapse
|
44
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
45
|
Dahiya P, Hussain MA, Mazumder S. mtROS Induced via TLR-2-SOCE Signaling Plays Proapoptotic and Bactericidal Role in Mycobacterium fortuitum-Infected Head Kidney Macrophages of Clarias gariepinus. Front Immunol 2022; 12:748758. [PMID: 34987503 PMCID: PMC8720869 DOI: 10.3389/fimmu.2021.748758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying Mycobacterium fortuitum-induced mycobacteriosis remain unexplored. Using head kidney macrophages (HKM) from catfish (Clarias gariepinus), we report that Ca2+ surge across mitochondrial-Ca2+ uniporter (MICU), and consequent mitochondrial ROS (mtROS) production, is imperative for mycobactericidal activity. Inhibition of mtROS alleviated HKM apoptosis and enhanced bacterial survival. Based on RNA interference (RNAi) and inhibitor studies, we demonstrate that the Toll-like receptor (TLR)-2–endoplasmic reticulum (ER) stress–store-operated calcium entry (SOCE) axis is instrumental for activating the mt-Ca2+/mtROS cascade in M. fortuitum-infected HKM. Additionally, pharmacological inhibition of mtROS attenuated the expression of CHOP, STIM1, and Orai1, which suggests a positive feedback loop between ER-stress-induced SOCE and mtROS production. Elevated tumor necrosis factor alpha (TNF-α) levels and caspase-8 activity were observed in HKM consequent to M. fortuitum infection, and our results implicate that mtROS is crucial in activating the TNF-mediated caspase-8 activation. Our results for the first time demonstrate mitochondria as an innate immune signaling center regulating mycobacteriosis in fish. We conclude that M. fortuitum-induced persistent SOCE signaling leads to mtROS production, which in turn activates the TNF-α/caspase-8 axis culminating in HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Faculty of Life Sciences & Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
46
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
47
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
48
|
Xu J, Shen J, Yuan R, Jia B, Zhang Y, Wang S, Zhang Y, Liu M, Wang T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:796207. [PMID: 35002729 PMCID: PMC8733608 DOI: 10.3389/fphar.2021.796207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen species (ROS) production, and oxidative stress can aggravate the hepatic lipid accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and progression of NAFLD. Therefore, pharmacological therapies that target mitochondria could be a promising way for the NAFLD intervention. Recently, natural products targeting mitochondria have been extensively studied and have shown promising pharmacological activity. In this review, the recent research progress on therapeutic effects of natural-product-derived compounds that target mitochondria and combat NAFLD was summarized, aiming to provide new potential therapeutic lead compounds and reference for the innovative drug development and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
49
|
Zhao W, He F, Barkema HW, Xu S, Gao J, Liu G, Deng Z, Shahid M, Shi Y, Kastelic JP, Han B. Prototheca spp. induce an inflammatory response via mtROS-mediated activation of NF-κB and NLRP3 inflammasome pathways in bovine mammary epithelial cell cultures. Vet Res 2021; 52:144. [PMID: 34895324 PMCID: PMC8666081 DOI: 10.1186/s13567-021-01014-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Emergence of bovine mastitis caused by Prototheca algae is the impetus to better understand these infections. Both P. bovis and P. ciferrii belong to Prototheca algae, but they differ in their pathogenicity to induce inflammatory responses. The objective was to characterize and compare pathogenesis of inflammatory responses in bMECs induced by P. bovis versus P. ciferrii. Mitochondrial ultrastructure, activity and mtROS in bMECs were assessed with transmission electron microscopy and laser scanning confocal microscopy. Cytokines, including TNF-α, IL-1β and IL-18, were measured by ELISA and real-time PCR, whereas expressions of various proteins in the NF-κB and NLRP3 inflammasome pathways were detected with immunofluorescence or Western blot. Infection with P. bovis or P. ciferrii damaged mitochondria, including dissolution and vacuolation of cristae, and decreased mitochondrial activity, with P. bovis being more pathogenic and causing greater destruction. There were increases in NADPH production and mtROS accumulation in infected bMECs, with P. bovis causing greater increases and also inducing higher cytokine concentrations. Expressions of NF-κB-p65, p-NF-κB-p65, IκBα and p-IκBα proteins in the NF-κB pathway, as well as NLRP3, Pro Caspase1, Caspase1 p20, ASC, Pro IL-1β, and IL-1β proteins in the NLRP3 inflammasome pathway, were significantly higher in P. bovis-infected bMECs. However, mito-TEMPO significantly inhibited production of cytokines and decreased expression of proteins in NF-κB and NLRP3 inflammasome pathways in bMECs infected with either P. bovis or P. ciferrii. In conclusion, P. bovis or P. ciferrii infections induced inflammatory responses in bMECs, with increased mtROS in damaged mitochondria and activated NF-κB and NLRP3 inflammasome pathways, with P. bovis causing a more severe reaction.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Fumeng He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
The Role of NRF2 in Mycobacterial Infection. Antioxidants (Basel) 2021; 10:antiox10121861. [PMID: 34942964 PMCID: PMC8699052 DOI: 10.3390/antiox10121861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection.
Collapse
|