1
|
Costa VA, Bellwood DR, Mifsud JCO, Geoghegan JL, Harvey E, Holmes EC. Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia. FEMS Microbiol Ecol 2025; 101:fiaf016. [PMID: 39914455 PMCID: PMC11879539 DOI: 10.1093/femsec/fiaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/18/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing, we characterized the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 km, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.
Collapse
Affiliation(s)
- Vincenzo A Costa
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Jonathon C O Mifsud
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Kenepuru, Porirua 5022, New Zealand
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Chatkaewchai B, Surachetpong W, Thongyuan S, Kamklang M, Laopiem S, Pattanakunanan S, Boonyawiwat V, Pulpipat T. Distribution and Risk Factors Associated With Tilapia Parvovirus (TiPV) Presence in Red Hybrid Tilapia ( Oreochromis spp.) Farms in Thailand. Transbound Emerg Dis 2025; 2025:6618755. [PMID: 40302744 PMCID: PMC12016865 DOI: 10.1155/tbed/6618755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 05/02/2025]
Abstract
Emerging viral diseases, such as tilapia parvovirus (TiPV), are having a significant economic impact on global tilapia aquaculture. TiPV is responsible for the mass mortality of Nile tilapia (Oreochromis niloticus) and red hybrid tilapia (Oreochromis spp.) in China, India and Thailand. We, therefore, aimed to determine the current status of TiPV infection and distribution and the risk factors associated with TiPV infection in red hybrid tilapia farms in Thailand. In this cross-sectional study, a total of 101 samples, each comprising five moribund fish, were collected from 40 red hybrid tilapia farms across various provinces in Thailand between September 2022 and March 2024. The data on the farm characteristics and management practices were obtained via questionnaires and direct observation. A total of 23 factors were assessed, including six related to farm characteristics, 13 associated with farm management practices and four concerning the presence of other pathogens. The data from 101 samples were analysed using unconditional and mixed-effects logistic regression, revealing a percentage of TiPV infection was 11.88%. Two significant risk factors associated with TiPV infection were identified: the source of the fish (p=0.020) and the initial fish weight at the stocking date (p=0.026). Conversely, the feeding method (p=0.039) was found to be a protective factor against TiPV infection. This study is the first to investigate the epidemiology of TiPV infection in farmed red hybrid tilapia. Our findings are important for improving farm management practices, mitigating the risk of TiPV infection and developing effective disease control strategies.
Collapse
Affiliation(s)
- Benya Chatkaewchai
- Master of Science Program in Veterinary Clinical Studies, Faculty of Veterinary Medicine, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Suporn Thongyuan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Methanan Kamklang
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sakuna Pattanakunanan
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Visanu Boonyawiwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Theeraporn Pulpipat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
3
|
Badhusha A, Mithra S, Taju G, Rajkumar V, Abdul Majeed S, Suryakodi S, Lekshmi Haridas, Divya Haridas, Sahoo PK, Mohanty J, Paul A, Mohanty S, Devika Pillai, Rejish Kumar VJ, Sahul Hameed AS. Detection of Tilapia parvovirus in farm-reared tilapia in India and its isolation using fish cell lines. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-024-01012-z. [PMID: 39843815 DOI: 10.1007/s11626-024-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Tilapia parvovirus (TiPV) is an emerging viral pathogen and responsible for severe economic loss in tilapia culture production. Lethargic, cutaneous haemorrhages; ocular lesions; discolouration of gill and cloudy eye and exophthalmia are common symptoms of TiPV. The TiPV-suspected tilapia fish were collected from grow-out ponds situated in different parts of Tamil Nadu, India, and screened for TiPV by PCR. The results showed the presence of TiPV in disease-suspected fish which was further confirmed by PCR using different primer sets specific to different genomic regions of TiPV. Sequence analysis of 534 bp of genomic region of TiPV showed 100% similarity with the sequence of TiPV strain of Thailand and India. TiPV was found in different organs including eggs of infected fish and showed the possibility of systemic infection and vertical transmission. Snakehead kidney (CSK), snubnose pompano fin (SPF) and tilapia heart (TH) cell lines showed susceptibility to TiPV. The viral replication in cell lines was confirmed by PCR, TiPV-specific cytopathic effect of Cowdry A inclusion bodies with clear halo surrounding them and infectivity experiment. The disease was reproduced in normal fish by intramuscular route using viral inoculum from TiPV-infected fish or virus multiplied in susceptible cell lines to satisfy Koch's postulates.
Collapse
Affiliation(s)
- Allahbagash Badhusha
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India
| | - Sivaraj Mithra
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India
| | - Gani Taju
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India.
| | - Venkatesan Rajkumar
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India
| | - Seepoo Abdul Majeed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India
| | - Selvam Suryakodi
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India
| | - Lekshmi Haridas
- Kerala University of Fisheries and Ocean Sciences, Kochi, Kerala, India
| | - Divya Haridas
- Kerala University of Fisheries and Ocean Sciences, Kochi, Kerala, India
| | - Pramoda Kumar Sahoo
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Jyotirmaya Mohanty
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Anirban Paul
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Snatashree Mohanty
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Devika Pillai
- Kerala University of Fisheries and Ocean Sciences, Kochi, Kerala, India
| | | | - Azeez Sait Sahul Hameed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India.
| |
Collapse
|
4
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Liu W, Tian H, Ma J, Xue M, Zhou Y, Li M, Jiang J, Fan Y, Liu M. RNA-Sequencing Analysis of the Viral Community in Yellow Catfish ( Pelteobagrus fulvidraco) in the Upper Reaches of the Yangtze River. Animals (Basel) 2024; 14:3386. [PMID: 39682352 DOI: 10.3390/ani14233386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Different viruses are abundant in aquatic ecosystems. There has been limited research on the viral communities in the upper reaches of the Yangtze River. Yellow catfish (Pelteobagrus fulvidraco), an important economic fish that is widely distributed in the upper reaches of the Yangtze River, was selected as the research object. Using RNA sequencing, we identified 11 viruses belonging to the Adintoviridae, Tombusviridae, Caudovirales, Microviridae, Picornavirales, and other bacteriophage families. The predominant viral families/order in Luzhou (LZ), Fuling (FL), and Wanzhou (WZ) were Caudovirales, Adinoviridae, and Microviridae, respectively. The virome from WZ had a unique community composition, with a high abundance of Picornavirales compared with LZ and FL. In LZ, the predominant double-stranded RNA virus family was Siphoviridae. Phylogenetic analyses showed that viruses presented high genetic diversity. Phylogenetically, Wenling pleuronectiformes picornavirus was close to the family Caliciviridae, which includes yellow catfish calicivirus (YcCV), responsible for the massive mortality of yellow catfish in 2020. This study provides insights into the viral community composition in yellow catfish in the upper reaches of the Yangtze River, revealing a diverse and unique river water virome and providing clues for future research on the origin of viral pathogens.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huiwu Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mengmeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwen Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingdian Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
6
|
Das BK, Kumar V, Roy S, Malick RC, Bisai K, Jana AK, Dhar S. Pathological effects and immune modulation in host during Tilapia Parvovirus (TiPV) outbreak in cage and wetland Tilapia farms. Sci Rep 2024; 14:28689. [PMID: 39562638 PMCID: PMC11577022 DOI: 10.1038/s41598-024-79089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Viral diseases arising in farmed fish are an ongoing challenge to the aquaculture industry, causing severe mortality and economic losses. Recently, there has been a spike in the incidence of a viral disease caused by Tilapia Parvovirus (TiPV) inflicts irreparable damage, and large-scale fish kills in the farmed tilapia species. We investigated a case of disease outbreak and severe mortality in cage and wetland farms of tilapia in West Bengal and Odisha, India. The symptomatic fish showed clinical signs, including hemorrhage, discoloration, ulcer, and redness in the body surfaces. Further analysis revealed that Tilapia Parvovirus was associated (validated by PCR, phylogenetic analysis, and cell line assay) with the infection and mortality of tilapia. The virus was detected in gill, heart, spleen, liver, and kidney samples collected from apparently healthy (asymptomatic) and symptomatic tilapia samples from cage and wetland farms. At the same time, negative results were found in the brain and skin tissue samples. The histological analysis revealed that TiPV induces severe damage invariably in almost all studied tissue, including the liver, kidney, spleen, gill, heart, and brain of tilapia samples. The viral quantification analysis showed that the viral genome was higher in the liver, spleen, and heart than in the tilapia samples' gill, kidney, or brain tissue. Furthermore, the study indicated that TiPV infection has a significant effect on the health of tilapia. The tilapia exhibited an immune reactivity toward TiPV infection (upregulation of chemokine receptors, CRs and interleukin 1β, IL-1β), the majority of the studied immune genes (interleukin 8, IL-8; Toll-like receptors 7, TLR7; tumour necrosis factor α, TNF-α; major histocompatibility complex II, MHC II and nuclear factor kappa B, NF-kB) were significantly downregulated in the kidney, spleen and liver tissue samples of symptomatic tilapia. Further, the in vivo challenge assay confirms that the isolated TiPV is a novel parvovirus pathogen that causes massive mortality in tilapia. The lessons learned from the first cellular and molecular description associated with TiPV epidemiology from wetland and cage farms of tilapia could be critical to developing the current state of the tilapia farming industry. Additionally, a holistic approach is needed to develop management measures to control the virulence and risk factors of TiPV.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India.
| | - Vikash Kumar
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Suvra Roy
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Ramesh Chandra Malick
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Asim Kumar Jana
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Souvik Dhar
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| |
Collapse
|
7
|
Mercer LK, Harding EF, Sridhar T, White PA. Novel viruses discovered in metatranscriptomic analysis of farmed barramundi in Asia and Australia. Virology 2024; 599:110208. [PMID: 39154629 DOI: 10.1016/j.virol.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Barramundi aquaculture is at risk of severe disease outbreaks and massive production losses. Here we used bioinformatics to screen 84 farmed barramundi transcriptomes to identify novel viruses that could threaten barramundi aquaculture and to establish a barramundi aquaculture virome. We discovered five novel viruses: latid herpesvirus 1 (LatHV-1) from the Alloherpesviridae family, barramundi parvovirus 1 (BParV1) from the Parvoviridae family, barramundi calicivirus 1 (BCaV1) from the Caliciviridae family, and barramundi associated picorna-like virus 1 and 2 (BPicV1 and BPicV2) from the Picornaviridae family. LatHV-1, BCaV1, and BParV1 are closely related to pathogenic viruses found in other fish species that can cause mass mortality in farms. To aid in future viral surveillance, we also designed and successfully tested an RT-PCR assay for the detection of BCaV1. Overall, we discovered a range of pathogenic viruses in barramundi aquaculture, paving the way for developing effective detection methods to assist early outbreak management.
Collapse
Affiliation(s)
- Lewis K Mercer
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Emma F Harding
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Tanu Sridhar
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Wu X, Jiang B, Zhang Y, Wang Q, Ma Y. Identification and genomic analysis of a pathogenic circovirus associated with maricultured Scophthalmus maximus L. in China. Virus Res 2024; 347:199428. [PMID: 38942295 PMCID: PMC11292549 DOI: 10.1016/j.virusres.2024.199428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In China, a novel pathogen within the genus Circovirus has been identified as a causative agent of the 'novel acute hemorrhage syndrome' (NAHS) in aquacultured populations of turbot (Scophthalmus maximus L.). Histopathological examination using light microscopy revealed extensive necrosis within the cardiac, splenic, and renal tissues of the afflicted fish. Utilizing transmission electron microscopy (TEM), we detected the presence of circovirus particles within the cytoplasm of these cells, with the virions consistently exhibiting a spherical morphology of 20-40 nm in diameter. TEM inspections confirmed the predominance of these virions in the heart, spleen, and kidney. Subsequent molecular characterization through polymerase chain reaction (PCR) analysis corroborated the TEM findings, with positive signals in the aforementioned tissues, in stark contrast to the lack of detection in gill, fin, liver, and intestinal tissues. The TEM observations, supported by PCR electrophoresis data, strongly suggest that the spleen and kidney are the primary targets of the viral infection. Further characterization using biophysical, biochemical assays, and genomic sequencing confirmed the viral classification within the genus Circovirus, resulting in the nomenclature of turbot circovirus (TurCV). The current research endeavors to shed light on the pathogenesis of this pathogen, offering insights into the infection mechanisms of TurCV in this novel piscine host, thereby contributing to the broader understanding of its impact on turbot health and aquaculture.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Boyin Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| |
Collapse
|
9
|
Liu W, Li M, Xue M, Zhou Y, Jiang N, Meng Y, Liu Y, Jiang J, Liao X, Fan Y. Identification of Aeromonas veronii as the Pathogen Associated with Massive Mortality in Bronze Gudgeon ( Coreius heterodon). Animals (Basel) 2024; 14:2440. [PMID: 39199972 PMCID: PMC11350679 DOI: 10.3390/ani14162440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Aeromonas veronii, an opportunistic pathogen toward aquatic organisms, was identified as the causative pathogen (isolate WH10) in diseased bronze gudgeon via bacterial isolation, and morphological, physiological, biochemical, and molecular characterization. WH10 exerted its pathogenicity via five virulence genes, including those encoding cytotoxic enterotoxins (act and alt), lipase (lip), a quorum sensing-controlled virulence factor (LuxS), and a Type III secretion system inner membrane component (ascV). WH10 was shown to be sensitive to compound sulfamethoxazoles, cefothiophene, doxycycline, and sulfamethoxazole. Toward bronze gudgeon, WH10 had a median lethal dose (LD50) of 1.36 × 106 colony forming units/mL. Analysis of blood parameters of diseased fish revealed significant increases in monocytes and neutrophils, but decreased numbers of lymphocytes. Serum aspartate aminotransferase activity and triglyceride concentration were significantly higher in diseased fish than in healthy fish. The reverse was noted for alkaline phosphatase, total protein, albumin, total cholesterol, and glucose. Thus, Aeromonas veronii is implicated as the causative agent of the mass mortality observed in bronze gudgeon, warranting further investigations into the diagnosis, epidemiology, prevention, and treatment of this infectious disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Mengmeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yisha Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwen Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaolin Liao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
10
|
Kibenge F, Kibenge M, Montes de Oca M, Godoy M. Parvoviruses of Aquatic Animals. Pathogens 2024; 13:625. [PMID: 39204226 PMCID: PMC11357303 DOI: 10.3390/pathogens13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.
Collapse
Affiliation(s)
- Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Sede de la Patagonia, Universidad San Sebastián, Puerto Montt 5480000, Chile
| |
Collapse
|
11
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Xue S, Liu X, Liu Y, Lu C, Jia L, Yu Y, Liu H, Yang S, Zeng Z, Li H, Qin J, Wang Y, Sun J. Determination and Characterization of Novel Papillomavirus and Parvovirus Associated with Mass Mortality of Chinese Tongue Sole ( Cynoglossus semilaevis) in China. Viruses 2024; 16:705. [PMID: 38793587 PMCID: PMC11125579 DOI: 10.3390/v16050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.
Collapse
Affiliation(s)
- Shuxia Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Xinrui Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Yuru Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Chang Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Lei Jia
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Yanguang Yu
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Houfu Liu
- Tianjin Fishery Institute, Tianjin 300221, China; (L.J.); (Y.Y.); (H.L.)
| | - Siyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Zhu Zeng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Hui Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Jiatong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Yuxuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; (S.X.); (X.L.); (Y.L.); (C.L.); (S.Y.); (Z.Z.); (H.L.); (J.Q.); (Y.W.)
| |
Collapse
|
13
|
Valsalam A, Bedekar MK, Kezhedath J, Sood N, Poojary N, Namdeo MS, Shrivastava N, Rajendran KV. Isolation, in vitro, and in vivo pathogenicity test of Tilapia lake virus (TiLV) and development of a prognostic semi-quantitative lesion scoring system for differentiating clinical/subclinical infection in farmed tilapia (Oreochromis niloticus L.). Microb Pathog 2024; 186:106475. [PMID: 38048839 DOI: 10.1016/j.micpath.2023.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Tilapia lake virus ('TiLV-MH-2022') was recently recovered from the naturally infected farmed tilapia. Reverse transcription-polymerase chain reaction (RT-PCR) using segment 1 specific primers, followed by Sanger sequencing, confirmed the infection. The pairwise sequence homology of segment 1 showed its close relationship with the previous isolates. The virus was successfully detected from the mucus, which emphasised the possibility of non-invasive screening of tilapia on a large scale. The virus inoculum prepared from the infected tissues was tested for in vivo and in vitro pathogenicity. Around 100-140 nm-sized electron-dense virus particles were observed in the infected OnlL cells. Based on the onset of symptoms and lesions, all RT-PCR-positive fish were categorised into two groups, 'clinical' and 'subclinical'. A lesion-scoring technique was developed for assessing the pathogenicity of the virus isolate. The external and internal gross lesions and histopathological alterations in the critical organs of the fish, such as the brain, kidney, gills, and liver, were assessed on a scale of 0 (no gross lesion) to 5 (most severe lesions). Overall lesion score was significantly high in the clinical and subclinical groups for gross and histopathology, respectively. This study is the first such attempt to standardise a semi-quantitative lesion scoring technique for TiLV infection, which establishes a clinical relevance and prognostic ability to distinguish between the apparent and inapparent infection.
Collapse
Affiliation(s)
- Anisha Valsalam
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | | | - Jeena Kezhedath
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Neeraj Sood
- ICAR- National Bureau of Fish Genetic Resources, Lucknow, India
| | - Nalini Poojary
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | | | - Nidhi Shrivastava
- College of Veterinary Science & Animal Husbandry, MHOW (NDVSU, Jabalpur), India
| | | |
Collapse
|
14
|
Rajendran KV, Sood N, Rao BM, Valsalam A, Bedekar MK, Jeena K, Pradhan PK, Paria A, Swaminathan TR, Verma DK, Sood NK. Widespread occurrence of Tilapia parvovirus in farmed Nile tilapia Oreochromis niloticus from India. JOURNAL OF FISH DISEASES 2023. [PMID: 37818735 DOI: 10.1111/jfd.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Tilapia parvovirus (TiPV) has been associated with heavy mortalities in tilapia as a single infection or in co-infection with Tilapia lake virus (TiLV). In this study, TiPV was detected in farmed Nile tilapia, Oreochromis niloticus, from two geographical regions of India, Maharashtra and Uttar Pradesh. TiPV-specific polymerase chain reaction (PCR) reported earlier was used in the screening. Tilapia collected from Maharashtra showed characteristic clinical signs, and TiPV was detected along with TiLV and/or Aeromonas spp. However, fish from Uttar Pradesh were apparently healthy and only TiPV could be detected in these samples. A high prevalence of TiPV was recorded from both the geographical locations, Maharashtra and Uttar Pradesh (59.6% and 95.0% respectively). The virus could be detected in tissues such as the spleen, liver, kidney, brain and mucus. The spleen appeared to be the best tissue for detecting TiPV in apparently healthy tilapia. The presence of TiPV was further confirmed through sequencing the PCR products, isolation of the virus in the cell line and electron microscopy. Sequences of the NS1 gene of the two TiPV isolates showed similarity to the earlier reported TiPV isolates. The virus could be successfully propagated in O. niloticus Liver (OnL) cell line, and cytopathic effect was observed as early as 3 days post-infection. Furthermore, the presence of non-enveloped icosahedral to round virus particles measuring about 26-35 nm could be demonstrated in the cytoplasm and nucleus of infected OnL cells in transmission electron microscopy. With this confirmation of the presence of the virus, India is the third country to report TiPV after China and Thailand. The detection of TiPV in co-infection cases with TiLV and in apparently healthy Nile tilapia suggests its wide distribution and potential synergistic effect in co-infection cases. Therefore, this emerging virus needs holistic attention to understand its virulence, host-specificity and epidemiological risk factors.
Collapse
Affiliation(s)
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, India
| | - B Madhusudhana Rao
- ICAR-Central Institute of Fisheries Education, Maharashtra, Mumbai, India
| | - Anisha Valsalam
- ICAR-Central Institute of Fisheries Education, Maharashtra, Mumbai, India
| | - Megha K Bedekar
- ICAR-Central Institute of Fisheries Education, Maharashtra, Mumbai, India
| | - Kezhedath Jeena
- ICAR-Central Institute of Fisheries Education, Maharashtra, Mumbai, India
| | | | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, India
| | | | - Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, India
| | - Naresh Kumar Sood
- Guru Angad Dev Veterinary and Animal Sciences University, Punjab, Ludhiana, India
| |
Collapse
|
15
|
Hou G, Zhang Q, Li C, Ding G, Hu L, Chen X, Lv Z, Fan Y, Zou J, Xiao T, Zhang YA, Li J. An Aquareovirus Exploits Membrane-Anchored HSP70 To Promote Viral Entry. Microbiol Spectr 2023; 11:e0405522. [PMID: 37158746 PMCID: PMC10269764 DOI: 10.1128/spectrum.04055-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Temperature dependency of viral diseases in ectotherms has been an important scientific issue for decades, while the molecular mechanism behind this phenomenon remains largely mysterious. In this study, deploying infection with grass carp reovirus (GCRV), a double-stranded RNA aquareovirus, as a model system, we demonstrated that the cross talk between HSP70 and outer capsid protein VP7 of GCRV determines temperature-dependent viral entry. Multitranscriptomic analysis identified HSP70 as a key player in the temperature-dependent pathogenesis of GCRV infection. Further biochemical, small interfering RNA (siRNA) knockdown, pharmacological inhibition, and microscopic approaches revealed that the primary plasma membrane-anchored HSP70 interacts with VP7 to facilitate viral entry during the early phase of GCRV infection. Moreover, VP7 functions as a key coordinator protein to interact with multiple housekeeping proteins and regulate receptor gene expression, concomitantly facilitating viral entry. This work illuminates a previously unidentified immune evasion mechanism by which an aquatic virus hijacks heat shock response-related proteins to enhance viral entry, pinpointing targeted preventives and therapeutics for aquatic viral diseases. IMPORTANCE The seasonality of viral diseases in ectotherms is a prevailing phenomenon in the aquatic environment, which causes huge economic losses every year worldwide and hinders sustainable development of the aquaculture industry. Nevertheless, our understanding of the molecular mechanism of how temperature determines the pathogenesis of aquatic viruses remains largely unexplored. In this study, by deploying grass carp reovirus (GCRV) infection as a model system, we demonstrated that temperature-dependent, primarily membrane-localized HSP70 interacts with major outer capsid protein VP7 of GCRV to bridge the virus-host interaction, reshape the host's behaviors, and concomitantly facilitate viral entry. Our work unveils a central role of HSP70 in the temperature-dependent pathogenesis of aquatic viruses and provides a theoretical basis for the formulation of prevention and control strategies for aquatic viral diseases.
Collapse
Affiliation(s)
- Guoli Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Qiushi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Chun Li
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Geye Ding
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Lingling Hu
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Xiaoying Chen
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Zhao Lv
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Tiaoyi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Xi Y, Jiang X, Xie X, Zhao M, Zhang H, Qin K, Wang X, Liu Y, Yang S, Shen Q, Ji L, Shang P, Zhang W, Shan T. Viromics Reveals the High Diversity of Viruses from Fishes of the Tibet Highland. Microbiol Spectr 2023; 11:e0094623. [PMID: 37219423 PMCID: PMC10269613 DOI: 10.1128/spectrum.00946-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Aquaculture is important for food security and nutrition. The economy has recently been significantly threatened and the risk of zoonoses significantly increased by aquatic diseases, and the ongoing introduction of new aquatic pathogens, particularly viruses, continues to represent a hazard. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. Here, we conducted a metagenomic survey of different species of healthy fishes caught in the Lhasa River, Tibet, China, and sampled intestinal contents, gills, and tissues. To be more precise, by identifying and analyzing viral genomes, we aim to determine the abundance, diversity, and evolutionary relationships of viruses in fish with other potential hosts. Our analysis identified 28 potentially novel viruses, 22 of which may be associated with vertebrates, across seven viral families. During our research, we found several new strains of viruses in fish, including papillomavirus, hepadnavirus, and hepevirus. Additionally, we discovered two viral families, Circoviridae and Parvoviridae, which were prevalent and closely related to viruses that infect mammals. These findings further expand our understanding of highland fish viruses and highlight the emerging view that fish harbor large, unknown viruses. IMPORTANCE The economy and zoonoses have recently been significantly threatened by aquatic diseases. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. We identified the wide genetic diversity of viruses that these fish were harboring. Since there are currently few studies on the virome of fish living in the Tibet highland, our research adds to the body of knowledge. This discovery lays the groundwork for future studies on the virome of fish species and other highland animals, preserving the ecological equilibrium on the plateau.
Collapse
Affiliation(s)
- Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinrui Xie
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Han Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kailin Qin
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
17
|
Chen XJ, Huang MY, Wangkahart E, Cai J, Huang Y, Jian JC, Wang B. Immune response and protective efficacy of mannosylated polyethylenimine (PEI) as an antigen delivery vector, administered with a Streptococcus agalactiae DNA vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108684. [PMID: 36921882 DOI: 10.1016/j.fsi.2023.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study examined the effectiveness of a DNA vaccine for S. agalactiae that was delivered by mannose-based polyethyleneimine (Man-PEI). The results showed that Man-PEI/pcDNA-Sip stimulated a higher serum antibody titer compared to control or other vaccine groups (p < 0.05). Additionally, it induced higher expression of immune-related genes, and increased activities of superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Furthermore, the Man-PEI/pcDNA-Sip group showed an improved relative percent survival (RPS) of 85.71%. These results demonstrate the potential value of Man-PEI as a vaccine delivery vehicle, and suggest that it can be effective in boosting the immune protective rate induced by pcDNA-Sip vaccines.
Collapse
Affiliation(s)
- Xin-Jin Chen
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Man-Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China.
| |
Collapse
|
18
|
Prasartset T, Surachetpong W. Simultaneous detection of three important viruses affecting tilapia using a multiplex PCR assay. JOURNAL OF FISH DISEASES 2023; 46:459-464. [PMID: 36441848 DOI: 10.1111/jfd.13734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Tharinthon Prasartset
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
19
|
Zhao H, Zhou Y, Fan Y, Jiang N, Meng Y, Li Y, Xue M, Xu C, Guo W, Liu W. Development and application of a sensitive droplet digital PCR-based method to detect tilapia parvovirus. JOURNAL OF FISH DISEASES 2023; 46:239-245. [PMID: 36591869 DOI: 10.1111/jfd.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tilapia parvovirus (TiPV) causes severe mortality rates in cultured tilapia, resulting in substantial losses to the fish industry. Droplet digital PCR (ddPCR) is a sensitive, accurate, and absolute quantitation method, plus it does not require a standard curve. Herein we report the development and application of a sensitive ddPCR-based method to rapidly detect and quantify TiPV. Optimal annealing temperature was determined to be 59.3°C, and optimal primer and probe concentrations were 900 nmol/L and 250 nmol/L, respectively. Our ddPCR method was highly specific to TiPV and showed no cross-reactivity with other viruses. Further, the detection limit of ddPCR was 0.07 copies/μl, being lower than that of real-time PCR (qPCR, 4.63 copies/μl). We also investigated the ability of ddPCR to detect TiPV in 50 samples and compared the outcome with qPCR data in terms of sensitivity and accuracy. The results showed that the positive detection rate of ddPCR (32%) was higher than that of qPCR (18%). To conclude, our ddPCR method was effective at detecting TiPV in samples with low viral loads. We believe that its application can facilitate the surveillance of sources and transmission routes of TiPV.
Collapse
Affiliation(s)
- Haikuo Zhao
- College of Oceanography, Hainan University, Haikou, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Weiliang Guo
- College of Oceanography, Hainan University, Haikou, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
20
|
Development and evaluation of a rapid, specific, and sensitive loop-mediated isothermal amplification assay to detect Tenacibaculum sp. strain pbs-1 associated with black-spot shell disease in Akoya pearl oysters. Arch Microbiol 2022; 205:43. [PMID: 36575332 DOI: 10.1007/s00203-022-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Black-spot shell disease decreases pearl quality and threatens pearl oyster survival. Establishment of a rapid, specific, and sensitive assay to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease is of commercial importance. We developed a rapid, specific, and highly sensitive loop-mediated isothermal amplification (LAMP) assay to detect Tenacibaculum sp. Pbs-1 in Akoya pearl oysters Pinctada fucata. A set of five specific primers (two inner, two outer, and a loop) were designed based on the 16S-23S internal spacer region of strain Pbs-1. The optimum reaction temperature was 63 °C, and concentrations of the inner and loop primers were 1.4 and 1.0 µM, respectively. The LAMP product can be detected using agarose gel electrophoresis, and the color change in the reaction tube can be detected visually (by the naked eye) following the addition of malachite green. Our assay proved to be specific for strain Pbs-1, with no cross-reactivity with five other species of Tenacibaculum. The detection limit of the LAMP assay at 35 min is 50 pg, and at 60 min it is 5 fg. We evaluated the LAMP assay using diseased and healthy pearl oysters. The results demonstrate the suitability and simplicity of this test for rapid field diagnosis of strain Pbs-1.
Collapse
|
21
|
Khan MAA, Schoene K, Cashman J, Abd El Wahed A, Truyen U. Evaluation of a simple ultrafiltration method for concentration of infective canine parvovirus and feline coronavirus from cell culture supernatants. J Virol Methods 2022; 310:114628. [PMID: 36209765 PMCID: PMC9535878 DOI: 10.1016/j.jviromet.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022]
Abstract
Enrichment of viral infectious titers following its propagation by cell culture is desirable for various experimental studies. The performance of an ultrafiltration (UF) process to concentrate infectious titers of non-enveloped Canine parvovirus 2 (CPV-2) and enveloped Feline coronavirus (FCoV) obtained from cell culture supernatants was evaluated in this study, and compared with ultracentrifugation (UC) process. A mean gain of > 1.0 log10 TCID50/mL was obtained for CPV-2 with UF, which was comparable with the gain obtained by UC. On the other hand, the gain was lower (0.7-1.0 log10 TCID50/mL) for FCoV with UF in contrast to UC (> 2.0 log10 TCID50/mL). However, the lower retentate volume following UC (∼120 fold) compared to that following UF (∼10 fold) for either of the viruses suggests a trend of increased infectious titer retention in UF concentrates relative to UC concentrates. The simplistic UF process evaluated here thus has the potential for use in applications requiring increased infectious titers of CPV-2 and FCoV.
Collapse
Affiliation(s)
- Md Anik Ashfaq Khan
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
| | | | - John Cashman
- Sartorius UK Ltd., Epsom KT19 9QQ, United Kingdom
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany.
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Phusantisampan T, Yamkasem J, Tattiyapong P, Sriariyanun M, Surachetpong W. Specific and rapid detection of tilapia parvovirus using loop-mediated isothermal amplification (LAMP) method. JOURNAL OF FISH DISEASES 2022; 45:1893-1898. [PMID: 36048556 DOI: 10.1111/jfd.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Jidapa Yamkasem
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| | - Malinee Sriariyanun
- Department of Chemical and Process Engineering, Biorefinery and Process Automation Engineering Center, The Sirindhorn Thai-German International Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Win Surachetpong
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
23
|
Harding EF, Russo AG, Yan GJH, Mercer LK, White PA. Revealing the uncharacterised diversity of amphibian and reptile viruses. ISME COMMUNICATIONS 2022; 2:95. [PMID: 37938670 PMCID: PMC9723728 DOI: 10.1038/s43705-022-00180-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 06/29/2023]
Abstract
Amphibians and non-avian reptiles represent a significant proportion of terrestrial vertebrates, however knowledge of their viruses is not proportional to their abundance. Many amphibians and reptiles have strict habitual environments and localised populations and are vulnerable to viral outbreaks and potential elimination as a result. We sought to identify viruses that were hidden in amphibian and reptile metatranscriptomic data by screening 235 RNA-sequencing datasets from a 122 species covering 25 countries. We identified 26 novel viruses and eight previously characterised viruses from fifteen different viral families. Twenty-five viruses had RNA genomes with identity to Arteriviridae, Tobaniviridae, Hantaviridae, Rhabdoviridae, Astroviridae, Arenaviridae, Hepeviridae, Picornaviridae, Orthomyxoviridae, Reoviridae, Flaviviridae and Caliciviridae. In addition to RNA viruses, we also screened datasets for DNA viral transcripts, which are commonly excluded from transcriptomic analysis. We identified ten DNA viruses with identity to Papillomaviridae, Parvoviridae, Circoviridae and Adomaviridae. With the addition of these viruses, we expand the global amphibian and reptile virome and identify new potentially pathogenic viruses that could challenge populations. We speculate that amphibian viruses often have simpler genomes than those in amniotes, as in the case of the Secondpapillomavirinae and Orthomyxoviridae viruses identified in this study. In addition, we find evidence of inter-family recombination in RNA viruses, and we also identify new members of the recombinant Adomaviridae family. Overall, we provide insights into the uncharacterised diversity of amphibian and reptile viruses with the aim of improving population management, treatment and conservation into the future.
Collapse
Affiliation(s)
- Emma F Harding
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Alice G Russo
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Grace J H Yan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Lewis K Mercer
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
24
|
Dong HT, Sangpo P, Dien LT, Mai TT, Linh NV, Del-Pozo J, Salin KR, Senapin S. Usefulness of the pancreas as a prime target for histopathological diagnosis of Tilapia parvovirus (TiPV) infection in Nile tilapia, Oreochromis niloticus. JOURNAL OF FISH DISEASES 2022; 45:1323-1331. [PMID: 35638102 DOI: 10.1111/jfd.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Tilapia parvovirus (TiPV) is an emerging virus reportedly associated with disease and mortality in farmed tilapia. Although previous descriptions of histopathological changes are available, the lesions reported in these are not pathognomonic. Here, we report Cowdry type A inclusion bodies (CAIB) in the pancreas as a diagnostic histopathological feature found in adult Nile tilapia naturally infected with TiPV. This type of inclusion body has been well-known as a histopathological landmark for the diagnosis of other parvoviral infections in shrimp and terrestrial species. Interestingly, this lesion could be exclusively observed in pancreatic acinar cells, both in the hepatopancreas and pancreatic tissue along the intestine. In situ hybridization (ISH) using a TiPV-specific probe revealed the intranuclear presence of TiPV DNA in multiple tissues, including the liver, pancreas, kidney, spleen, gills and the membrane of oocytes in the ovary. These findings suggest that although TiPV can replicate in several tissue types, CAIB manifest exclusively in pancreatic tissues. In addition to TiPV, most diseased fish were co-infected with Streptococcus agalactiae, and presented with multifocal granulomas secondary to this bacterial infection. Partial genome amplification of TiPV was successful and revealed high nucleotide identity (>99%) to previously reported isolates. In summary, this study highlights the usefulness of pancreatic tissue as a prime target for histopathological diagnosis of TiPV in diseased Nile tilapia. This pattern may be critical when determining the presence of TiPV infection in new geographic areas, where ancillary testing may not be available. TiPV pathogenesis in this landmark organ warrants further investigation.
Collapse
Affiliation(s)
- Ha Thanh Dong
- AARM/FAB, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Pattiya Sangpo
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Le Thanh Dien
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thao Thu Mai
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jorge Del-Pozo
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - Krishna R Salin
- AARM/FAB, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
25
|
Characterization of a Novel RNA Virus Causing Massive Mortality in Yellow Catfish, Pelteobagrus fulvidraco, as an Emerging Genus in Caliciviridae ( Picornavirales). Microbiol Spectr 2022; 10:e0062422. [PMID: 35924844 PMCID: PMC9431444 DOI: 10.1128/spectrum.00624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An emerging disease in farmed yellow catfish (Pelteobagrus fulvidraco) causing massive mortality broke out in 2020 in Hubei, China. Histopathological examination indicated significant changes in kidneys and spleens of diseased fish. Electron microscopy revealed large numbers of viral particles in the kidneys and spleens. These particles were spherical with a diameter of approximately 35 nm. By using RNA sequencing and rapid identification of cDNA ends, the full nucleotide sequence of the virus was identified. The viral genome comprises 7,432 bp and contains three open reading frames sharing no nucleotide sequence similarity with other viruses; however, the amino acid sequence partially matched that of the nonstructural (NS) proteins from viruses in the order Picornavirales. Combined with the phylogenetic analysis, the conserved amino acid motifs and the domains of the viral genome predict a genome order typical of a calicivirus. Therefore, this virus was tentatively named yellow catfish calicivirus (YcCV). Cell culture showed that YcCV could cause a cytopathic effect in the channel catfish kidney cell line (CCK) at early passages. In artificial infection, this virus could infect healthy yellow catfish and led to clinical symptoms similar to those that occurred naturally. In situ hybridization analysis detected positive signals of the virus in kidney, spleen, liver, heart, and gill tissues of diseased fish. This study represents the first report of calicivirus infection in yellow catfish and provides a solid basis for future studies on the control of this viral disease. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. A novel calicivirus identified from yellow catfish also causes substantial mortality. Using an RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE) method, the full nucleotide sequence was identified and characterized, and this virus was tentatively named yellow catfish calicivirus (YcCV). A nucleotide sequence similarity search found no match with other viruses, and an amino acid sequence comparison indicated approximately 23.3% amino acid homology with the viruses in the order Picornavirales. These findings may represent a new avenue to explain virus evolution and suggest a need to further study the pathogenesis of calicivirus and characterize possible interactions among interspecific viruses in the aquaculture environment.
Collapse
|
26
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
27
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
28
|
Reuter G, Boros Á, Mátics R, Altan E, Delwart E, Pankovics P. A novel parvovirus (family Parvoviridae) in a freshwater fish, zander (Sander lucioperca). Arch Virol 2022; 167:1163-1167. [PMID: 35278130 PMCID: PMC8964545 DOI: 10.1007/s00705-022-05419-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
In this study, a novel parvovirus (zander/M5/2015/HUN, OK236393) was detected in faecal specimens from a fish – zander or pikeperch (Sander lucioperca) – and genetically characterized using viral metagenomics and PCR methods. The NS1 and VP1 proteins of zander/M5/2015/HUN share <30% aa sequence identity, respectively, with the corresponding proteins of known members of the family Parvoviridae. Out of 62 faecal specimens collected from 13 freshwater fish species, three (4.8%) samples were positive by PCR for the novel parvovirus – all from zander. This is the second parvovirus detected in fish – after the disease-causing tilapia parvovirus of the subfamily Hamaparvovirinae – and it potentially represents a novel genus in the subfamily Parvovirinae.
Collapse
Affiliation(s)
- Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary.
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | | | - Eda Altan
- Vitalant Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| |
Collapse
|
29
|
Yamkasem J, Tattiyapong P, Surachetpong W. Development and application of TaqMan probe-based quantitative PCR assays for the detection of tilapia parvovirus. JOURNAL OF FISH DISEASES 2022; 45:379-386. [PMID: 34871459 DOI: 10.1111/jfd.13565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Tilapia parvovirus (TiPV) is a novel parvovirus associated with high mortality in Nile tilapia and red hybrid tilapia, leading to severe economic losses for tilapia aquaculture. It is critical to develop a sensitive and accurate assay to detect TiPV in fish tissues. In this study, new TaqMan probe-based quantitative PCR (qPCR) assays targeting the non-structural (NS) and viral protein (VP) genes of TiPV were developed. The standard curves of the assays were 95.64%-98.96% over a wide linear range of 109 -101 copies of the corresponding standard DNA per reaction. The intra- and inter-assay coefficients of variation were in the ranges 0.54%-2.50% and 0.13%-1.17%, respectively, which suggests good repeatability and reproducibility. The detection limit of the TaqMan TiPV assays was 10 copies/µl. The application of the TaqMan qPCR assays to field samples revealed that they had comparable sensitivity to a previously developed SYBR Green qPCR, but more sensitive than the conventional PCR. No cross-reactivity of the TaqMan TiPV assays was found with the samples infected with other viruses and bacteria. Overall, the assays offered high sensitivity and specificity in the detection of low concentrations of TiPV DNA in infected tilapia samples. These new TaqMan qPCR assays could provide a valuable diagnostic tool for the reliable and specific detection of TiPV in experimental and field samples.
Collapse
Affiliation(s)
- Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
30
|
Liu W, Fan Y, Zhou Y, Jiang N, Li Y, Meng Y, Xue M, Li Z, Zeng L. Susceptibility of a cell line derived from the kidney of Chinese rice-field eel, Monopterus albus to the infection of rhabdovirus, CrERV. JOURNAL OF FISH DISEASES 2022; 45:361-371. [PMID: 34843633 DOI: 10.1111/jfd.13563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
31
|
Michel AO, Donovan TA, Roediger B, Lee Q, Jolly CJ, Monette S. Chaphamaparvovirus antigen and nucleic acids are not detected in kidney tissues from cats with chronic renal disease or immunocompromised cats. Vet Pathol 2022; 59:120-126. [PMID: 34601998 PMCID: PMC9393070 DOI: 10.1177/03009858211045439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic kidney disease (CKD) is a common cause of morbidity and mortality in domestic cats, but the cause is still largely elusive. While some viruses have been associated with this disease, none have been definitively implicated as causative. Recently, Rodent chaphamaparvovirus 1 was recognized as the cause of murine inclusion body nephropathy, a disease reported for over 40 years in laboratory mice. A novel virus belonging to the same genus, Carnivore chaphamaparvovirus 2, was recently identified in the feces of cats with diarrhea. The goal of this study was to investigate the possible role of chaphamaparvoviruses including members of Rodent chaphamaparvovirus 1 and Carnivore chaphamaparvovirus 2 in the development of feline CKD. The presence of these viruses was retrospectively investigated in formalin-fixed paraffin-embedded feline kidney samples using polymerase chain reaction, in situ hybridization, and immunohistochemistry. Cats were divided into 3 groups: normal (N = 24), CKD (N = 26), and immunocompromised (N = 25). None of the kidney tissues from any of the 75 cats revealed the presence of chaphamaparvovirus DNA, RNA, or antigen. We conclude that viruses belonging to the chaphamaparvovirus genus are unlikely to contribute to the occurrence of feline CKD.
Collapse
Affiliation(s)
- Adam O Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Taryn A Donovan
- Department of Anatomic Pathology, The Animal Medical Center, New York, NY 10065, USA
| | - Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Autoimmunity, Transplantation, Inflammation (ATI) Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Quintin Lee
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Christopher J Jolly
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
32
|
Shahin K, Subramaniam K, Camus AC, Yazdi Z, Yun S, Koda SA, Waltzek TB, Pierezan F, Hu R, Soto E. Isolation, Identification and Characterization of a Novel Megalocytivirus from Cultured Tilapia ( Oreochromis spp.) from Southern California, USA. Animals (Basel) 2021; 11:3524. [PMID: 34944299 PMCID: PMC8697977 DOI: 10.3390/ani11123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
In spring 2019, diseased four-month-old tilapia (Oreochromis spp.) from an aquaculture farm in Southern California, USA were received for diagnostic evaluation with signs of lethargy, anorexia, abnormal swimming, and low-level mortalities. At necropsy, non-specific external lesions were noted including fin erosion, cutaneous melanosis, gill pallor, and coelomic distension. Internal changes included ascites, hepatomegaly, renomegaly, splenomegaly, and multifocal yellow-white nodules in the spleen and kidney. Cultures of spleen and kidney produced bacterial colonies identified as Francisella orientalis. Homogenized samples of gill, brain, liver, spleen, and kidney inoculated onto Mozambique tilapia brain cells (OmB) developed cytopathic effects, characterized by rounding of cells and detaching from the monolayer 6-10 days post-inoculation at 25 °C. Transmission electron microscopy revealed 115.4 ± 5.8 nm icosahedral virions with dense central cores in the cytoplasm of OmB cells. A consensus PCR, targeting the DNA polymerase gene of large double-stranded DNA viruses, performed on cell culture supernatant yielded a sequence consistent with an iridovirus. Phylogenetic analyses based on the concatenated full length major capsid protein and DNA polymerase gene sequences supported the tilapia virus as a novel species within the genus Megalocytivirus, most closely related to scale drop disease virus and European chub iridovirus. An intracoelomic injection challenge in Nile tilapia (O. niloticus) fingerlings resulted in 39% mortality after 16 days. Histopathology revealed necrosis of head kidney and splenic hematopoietic tissues.
Collapse
Affiliation(s)
- Khalid Shahin
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; or (Z.Y.); (S.Y.); (R.H.)
- Aquatic Animal Diseases Laboratory, Aquaculture Department, National Institute of Oceanography and Fisheries, Suez P.O. Box 43511, Egypt
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.S.); (S.A.K.); (T.B.W.)
| | - Alvin C. Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; or (Z.Y.); (S.Y.); (R.H.)
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; or (Z.Y.); (S.Y.); (R.H.)
| | - Samantha A. Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.S.); (S.A.K.); (T.B.W.)
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.S.); (S.A.K.); (T.B.W.)
| | - Felipe Pierezan
- School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil;
| | - Ruixue Hu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; or (Z.Y.); (S.Y.); (R.H.)
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; or (Z.Y.); (S.Y.); (R.H.)
| |
Collapse
|
33
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
34
|
Fishing for the Virome of Tropical Tuna. Viruses 2021; 13:v13071291. [PMID: 34372497 PMCID: PMC8310200 DOI: 10.3390/v13071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
While planktonic viruses have received much attention in recent decades, knowledge of the virome of marine organisms, especially fish, still remains rudimentary. This is notably the case with tuna, which are among the most consumed fish worldwide and represent considerable economic, social and nutritional value. Yet the composition of the tuna virome and its biological and environmental determinants remain unknown. To begin to address this gap, we investigated the taxonomic diversity of viral communities inhabiting the skin mucus, gut and liver of two major tropical tuna species (skipjack and yellowfin) in individuals fished in the Atlantic and Indian Oceans. While we found significant differences in the virome composition between the organs, this was totally independent of the tuna species or sex. The tuna virome was mainly dominated by eukaryotic viruses in the digestive organs (gut and liver), while bacteriophages were predominant in the mucus. We observed the presence of specific viral families in each organ, some previously identified as fish or human pathogens (e.g., Iridoviridae, Parvoviridae, Alloherpesviridae, Papillomaviridae). Interestingly, we also detected a ‘core virome’ that was shared by all the organs and was mainly composed of Caudovirales, Microviridae and Circoviridae. These results show that tuna host a mosaic of viral niches, whose establishment, role and circulation remain to be elucidated.
Collapse
|
35
|
Yamkasem J, Tattiyapong P, Gorgoglione B, Surachetpong W. Uncovering the first occurrence of Tilapia parvovirus in Thailand in tilapia during co-infection with Tilapia tilapinevirus. Transbound Emerg Dis 2021; 68:3136-3144. [PMID: 33960141 DOI: 10.1111/tbed.14143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023]
Abstract
The recently discovered Tilapia parvovirus (TiPV) was the first Parvovirus confirmed to infect fish, causing mortality outbreaks in farmed adult Nile tilapia in China. Severe mortality outbreaks caused by Tilapia tilapinevirus (TiLV) to farmed tilapia in Thailand revealed the concomitant occurrence of TiPV. Out of ten fish farms screened, TiPV was detected in one site rearing juvenile red hybrid tilapia. Clinical signs included abnormal swimming, scale protrusion, skin and muscle haemorrhaging, exophthalmia and generalized anaemia. Histological findings showed extensive infiltration of lymphocytes, with increased melanomacrophage centres in the anterior kidney and spleen, erythrocyte depletion in the spleen and hepatic syncytial cells. Both TiLV and TiPV were systemically distributed in the body of moribund fish. The analysis of the near-complete TiPV genome isolated from Thailand revealed 98.74% sequence identity to the formerly isolated from China, together with a highly conserved and comparable genomic organization and with a 3 nucleotides deletion in the 5-UTR. The viral genome structure was highly conserved for each of its components, with nucleotide and amino acid identity ranging from 100% for ORF1 to 97% for ORF2, and with conserved HuH and Walker loop motifs within NS1. Taken together, our results document the first detection of TiPV outside China, thus for the first time in Thailand. Moreover, TiPV was detected for the first time during a natural occurrence in farmed red hybrid tilapia and involved in co-infection pattern with TiLV. Diagnostic investigations during tilapia disease outbreaks should include the screening for TiPV. Further studies are needed to elucidate TiPV genomic variance, pathobiology, including focussing on the outcomes of TiLV-TiPV co-infection patterns, necessary to enable risk assessment for the worldwide spreading of TiPV and to design adequate control measures against these emerging viruses in tilapia.
Collapse
Affiliation(s)
- Jidapa Yamkasem
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| | - Bartolomeo Gorgoglione
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, CVM & Department of Fisheries and Wildlife, CANR - Michigan State University, East Lansing, MI, USA
| | - Win Surachetpong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|