1
|
Fang XY, Sun C, Xie C, Cheng BZ, Lu ZZ, Zhao GX, Sui SF, Zeng MS, Liu Z. Structure and Antigenicity of Kaposi's Sarcoma-Associated Herpesvirus Glycoprotein B. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502231. [PMID: 40285648 DOI: 10.1002/advs.202502231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Indexed: 04/29/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a member of the human γ-herpesviruses family, exhibits extensive cellular tropism and is associated with Kaposi's sarcoma and various B-cell malignancies. Despite its clinical significance, no effective prophylactic vaccines or specific therapeutics are currently available to prevent or treat KSHV infection. Similar to other herpesviruses, KSHV depends on the envelope glycoprotein B (gB) for host receptor recognition and membrane fusion initiation, making gB a prime target for antiviral antibody or vaccine development. In this study, the high-resolution cryo-electron microscopy (cryo-EM) structure of KSHV gB is presented, revealing a unique trimeric conformation resembling the postfusion state observed in other herpesviruses. Additionally, the structure of the non-neutralizing monoclonal antibody 2C4 bound to KSHV gB domain IV is resolved. The comparative sequence and structure analyses reveal significant homology in neutralizing epitopes between KSHV and Epstein-Barr virus (EBV) gB, indicating a potential pathway for the development of broad-spectrum antiviral strategies. These findings provide a foundation for a deeper understanding of KSHV's infectious mechanism and pave the way for the creation of universal interventions against the human γ-herpesviruses.
Collapse
Affiliation(s)
- Xin-Yan Fang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bing-Zhen Cheng
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zheng-Zhou Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sen-Fang Sui
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Craft K, Amanor A, Barnett I, Donaldson C, Anegon I, Madduri S, Tang Q, Bility MT. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int J Mol Sci 2025; 26:3082. [PMID: 40243710 PMCID: PMC11988357 DOI: 10.3390/ijms26073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, immunodeficient mouse models carrying human immune cells, with or without human lymphoid tissues, termed humanized immune system (HIS) rodent models, have been developed to recapitulate the human immune system and associated immune responses. HIS mouse models have successfully modeled many human-restricted viral infections, including those caused by human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV). HIS mouse models have also been used to model human cancer immunobiology, which exhibits differences from murine cancers in traditional mouse models. Variants of HIS mouse models that carry human liver cells, lung tissue, skin tissue, or human patient-derived tumor xenografts and human hematopoietic stem cells-derived-human immune cells with or without lymphoid tissue xenografts have been developed to probe human immune responses to infections and human tumors. HCMV-based vaccines are human-restricted, which poses limitations for mechanistic and efficacy studies using traditional animal models. The HCMV-based vaccine approach is a promising vaccine strategy as it induces robust effector memory T cell responses that may be critical in preventing and rapidly controlling persistent viral infections and cancers. Here, we review novel HIS mouse models with robust human immune cell development and primary and secondary lymphoid tissues that could address many of the limitations of HIS mice in their use as animal models for HCMV-based vaccine research. We also reviewed novel HIS rat models, which could allow long-term (greater than one year) vaccinology studies and better recapitulate human pathophysiology. Translating laboratory research findings to clinical application is a significant bottleneck in vaccine development; HIS rodents and related variants that more accurately model human immunology and diseases could increase the translatability of research findings.
Collapse
Affiliation(s)
- Kaci Craft
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Athina Amanor
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ian Barnett
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Clarke Donaldson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France;
| | - Srinivas Madduri
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1211 Geneva, Switzerland;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Moses T. Bility
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| |
Collapse
|
3
|
Diggins NL, Pham AH, Mitchell J, Parkins CJ, Slind L, Turner R, Lee BJ, Yurochko AD, Caposio P, Nelson JA, Hancock MH. Viral microRNA regulation of Akt is necessary for reactivation of Human Cytomegalovirus from latency in CD34+ hematopoietic progenitor cells and humanized mice. PLoS Pathog 2024; 20:e1012285. [PMID: 39661658 PMCID: PMC11666035 DOI: 10.1371/journal.ppat.1012285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/23/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Human cytomegalovirus (HCMV) actively manipulates cellular signaling pathways to benefit viral replication. Phosphatidyl-inositol 3-kinase (PI3K)/Akt signaling is an important negative regulator of HCMV replication, and during lytic infection the virus utilizes pUL38 to limit Akt phosphorylation and activity. During latency, PI3K/Akt signaling also limits virus replication, but how this is overcome at the time of reactivation is unknown. Virally encoded microRNAs (miRNAs) are a key component of the virus arsenal used to alter signaling during latency and reactivation. In the present study we show that three HCMV miRNAs (miR-UL36, miR-UL112 and miR-UL148D) downregulate Akt expression and attenuate downstream signaling, resulting in the activation of FOXO3a and enhanced internal promoter-driven IE transcription. A virus lacking expression of all three miRNAs is unable to reactivate from latency both in CD34+ hematopoietic progenitor cells and in a humanized mouse model of HCMV infection, however downregulating Akt restores the ability of the mutant virus to replicate. These findings highlight the negative role Akt signaling plays in HCMV replication in lytic and latent infection and how the virus has evolved miRNA-mediated countermeasures to promote successful reactivation.
Collapse
Affiliation(s)
- Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Andrew H. Pham
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Luke Slind
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rebekah Turner
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Applied Immunology and Pathological Processes, Center for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Andrew D. Yurochko
- Department of Microbiology & Immunology, Center for Applied Immunology and Pathological Processes, Center for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
4
|
Darguzyte M, Antczak P, Bachurski D, Hoelker P, Abedpour N, Gholamipoorfard R, Schlößer HA, Wennhold K, Thelen M, Garcia-Marquez MA, Koenig J, Schneider A, Braun T, Klawonn F, Damrat M, Rahman M, Kleid JM, Theobald SJ, Bauer E, von Kaisenberg C, Talbot SR, Shultz LD, Soper B, Stripecke R. Long-Term Human Immune Reconstitution, T-Cell Development, and Immune Reactivity in Mice Lacking the Murine Major Histocompatibility Complex: Validation with Cellular and Gene Expression Profiles. Cells 2024; 13:1686. [PMID: 39451205 PMCID: PMC11506606 DOI: 10.3390/cells13201686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) and/or the human leukocyte antigens (HLAs) were necessary for human T-cell development and immune reactivity. METHODS We evaluated the long-term (20-week) human hematopoiesis and human T-cell development in NOD Scid Gamma (NSG) mice lacking the expression of MHC class I and II (NSG-DKO). Triplicate experiments were performed with HPCs obtained from three donors, and humanization was confirmed in the reference strain NOD Rag Gamma (NRG). Further, we tested whether humanized NSG-DKO mice would respond to a lentiviral vector (LV) systemic delivery of HLA-A*02:01, HLA-DRB1*04:01, human GM-CSF/IFN-α, and the human cytomegalovirus gB antigen. RESULTS Human immune reconstitution was detectable in peripheral blood from 8 to 20 weeks after the transplantation of NSG-DKO. Human single positive CD4+ and CD8+ T-cells were detectable in lymphatic tissues (thymus, bone marrow, and spleen). LV delivery harnessed the detection of lymphocyte subsets in bone marrow (αβ and γδ T-cells and NK cells) and the expression of HLA-DR. Furthermore, RNA sequencing showed that LV delivery increased the expression of different human reactome pathways, such as defense responses to other organisms and viruses. CONCLUSIONS Human T-cell development and reactivity are independent of the expression of murine MHCs in humanized mice. Therefore, humanized NSG-DKO is a promising new model for studying human immune responses, as it abrogates the xenograft mouse MHC interference.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Philipp Antczak
- Department II of Internal Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, 50931 Cologne, Germany
| | - Daniel Bachurski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Patrick Hoelker
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Nima Abedpour
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department of Translational Genomics, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Rahil Gholamipoorfard
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department of Translational Genomics, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hans A. Schlößer
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria A. Garcia-Marquez
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johannes Koenig
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Andreas Schneider
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Tobias Braun
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
| | - Frank Klawonn
- Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbuettel, Germany;
- Biostatistics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Damrat
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Masudur Rahman
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Jan-Malte Kleid
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
| | - Sebastian J. Theobald
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Division of Infectious Diseases, Department I of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | | | - Brian Soper
- The Jackson Laboratory, Bar Harbor, ME 04609, USA;
| | - Renata Stripecke
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (M.D.); (M.D.); (M.R.); (J.-M.K.)
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (D.B.); (P.H.); (N.A.); (R.G.); (S.J.T.)
- Department II of Internal Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.A.S.); (K.W.); (M.T.); (M.A.G.-M.)
- Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (A.S.); (T.B.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Theobald SJ, Fiestas E, Schneider A, Ostermann B, Danisch S, von Kaisenberg C, Rybniker J, Hammerschmidt W, Zeidler R, Stripecke R. Fully Human Herpesvirus-Specific Neutralizing IgG Antibodies Generated by EBV Immortalization of Splenocytes-Derived from Immunized Humanized Mice. Cells 2023; 13:20. [PMID: 38201224 PMCID: PMC10778511 DOI: 10.3390/cells13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Antiviral neutralizing antibodies (nAbs) are commonly derived from B cells developed in immunized or infected animals and humans. Fully human antibodies are preferred for clinical use as they are potentially less immunogenic. However, the function of B cells varies depending on their homing pattern and an additional hurdle for antibody discovery in humans is the source of human tissues with an immunological microenvironment. Here, we show an efficient method to pharm human antibodies using immortalized B cells recovered from Nod.Rag.Gamma (NRG) mice reconstituting the human immune system (HIS). Humanized HIS mice were immunized either with autologous engineered dendritic cells expressing the human cytomegalovirus gB envelope protein (HCMV-gB) or with Epstein-Barr virus-like particles (EB-VLP). Human B cells recovered from spleen of HIS mice were efficiently immortalized with EBV in vitro. We show that these immortalized B cells secreted human IgGs with neutralization capacities against prototypic HCMV-gB and EBV-gp350. Taken together, we show that HIS mice can be successfully used for the generation and pharming fully human IgGs. This technology can be further explored to generate antibodies against emerging infections for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Elena Fiestas
- Research Unit Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany (W.H.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Benjamin Ostermann
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Rybniker
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany (W.H.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Reinhard Zeidler
- German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
- Department of Otorhinolaryngology, Munich University Hospital, 81377 Munich, Germany
| | - Renata Stripecke
- Department I of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (J.R.); (R.S.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (S.D.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
- Institute of Translational Immuno-Oncology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Cancer Research Center Cologne Essen, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
6
|
Zehner M, Alt M, Ashurov A, Goldsmith JA, Spies R, Weiler N, Lerma J, Gieselmann L, Stöhr D, Gruell H, Schultz EP, Kreer C, Schlachter L, Janicki H, Laib Sampaio K, Stegmann C, Nemetchek MD, Dähling S, Ullrich L, Dittmer U, Witzke O, Koch M, Ryckman BJ, Lotfi R, McLellan JS, Krawczyk A, Sinzger C, Klein F. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023; 56:2602-2620.e10. [PMID: 37967532 DOI: 10.1016/j.immuni.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Collapse
Affiliation(s)
- Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Artem Ashurov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Spies
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Justin Lerma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Linda Schlachter
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michelle D Nemetchek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leon Ullrich
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Ramin Lotfi
- Institute for Transfusion Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
7
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
8
|
Recent Developments in NSG and NRG Humanized Mouse Models for Their Use in Viral and Immune Research. Viruses 2023; 15:v15020478. [PMID: 36851692 PMCID: PMC9962986 DOI: 10.3390/v15020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Humanized mouse models have been widely used in virology, immunology, and oncology in the last decade. With advances in the generation of knockout mouse strains, it is now possible to generate animals in which human immune cells or human tissue can be engrafted. These models have been used for the study of human infectious diseases, cancers, and autoimmune diseases. In recent years, there has been an increase in the use of humanized mice to model human-specific viral infections. A human immune system in these models is crucial to understand the pathogenesis observed in human patients, which allows for better treatment design and vaccine development. Recent advances in our knowledge about viral pathogenicity and immune response using NSG and NRG mice are reviewed in this paper.
Collapse
|
9
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
10
|
Ollerton MT, Folkvord JM, Peachman KK, Shashikumar S, Morrison EB, Jagodzinski LL, Peel SA, Khreiss M, D’Aquila RT, Casares S, Rao M, Connick E. HIV-1 infected humanized DRAGA mice develop HIV-specific antibodies despite lack of canonical germinal centers in secondary lymphoid tissues. Front Immunol 2022; 13:1047277. [PMID: 36505432 PMCID: PMC9732419 DOI: 10.3389/fimmu.2022.1047277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.
Collapse
Affiliation(s)
| | - Joy M. Folkvord
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kristina K. Peachman
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Elaine B. Morrison
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mohammad Khreiss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Richard T. D’Aquila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth Connick
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Janković M, Knežević A, Todorović M, Đunić I, Mihaljević B, Soldatović I, Protić J, Miković N, Stoiljković V, Jovanović T. Cytomegalovirus infection may be oncoprotective against neoplasms of B-lymphocyte lineage: single-institution experience and survey of global evidence. Virol J 2022; 19:155. [PMID: 36171605 PMCID: PMC9520857 DOI: 10.1186/s12985-022-01884-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although cytomegalovirus (CMV) is not considered tumorigenic, there is evidence for its oncomodulatory effects and association with hematological neoplasms. Conversely, a number of experimental and clinical studies suggest its putative anti-tumour effect. We investigated the potential connection between chronic CMV infection in patients with B-lymphocyte (B-cell) malignancies in a retrospective single-center study and extracted relevant data on CMV prevalences and the incidences of B-cell cancers the world over. Methods In the clinical single-center study, prevalence of chronic CMV infection was compared between patients with B-cell leukemia/lymphoma and the healthy controls. Also, global data on CMV seroprevalences and the corresponding country-specific incidences of B- lineage neoplasms worldwide were investigated for potential correlations. Results Significantly higher CMV seropositivity was observed in control subjects than in patients with B-cell malignancies (p = 0.035). Moreover, an unexpected seroepidemiological evidence of highly significant inverse relationship between country-specific CMV prevalence and the annual incidence of B-cell neoplasms was noted across the populations worldwide (ρ = −0.625, p < 0.001). Conclusions We try to draw attention to an unreported interplay between CMV infection and B-cell lymphomagenesis in adults. A large-scale survey across > 70 countries disclosed a link between CMV and B-cell neoplasms. Our evidence hints at an antagonistic effect of chronic CMV infection against B-lymphoproliferation.
Collapse
Affiliation(s)
- Marko Janković
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia.
| | - Aleksandra Knežević
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| | - Milena Todorović
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Irena Đunić
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Biljana Mihaljević
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, dr Subotića 15, Belgrade, 11000, Republic of Serbia
| | - Jelena Protić
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Nevenka Miković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Tanja Jovanović
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| |
Collapse
|
12
|
Eisfeld HS, Simonis A, Winter S, Chhen J, Ströh LJ, Krey T, Koch M, Theobald SJ, Rybniker J. Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages. Viruses 2021; 13:v13102076. [PMID: 34696506 PMCID: PMC8538122 DOI: 10.3390/v13102076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1β. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1β release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.
Collapse
Affiliation(s)
- Hannah S. Eisfeld
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Jason Chhen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (L.J.S.); (T.K.)
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (L.J.S.); (T.K.)
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607 Hamburg, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sebastian J. Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- Correspondence: (S.J.T.); (J.R.)
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Correspondence: (S.J.T.); (J.R.)
| |
Collapse
|
13
|
Kumar S, Koenig J, Schneider A, Wermeling F, Boddul S, Theobald SJ, Vollmer M, Kloos D, Lachmann N, Klawonn F, Lienenklaus S, Talbot SR, Bleich A, Wenzel N, von Kaisenberg C, Keck J, Stripecke R. In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution. Biomedicines 2021; 9:biomedicines9080961. [PMID: 34440166 PMCID: PMC8393476 DOI: 10.3390/biomedicines9080961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, “DR4”), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.
Collapse
Affiliation(s)
- Suresh Kumar
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Johannes Koenig
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
- German Centre for Infection Research (DZIF), DZIF Partner Site Hannover-Braunschweig, D-30625 Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, 17177 Solna, Sweden; (F.W.); (S.B.)
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, 17177 Solna, Sweden; (F.W.); (S.B.)
| | - Sebastian J. Theobald
- Department of Internal Medicine I, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50924 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50924 Cologne, Germany
| | - Miriam Vollmer
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Doreen Kloos
- Institute of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany;
- Institute for Information Engineering, Ostfalia University, D-38302 Wolfenbuettel, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - Nadine Wenzel
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, D-30625 Hannover, Germany;
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, D-30625 Hannover, Germany;
| | - James Keck
- The Jackson Laboratory, Sacramento, CA 95838, USA;
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
- German Centre for Infection Research (DZIF), DZIF Partner Site Hannover-Braunschweig, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-6999
| |
Collapse
|
14
|
Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat Protoc 2021; 16:3639-3671. [PMID: 34035500 DOI: 10.1038/s41596-021-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12-14 d.
Collapse
|
15
|
Bialek-Waldmann JK, Domning S, Esser R, Glienke W, Mertens M, Aleksandrova K, Arseniev L, Kumar S, Schneider A, Koenig J, Theobald SJ, Tsay HC, Cornelius ADA, Bonifacius A, Eiz-Vesper B, Figueiredo C, Schaudien D, Talbot SR, Bleich A, Spineli LM, von Kaisenberg C, Clark C, Blasczyk R, Heuser M, Ganser A, Köhl U, Farzaneh F, Stripecke R. Induced dendritic cells co-expressing GM-CSF/IFN-α/tWT1 priming T and B cells and automated manufacturing to boost GvL. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:621-641. [PMID: 34095345 PMCID: PMC8142053 DOI: 10.1016/j.omtm.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/03/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent “induced DCs” (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.
Collapse
Affiliation(s)
- Julia K Bialek-Waldmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Domning
- Molecular Medicine Group, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Ruth Esser
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Wolfgang Glienke
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Mira Mertens
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | | | - Lubomir Arseniev
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Suresh Kumar
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Schneider
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes Koenig
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| | - Sebastian J Theobald
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| | - Hsin-Chieh Tsay
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Angela D A Cornelius
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Loukia M Spineli
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Caren Clark
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI and University of Leipzig, 04103 Leipzig, Germany
| | - Farzin Farzaneh
- Molecular Medicine Group, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| |
Collapse
|
16
|
Theobald SJ, Kreer C, Khailaie S, Bonifacius A, Eiz-Vesper B, Figueiredo C, Mach M, Backovic M, Ballmaier M, Koenig J, Olbrich H, Schneider A, Volk V, Danisch S, Gieselmann L, Ercanoglu MS, Messerle M, von Kaisenberg C, Witte T, Klawonn F, Meyer-Hermann M, Klein F, Stripecke R. Correction: Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog 2021; 17:e1009385. [PMID: 33647022 PMCID: PMC7920369 DOI: 10.1371/journal.ppat.1009385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, Olsen TM, Shobaki N, Rongvaux A. Building the Next Generation of Humanized Hemato-Lymphoid System Mice. Front Immunol 2021; 12:643852. [PMID: 33692812 PMCID: PMC7938325 DOI: 10.3389/fimmu.2021.643852] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.
Collapse
Affiliation(s)
- Tijana Martinov
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kelly M McKenna
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Wei Hong Tan
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Emily J Collins
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allie R Kehret
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan D Linton
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tayla M Olsen
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nour Shobaki
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Anthony Rongvaux
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Volk V, Theobald SJ, Danisch S, Khailaie S, Kalbarczyk M, Schneider A, Bialek-Waldmann J, Krönke N, Deng Y, Eiz-Vesper B, Dragon AC, von Kaisenberg C, Lienenklaus S, Bleich A, Keck J, Meyer-Hermann M, Klawonn F, Hammerschmidt W, Delecluse HJ, Münz C, Feuerhake F, Stripecke R. PD-1 Blockade Aggravates Epstein-Barr Virus + Post-Transplant Lymphoproliferative Disorder in Humanized Mice Resulting in Central Nervous System Involvement and CD4 + T Cell Dysregulations. Front Oncol 2021; 10:614876. [PMID: 33511078 PMCID: PMC7837057 DOI: 10.3389/fonc.2020.614876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is one of the most common malignancies after solid organ or allogeneic stem cell transplantation. Most PTLD cases are B cell neoplasias carrying Epstein-Barr virus (EBV). A therapeutic approach is reduction of immunosuppression to allow T cells to develop and combat EBV. If this is not effective, approaches include immunotherapies such as monoclonal antibodies targeting CD20 and adoptive T cells. Immune checkpoint inhibition (ICI) to treat EBV+ PTLD was not established clinically due to the risks of organ rejection and graft-versus-host disease. Previously, blockade of the programmed death receptor (PD)-1 by a monoclonal antibody (mAb) during ex vivo infection of mononuclear cells with the EBV/M81+ strain showed lower xenografted lymphoma development in mice. Subsequently, fully humanized mice infected with the EBV/B95-8 strain and treated in vivo with a PD-1 blocking mAb showed aggravation of PTLD and lymphoma development. Here, we evaluated vis-a-vis in fully humanized mice after EBV/B95-8 or EBV/M81 infections the effects of a clinically used PD-1 blocker. Fifteen to 17 weeks after human CD34+ stem cell transplantation, Nod.Rag.Gamma mice were infected with two types of EBV laboratory strains expressing firefly luciferase. Dynamic optical imaging analyses showed systemic EBV infections and this triggered vigorous human CD8+ T cell expansion. Pembrolizumab administered from 2 to 5 weeks post-infections significantly aggravated EBV systemic spread and, for the M81 model, significantly increased the mortality of mice. ICI promoted Ki67+CD30+CD20+EBER+PD-L1+ PTLD with central nervous system (CNS) involvement, mirroring EBV+ CNS PTLD in humans. PD-1 blockade was associated with lower frequencies of circulating T cells in blood and with a profound collapse of CD4+ T cells in lymphatic tissues. Mice treated with pembrolizumab showed an escalation of exhausted T cells expressing TIM-3, and LAG-3 in tissues, higher levels of several human cytokines in plasma and high densities of FoxP3+ regulatory CD4+ and CD8+ T cells in the tumor microenvironment. We conclude that PD-1 blockade during acute EBV infections driving strong CD8+ T cell priming decompensates T cell development towards immunosuppression. Given the variety of preclinical models available, our models conferred a cautionary note indicating that PD-1 blockade aggravated the progression of EBV+ PTLD.
Collapse
Affiliation(s)
- Valery Volk
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Simon Danisch
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maja Kalbarczyk
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Bialek-Waldmann
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nicole Krönke
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Anna Christina Dragon
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - James Keck
- The Jackson Laboratory, Sacramento, CA, United States
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Friedrich Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| |
Collapse
|
19
|
Slabik C, Kalbarczyk M, Danisch S, Zeidler R, Klawonn F, Volk V, Krönke N, Feuerhake F, Ferreira de Figueiredo C, Blasczyk R, Olbrich H, Theobald SJ, Schneider A, Ganser A, von Kaisenberg C, Lienenklaus S, Bleich A, Hammerschmidt W, Stripecke R. CAR-T Cells Targeting Epstein-Barr Virus gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:504-524. [PMID: 32953984 PMCID: PMC7479496 DOI: 10.1016/j.omto.2020.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.
Collapse
Affiliation(s)
- Constanze Slabik
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Maja Kalbarczyk
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Simon Danisch
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Information Engineering, Ostfalia University, 38302 Wolfenbuettel, Germany
| | - Valery Volk
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany.,Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Krönke
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Feuerhake
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, 79106 Freiburg, Germany
| | | | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Henning Olbrich
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| |
Collapse
|