1
|
Roy S, Cakmak ZS, Mahmoud S, Sadeghzadeh M, Wang G, Ren D. Eradication of Pseudomonas aeruginosa Persister Cells by Eravacycline. ACS Infect Dis 2024; 10:4127-4136. [PMID: 39537364 PMCID: PMC11650763 DOI: 10.1021/acsinfecdis.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa is a leading bacterial pathogen that causes persistent infections. One major reason that antibiotics fail to clear such infections is the presence of a dormant subpopulation called persister cells. To eradicate persister cells, it is important to change drug development from traditional strategies that focus on growth inhibition to the search for new leads that can kill dormant cells. In this study, we demonstrate that eravacycline can effectively accumulate in P. aeruginosa persister cells, leading to strong killing during wakeup, including persister cells in both planktonic cultures and biofilms of the wild-type strain and its mucoid mutant. The effects of eravacycline on persister control were further validated in vivo using a lung infection model in mice. Collectively, these results demonstrate the possibility to control persister cells of bacterial pathogens by targeting dormancy.
Collapse
Affiliation(s)
- Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Zeynep S Cakmak
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Salma Mahmoud
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Mahsa Sadeghzadeh
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13210, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BionInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Buchholtz K, Jersie-Christensen R, Krogfelt KA, Mojsoska B. Analysis of Antibiotic Response in Clinical Wound Pseudomonas aeruginosa Isolates: Unveiling Proteome Dynamics of Tobramycin-Tolerant Phenotype. Mol Cell Proteomics 2024; 23:100861. [PMID: 39424064 PMCID: PMC11617395 DOI: 10.1016/j.mcpro.2024.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen, causing serious chronic infections. P. aeruginosa can adapt efficiently to antibiotic stressors via different genotypic or phenotypic strategies such as resistance and tolerance. The adaptation regulatory system is not always very well understood. In this study, we use shotgun proteomics to investigate the system-level response to tobramycin in two clinical wound P. aeruginosa isolates and PAO1. We profiled each strain for its antibiotic drug-tolerant phenotype using supra-minimum inhibitory concentrations (supra-MICs) of tobramycin and applied proteomics to investigate the protein expression profiles. The MIC revealed that all isolates were susceptible to tobramycin but at supra-MICs at stationary growth, a degree of tolerance was observed for the isolates. We identified around 40% of the total proteins encoded by the P. aeruginosa genome and highlighted shared and unique protein signatures for all isolates. Comparative proteome profiling in the absence of antibiotic treatment showed divergent fingerprints, despite similarities in the growth behavior of the isolates. In the presence of tobramycin, the isolates shared a common response in the downregulation of proteins involved in the two-component system, whereas stress response proteins were present at higher levels. Our findings provide insight into the use of proteomic tools to dissect the system-level response in clinical isolates in the absence and presence of antibiotic stress.
Collapse
Affiliation(s)
- Kasandra Buchholtz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
3
|
Rycroft JA, Giorgio RT, Sargen M, Helaine S. Tracking the progeny of bacterial persisters using a CRISPR-based genomic recorder. Proc Natl Acad Sci U S A 2024; 121:e2405983121. [PMID: 39374386 PMCID: PMC11494289 DOI: 10.1073/pnas.2405983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/11/2024] [Indexed: 10/09/2024] Open
Abstract
The rise of antimicrobial failure is a global emergency, and causes beyond typical genetic resistance must be determined. One probable factor is the existence of subpopulations of transiently growth-arrested bacteria, persisters, that endure antibiotic treatment despite genetic susceptibility to the drug. The presence of persisters in infected hosts has been successfully established, notably through the development of fluorescent reporters. It is proposed that infection relapse is caused by persisters resuming growth after cessation of the antibiotic treatment, but to date, there is no direct evidence for this. This is because no tool or reporter currently exists to track the extent to which infection relapse is initiated by regrowth of persisters in the host. Indeed, once they have transitioned out of the persister state, the progeny of persisters are genetically and phenotypically identical to susceptible bacteria in the population, making it virtually impossible to ascertain the source of relapse. We designed pSCRATCH (plasmid for Selective CRISPR Array expansion To Check Heritage), a molecular tool that functions to record the state of antibiotic persistence in the genome of Salmonella persisters. We show that pSCRATCH successfully marks persisters by adding spacers in their CRISPR arrays and the genomic label is stable in persister progeny after exit from persistence. We further show that in a Salmonella infection model the system enables the discrimination of treatment failure originating from persistence versus resistance. Thus, pSCRATCH provides proof of principle for stable marking of persisters and a prototype for applications to more complex infection models and other pathogens.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Murphy MM, Culligan EP, Murphy CP. Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70027. [PMID: 39446085 PMCID: PMC11500616 DOI: 10.1111/1758-2229.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Antimicrobial resistance (AMR), known as the "silent pandemic," is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
Collapse
Affiliation(s)
- Monica M. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| |
Collapse
|
5
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
7
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
8
|
Amoura A, Pistien C, Chaligné C, Dion S, Magnan M, Bridier-Nahmias A, Baron A, Chau F, Bourgogne E, Le M, Denamur E, Ingersoll MA, Fantin B, Lefort A, El Meouche I. Variability in cell division among anatomical sites shapes Escherichia coli antibiotic survival in a urinary tract infection mouse model. Cell Host Microbe 2024; 32:900-912.e4. [PMID: 38759643 DOI: 10.1016/j.chom.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.
Collapse
Affiliation(s)
- Ariane Amoura
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Claire Pistien
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Camille Chaligné
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Sara Dion
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Mélanie Magnan
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | | | - Alexandra Baron
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Françoise Chau
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Emmanuel Bourgogne
- AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France; Université Paris Cité, Faculté de Santé, Pharmacie, Laboratoire de Toxicologie, 75018 Paris, France
| | - Minh Le
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, 75018 Paris, France
| | - Molly A Ingersoll
- Université Paris Cité, CNRS, Inserm, Institut Cochin, 75014 Paris, France; Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Agnès Lefort
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Beaujon, Service de Médecine Interne, 92110 Clichy, France
| | - Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France.
| |
Collapse
|
9
|
Liu X, Wang P, Yuan N, Zhai Y, Yang Y, Hao M, Zhang M, Zhou D, Liu W, Jin Y, Wang A. The (p)ppGpp synthetase Rsh promotes rifampicin tolerant persister cell formation in Brucella abortus by regulating the type II toxin-antitoxin module mbcTA. Front Microbiol 2024; 15:1395504. [PMID: 38841069 PMCID: PMC11150624 DOI: 10.3389/fmicb.2024.1395504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Persister cells are transiently tolerant to antibiotics and are associated with recalcitrant chronic infections due to recolonization of host cells after antibiotic removal. Brucella spp. are facultative pathogens that establish intracellular infection cycles in host cells which results in chronic persistent infections. Brucella abortus forms multi-drug persister cells which are promoted by the (p)ppGpp synthetase Rsh during rifampicin exposure. Here, we confirmed that Rsh promoted persister cells formation in B. abortus stationary phase treated with rifampicin and enrofloxacin. Deletion of the gene for Rsh decreased persister cells level in the presence of these drugs in different growth phases. However, persister cells formation by deletion strain varied in different growth phases in the presence of other antibiotics. Rsh also was involved in persister cells formation during rifampicin treatment under certain stress conditions, including acidic conditions, exposure to PBS, and heat stress. Moreover, Rsh impacted persister cell levels during rifampicin or enrofloxacin treatment in RAW264.7 macrophages. Certain typeIItoxin-antitoxin modules were upregulated under various stress conditions in B. abortus. We established that Rsh positively regulated the type II toxin-antitoxin mbcTA. Moreover, rifampicin-tolerant persister cells formation was elevated and ATP levels were decreased when mbcTA promoter was overexpressed in Rsh deletion background in stationary phase. Our results establish that (p)ppGpp synthetase Rsh plays a key role in B. abortus persistence and may serve as a potent novel target in combination with rifampicin in the development of new therapeutic approaches and prevention strategies to treat chronic infections of Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
10
|
Tang J, Herzfeld AM, Leon G, Brynildsen MP. Differential impacts of DNA repair machinery on fluoroquinolone persisters with different chromosome abundances. mBio 2024; 15:e0037424. [PMID: 38564687 PMCID: PMC11077951 DOI: 10.1128/mbio.00374-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Allison M. Herzfeld
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
Vasudevan S, David H, Chanemougam L, Ramani J, Ramesh Sangeetha M, Solomon AP. Emergence of persister cells in Staphylococcus aureus: calculated or fortuitous move? Crit Rev Microbiol 2024; 50:64-75. [PMID: 36548910 DOI: 10.1080/1040841x.2022.2159319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A stable but reversible phenotype switch from normal to persister state is advantageous to the intracellular pathogens to cause recurrent infections and to evade the host immune system. Staphylococcus aureus is a versatile opportunistic pathogen known to cause chronic infections with significant mortality. One of the notable features is the ability to switch to a per-sisters cell, which is found in planktonic and biofilm states. This phenotypic switch is always an open question to explore the hidden fundamental science that coheres with a calculated or fortuitous move. Toxin-antitoxin modules, nutrient stress, and an erroneous translation-enabled state of dormancy entail this persistent behaviour in S. aureus. It is paramount to get a clear picture of why the cell chooses to enter a persistent condition, as it would decide the course of treatment. Analyzing the exit from a persistent state to an active state and the subsequent repercussion of this transition is essential to determine its role in chronic infections. This review attempts to provide a constructed argument discussing the most widely accepted mechanisms and identifying the various attributes of persistence.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Lakshmi Chanemougam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Jayalakshmi Ramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Maanasa Ramesh Sangeetha
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
12
|
Jensen PØ, Olsen P, Dungu AM, Egelund GB, Jensen AV, Ravn P, Lindegaard B, Hertz FB, Bjarnsholt T, Faurholt-Jepsen D, Kolpen M. Bacterial aerobic respiration is a major consumer of oxygen in sputum from patients with acute lower respiratory tract infection. APMIS 2024. [PMID: 38284501 DOI: 10.1111/apm.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Bacterial aerobic respiration may determine the outcome of antibiotic treatment in experimental settings, but the clinical relevance of bacterial aerobic respiration for the outcome of antibiotic treatment has not been tested. Therefore, we hypothesized that bacterial aerobic respiration is higher in sputum from patients with acute lower respiratory tract infections (aLRTI), than in sputum from patients with chronic LRTI (cLRTI), where the bacteria persist despite antibiotic treatment. The bacterial aerobic respiration was determined according to the dynamics of the oxygen (O2 ) concentration in sputum from aLRTI patients (n = 52). This result was evaluated by comparison to previously published data from patients with cLRTI. O2 consumption resulting in anoxic zones was more frequent in sputum with detected bacterial pathogens. The bacterial aerobic respiration in aLRTI sputum approximated 55% of the total O2 consumption, which was significantly higher than previously published for cLRTI. The bacterial aerobic respiration in sputum was higher in aLRTI patients than previously seen in cLRTI patients, indicating the presence of bacteria with a sensitive physiology in aLRTI. These variations in bacterial physiology between aLRTI patients and cLRTI patients may contribute the huge difference in treatment success between the two patient groups.
Collapse
Affiliation(s)
- Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernille Olsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Gertrud Baunbaek Egelund
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Andreas Vestergaard Jensen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Pernille Ravn
- Department of Medicine Section for Infectious Diseases, Herlev- Gentofte University Hospital, Hellerup, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
13
|
Ghoul M, Andersen SB, Marvig RL, Johansen HK, Jelsbak L, Molin S, Perron G, Griffin AS. Long-term evolution of antibiotic tolerance in Pseudomonas aeruginosa lung infections. Evol Lett 2023; 7:389-400. [PMID: 38045720 PMCID: PMC10693005 DOI: 10.1093/evlett/qrad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin. We present evidence that tolerance is under positive selection in the lung and that it can act as an evolutionary stepping stone to resistance. However, by examining evolutionary patterns across multiple patients in different clone types, a key result is that the potential for an association between the evolution of resistance and tolerance is not inevitable, and difficult to predict.
Collapse
Affiliation(s)
- Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle K Johansen
- Department of Clinical Microbiology, Afsnit 9301, Rigshospitalet, Copenhagen Ø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren Molin
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Perron
- Center for Environmental Sciences and the Humanities, Bard College, Annandale-On-Hudson, NY, United States
- Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | | |
Collapse
|
14
|
Urbaniec J, Getino M, McEwan TBD, Sanderson-Smith ML, McFadden J, Hai F, La Ragione R, Hassan MM, Hingley-Wilson S. Anti-persister efficacy of colistin and meropenem against uropathogenic Escherichia coli is dependent on environmental conditions. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37990974 DOI: 10.1099/mic.0.001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Antibiotic persistence is a phenomenon observed when genetically susceptible cells survive long-term exposure to antibiotics. These 'persisters' are an intrinsic component of bacterial populations and stem from phenotypic heterogeneity. Persistence to antibiotics is a concern for public health globally, as it increases treatment duration and can contribute to treatment failure. Furthermore, there is a growing array of evidence that persistence is a 'stepping-stone' for the development of genetic antimicrobial resistance. Urinary tract infections (UTIs) are a major contributor to antibiotic consumption worldwide, and are known to be both persistent (i.e. affecting the host for a prolonged period) and recurring. Currently, in clinical settings, routine laboratory screening of pathogenic isolates does not determine the presence or the frequency of persister cells. Furthermore, the majority of research undertaken on antibiotic persistence has been done on lab-adapted bacterial strains. In the study presented here, we characterized antibiotic persisters in a panel of clinical uropathogenic Escherichia coli isolates collected from hospitals in the UK and Australia. We found that a urine-pH mimicking environment not only induces higher levels of antibiotic persistence to meropenem and colistin than standard laboratory growth conditions, but also results in rapid development of transient colistin resistance, regardless of the genetic resistance profile of the isolate. Furthermore, we provide evidence for the presence of multiple virulence factors involved in stress resistance and biofilm formation in the genomes of these isolates, whose activities have been previously shown to contribute to the formation of persister cells.
Collapse
Affiliation(s)
- Joanna Urbaniec
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Johnjoe McFadden
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Roberto La Ragione
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Marwa M Hassan
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | |
Collapse
|
15
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
16
|
Holzinger JM, Toelge M, Werner M, Ederer KU, Siegmund HI, Peterhoff D, Blaas SH, Gisch N, Brochhausen C, Gessner A, Bülow S. Scorpionfish BPI is highly active against multiple drug-resistant Pseudomonas aeruginosa isolates from people with cystic fibrosis. eLife 2023; 12:e86369. [PMID: 37461324 PMCID: PMC10353861 DOI: 10.7554/elife.86369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Chronic pulmonary infection is a hallmark of cystic fibrosis (CF) and requires continuous antibiotic treatment. In this context, Pseudomonas aeruginosa (Pa) is of special concern since colonizing strains frequently acquire multiple drug resistance (MDR). Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived, endogenous protein with high bactericidal potency against Gram-negative bacteria. However, a significant range of people with CF (PwCF) produce anti-neutrophil cytoplasmic antibodies against BPI (BPI-ANCA), thereby neutralizing its bactericidal function. In accordance with literature, we describe that 51.0% of a total of 39 PwCF expressed BPI-ANCA. Importantly, an orthologous protein to human BPI (huBPI) derived from the scorpionfish Sebastes schlegelii (scoBPI) completely escaped recognition by these autoantibodies. Moreover, scoBPI exhibited high anti-inflammatory potency towards Pa LPS and was bactericidal against MDR Pa derived from PwCF at nanomolar concentrations. In conclusion, our results highlight the potential of highly active orthologous proteins of huBPI in treatment of MDR Pa infections, especially in the presence of BPI-ANCA.
Collapse
Affiliation(s)
- Jonas Maurice Holzinger
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Ursula Ederer
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | | | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | | | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Verstraete L, Aizawa J, Govaerts M, De Vooght L, Lavigne R, Michiels J, Van den Bergh B, Cos P. In Vitro Persistence Level Reflects In Vivo Antibiotic Survival of Natural Pseudomonas aeruginosa Isolates in a Murine Lung Infection Model. Microbiol Spectr 2023; 11:e0497022. [PMID: 37140371 PMCID: PMC10269860 DOI: 10.1128/spectrum.04970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Clinicians are increasingly confronted with the limitations of antibiotics to clear bacterial infections in patients. It has long been assumed that only antibiotic resistance plays a pivotal role in this phenomenon. Indeed, the worldwide emergence of antibiotic resistance is considered one of the major health threats of the 21st century. However, the presence of persister cells also has a significant influence on treatment outcomes. These antibiotic-tolerant cells are present in every bacterial population and are the result of the phenotypic switching of normal, antibiotic-sensitive cells. Persister cells complicate current antibiotic therapies and contribute to the development of resistance. In the past, extensive research has been performed to investigate persistence in laboratory settings; however, antibiotic tolerance under conditions that mimic the clinical setting remain poorly understood. In this study, we optimized a mouse model for lung infections with the opportunistic pathogen Pseudomonas aeruginosa. In this model, mice are intratracheally infected with P. aeruginosa embedded in seaweed alginate beads and subsequently treated with tobramycin via nasal droplets. A diverse panel of 18 P. aeruginosa strains originating from environmental, human, and animal clinical sources was selected to assess survival in the animal model. Survival levels were positively correlated with the survival levels determined via time-kill assays, a common method to study persistence in the laboratory. We showed that survival levels are comparable and thus that the classical persister assays are indicative of antibiotic tolerance in a clinical setting. The optimized animal model also enables us to test potential antipersister therapies and study persistence in relevant settings. IMPORTANCE The importance of targeting persister cells in antibiotic therapies is becoming more evident, as these antibiotic-tolerant cells underlie relapsing infections and resistance development. Here, we studied persistence in a clinically relevant pathogen, Pseudomonas aeruginosa. It is one of the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, and Enterobacter spp.), which are considered major health threats. P. aeruginosa is mostly known to cause chronic lung infections in cystic fibrosis patients. We mimicked these lung infections in a mouse model to study persistence under more clinical conditions. It was shown that the survival levels of natural P. aeruginosa isolates in this model are positively correlated with the survival levels measured in classical persistence assays in vitro. These results not only validate the use of our current techniques to study persistence but also open opportunities to study new persistence mechanisms or evaluate new antipersister strategies in vivo.
Collapse
Affiliation(s)
- Laure Verstraete
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Juliana Aizawa
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Ronneau S, Michaux C, Helaine S. Decline in nitrosative stress drives antibiotic persister regrowth during infection. Cell Host Microbe 2023; 31:993-1006.e6. [PMID: 37236190 DOI: 10.1016/j.chom.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Internalization of pathogenic bacteria by macrophages results in formation of antibiotic-tolerant persisters. These cells are maintained in a non-growing state for extended periods of time, and it is assumed that their growth resumption causes infection relapse after cessation of antibiotic treatment. Despite this clinical relevance, the signals and conditions that drive persister regrowth during infection are not yet understood. Here, we found that after persister formation in macrophages, host reactive nitrogen species (RNS) produced in response to Salmonella infection lock persisters in growth arrest by intoxicating their TCA cycle, lowering cellular respiration and ATP production. Intracellular persisters resume growth when macrophage RNS production subsides and functionality of their TCA cycle is regained. Persister growth resumption within macrophages is slow and heterogeneous, dramatically extending the time the persister reservoir feeds infection relapse. Using an inhibitor of RNS production, we can force recalcitrant bacteria to regrow during antibiotic treatment, thereby facilitating their eradication.
Collapse
Affiliation(s)
- Séverin Ronneau
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Charlotte Michaux
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Katzenstein TL, Faurholt-Jepsen D, Qvist T, Jensen PØ, Pressler T, Johansen HK, Kolpen M. Antimicrobial resistance of Pseudomonas aeruginosa in a cystic fibrosis population after introduction of a novel cephalosporin/β-lactamase inhibitor combination. APMIS 2023. [PMID: 37294911 DOI: 10.1111/apm.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Ceftolozane-tazobactam is a new β-lactam/β-lactamase inhibitor combination approved by the U.S. Food and Drug Administration in 2019 for the treatment of hospital-acquired and ventilator-associated pneumonia. The combination is a particularly potent inhibitor of penicillin-binding proteins with higher affinity than other β-lactam agents. Persons with cystic fibrosis (pwCF) often harbour resistant Gram-negative bacteria in the airways and need antibiotics to prevent declining lung function. To test whether the introduction of ceftolozane-tazobactam in the period 2015-2020 led to a bacterial population level increase in cephalosporin resistance in a Danish CF population. In vitro, activity of ceftolozane-tazobactam was evaluated by susceptibility testing of clinical Pseudomonas aeruginosa isolated from pwCF from January 1, 2015, to June 1, 2020. Six thousand three hundred thirty two isolates collected from 210 adult pwCF were included. Thirty pwCF were treated with ceftolozane-tazobactam at least once. Ceftolozane-tazobactam exposure did not increase cephalosporin resistance on an individual or population level. However, resistance to ceftolozane-tazobactam was recorded despite no prior exposure in four pwCF. Compared to ceftazidime, ceftolozane-tazobactam had a better in vitro activity on P. aeruginosa. The percentage of non-mucoid P. aeruginosa isolates susceptible to ceftolozane-tazobactam were higher or equal to 5 other β-lactams. Ceftolozane-tazobactam expands the armamentaria against P. aeruginosa with acceptable levels for a selection of drug resistance.
Collapse
Affiliation(s)
| | | | - Tavs Qvist
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Boeck L. Antibiotic tolerance: targeting bacterial survival. Curr Opin Microbiol 2023; 74:102328. [PMID: 37245488 DOI: 10.1016/j.mib.2023.102328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
Antimicrobial susceptibility testing is the cornerstone of antibiotic treatments. Yet, active drugs are frequently unsuccessful in vivo and most clinical trials investigating antibiotics fail. So far, bacterial survival strategies, other than drug resistance, have been largely ignored. As such, drug tolerance and persisters, allowing bacterial populations to survive during antibiotic treatments, could fill a gap in antibiotic susceptibility testing. Therefore, it remains critical to establish robust and scalable bacterial viability measures and to define the clinical relevance of bacterial survivors across various bacterial infections. If successful, these tools could improve drug design and development to prevent tolerance formation or target bacterial survivors, to ultimately reduce treatment failures and curb resistance evolution.
Collapse
Affiliation(s)
- Lucas Boeck
- Department of Biomedicine, University Basel, Basel, Switzerland; Clinic of Pulmonary Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Lv B, Huang X, Lijia C, Ma Y, Bian M, Li Z, Duan J, Zhou F, Yang B, Qie X, Song Y, Wood TK, Fu X. Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proc Natl Acad Sci U S A 2023; 120:e2217254120. [PMID: 36917671 PMCID: PMC10041086 DOI: 10.1073/pnas.2217254120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli. This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Xuebing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Chenchen Lijia
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Yuelong Ma
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Mengmeng Bian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Zhongyan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Juan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou City350122, China
| | - Fang Zhou
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen City518055, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou350122, China
| | - Xingwang Qie
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA16802-4400
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou City350117, China
| |
Collapse
|
22
|
Genome Analysis of Pseudomonas aeruginosa Strains from Chronically Infected Patients with High Levels of Persister Formation. Pathogens 2023; 12:pathogens12030426. [PMID: 36986348 PMCID: PMC10051920 DOI: 10.3390/pathogens12030426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The appearance of persister cells with low metabolic rates are key factors leading to antibiotic treatment failure. Such persisters are multidrug tolerant and play a key role in the recalcitrance of biofilm-based chronic infections. Here, we present the genomic analyses of three distinct Pseudomonas aeruginosa Egyptian persister-isolates recovered from chronic human infections. To calculate the persister frequencies, viable counts were determined before and after treatment with levofloxacin. The susceptibilities of isolates to different antibiotics were determined using the agar-dilution method. To determine their recalcitrance, the levofloxacin persisters were further challenged with lethal concentrations of meropenem, tobramycin, or colistin. Furthermore, the biofilm formation of the persister strains was estimated phenotypically, and they were reported to be strong biofilm-forming strains. The genotypic characterization of the persisters was performed using whole genome sequencing (WGS) followed by phylogenetic analysis and resistome profiling. Interestingly, out of the thirty-eight clinical isolates, three isolates (8%) demonstrated a persister phenotype. The three levofloxacin-persister isolates were tested for their susceptibility to selected antibiotics; all of the tested isolates were multidrug resistant (MDR). Additionally, the P. aeruginosa persisters were capable of surviving over 24 h and were not eradicated after exposure to 100X-MIC of levofloxacin. WGS for the three persisters revealed a smaller genome size compared to PAO1-genome. Resistome profiling indicated the presence of a broad collection of antibiotic-resistance genes, including genes encoding for antibiotic-modifying enzymes and efflux pump. Phylogenetic analysis indicated that the persister isolates belong to a distinct clade rather than the deposited P. aeruginosa strains in the GenBank. Conclusively, the persister isolates in our study are MDR and form a highly strong biofilm. WGS revealed a smaller genome that belongs to a distinct clade.
Collapse
|
23
|
Arastehfar A, Daneshnia F, Cabrera N, Penalva-Lopez S, Sarathy J, Zimmerman M, Shor E, Perlin DS. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat Commun 2023; 14:1183. [PMID: 36864040 PMCID: PMC9981703 DOI: 10.1038/s41467-023-36882-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Suyapa Penalva-Lopez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
24
|
Hakamifard A, Torfeh Esfahani AA, Homayouni A, Khorvash F, Ataei B, Abbasi S. Comparing inhaled colistin with inhaled fosfomycin/tobramycin as an adjunctive treatment for ventilator-associated pneumonia: An open-label randomized controlled trial. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:295-302. [PMID: 36775964 PMCID: PMC10113272 DOI: 10.1111/crj.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Although investigations are limited, adjunctive aerosolized antibiotics have been advised in the setting of gram-negative ventilator-associated pneumonia (VAP). This study aimed to compare the efficiency of inhaled colistin with inhaled fosfomycin/tobramycin in treating VAP due to extensively drug-resistant (XDR) Acinetobacter baumannii. METHODS This single center open-label randomized controlled trial included 60 patients who developed XDR A. bumannii VAP. Eligible participants were randomly assigned to two groups (no. 30). Regardless of the assignment, all participants received meropenem (2 g as a 3-h extended infusion every 8 h) plus intravenous colistin (a loading dose of 9 million IU and then 4.5 million IU every 12 h). The control group was given inhaled colistin (1 million IU every 8 h), and the case group received inhaled tobramycin/fosfomycin (300 mg every 12 h/80 mg every 12 h) as adjunctive therapy. The primary outcome was treatment duration, and the secondary outcomes were Clinical Pulmonary Infection Score (CPIS) trend and mortality rate in the groups. The decision to stop treatment was made by the treating physician. RESULTS The mean treatment duration was 13.73 ± 3.22 days in the colistin group and 10.85 ± 2.84 days in the tobramycin/fosfomycin group; the mean treatment duration in the latter group was lower significantly (P = 0.001). CPIS was decreased in the groups significantly (P < 0.001), but the mean changes of CPIS were significantly different between the groups, and in the inhaled tobramycin/fosfomycin group, a greater reduction (P = 0.005) was observed. Two (6.67%) patients in the control group and three (10%) patients in the case group died. CONCLUSION The use of inhaled tobramycin/fosfomycin in cases with XDR A. bumannii VAP was associated with a shorter treatment duration in this open-label trial.
Collapse
Affiliation(s)
- Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Torfeh Esfahani
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Homayouni
- Research and Development Department, Goldaru Pharmaceutical Company, Isfahan, Iran.,Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Khorvash
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ataei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Abbasi
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011023. [PMID: 36696456 PMCID: PMC9901815 DOI: 10.1371/journal.ppat.1011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/06/2023] [Accepted: 11/23/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.
Collapse
|
26
|
Geerts N, De Vooght L, Passaris I, Delputte P, Van den Bergh B, Cos P. Antibiotic Tolerance Indicative of Persistence Is Pervasive among Clinical Streptococcus pneumoniae Isolates and Shows Strong Condition Dependence. Microbiol Spectr 2022; 10:e0270122. [PMID: 36374111 PMCID: PMC9769776 DOI: 10.1128/spectrum.02701-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen, being one of the most common causes of community-acquired pneumonia and otitis media. Antibiotic resistance in S. pneumoniae is an emerging problem, as it depletes our arsenal of effective drugs. In addition, persistence also contributes to the antibiotic crisis in many other pathogens, yet for S. pneumoniae, little is known about antibiotic-tolerant persisters and robust experimental means are lacking. Persister cells are phenotypic variants that exist as a subpopulation within a clonal culture. Being tolerant to lethal antibiotics, they underly the chronic nature of a variety of infections and even help in acquiring genetic resistance. In this study, we set out to identify and characterize persistence in S. pneumoniae. Specifically, we followed different strategies to overcome the self-limiting nature of S. pneumoniae as a confounding factor in the prolonged monitoring of antibiotic survival needed to study persistence. Under optimized conditions, we identified genuine persisters in various growth phases and for four relevant antibiotics through biphasic survival dynamics and heritability assays. Finally, we detected a high variety in antibiotic survival levels across a diverse collection of S. pneumoniae clinical isolates, which assumes that a high natural diversity in persistence is widely present in S. pneumoniae. Collectively, this proof of concept significantly progresses the understanding of the importance of antibiotic persistence in S. pneumoniae infections, which will set the stage for characterizing its relevance to clinical outcomes and advocates for increased attention to the phenotype in both fundamental and clinical research. IMPORTANCE S. pneumoniae is considered a serious threat by the Centers for Disease Control and Prevention because of rising antibiotic resistance. In addition to resistance, bacteria can also survive lethal antibiotic treatment by developing antibiotic tolerance, more specifically, antibiotic tolerance through persistence. This phenotypic variation seems omnipresent among bacterial life, is linked to therapy failure, and acts as a catalyst for resistance development. This study gives the first proof of the presence of persister cells in S. pneumoniae and shows a high variety in persistence levels among diverse strains, suggesting that persistence is a general trait in S. pneumoniae cultures. Our work advocates for higher interest for persistence in S. pneumoniae as a contributing factor for therapy failure and resistance development.
Collapse
Affiliation(s)
- Nele Geerts
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | | | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| |
Collapse
|
27
|
Cameron DR, Pitton M, Oberhaensli S, Schlegel K, Prod’hom G, Blanc DS, Jakob SM, Que YA. Parallel Evolution of Pseudomonas aeruginosa during a Prolonged ICU-Infection Outbreak. Microbiol Spectr 2022; 10:e0274322. [PMID: 36342287 PMCID: PMC9769503 DOI: 10.1128/spectrum.02743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Most knowledge about Pseudomonas aeruginosa pathoadaptation is derived from studies on airway colonization in cystic fibrosis; little is known about adaptation in acute settings. P. aeruginosa frequently affects burned patients and the burn wound niche has distinct properties that likely influence pathoadaptation. This study aimed to genetically and phenotypically characterize P. aeruginosa isolates collected during an outbreak of infection in a burn intensive care unit (ICU). Sequencing reads from 58 isolates of ST1076 P. aeruginosa taken from 23 patients were independently mapped to a complete reference genome for the lineage (H25338); genetic differences were identified and were used to define the population structure. Comparative genomic analysis at single-nucleotide resolution identified pathoadaptive genes that evolved multiple, independent mutations. Three key phenotypic assays (growth performance, motility, carbapenem resistance) were performed to complement the genetic analysis for 47 unique isolates. Population structure for the ST1076 lineage revealed 11 evolutionary sublineages. Fifteen pathoadaptive genes evolved mutations in at least two sublineages. The most prominent functional classes affected were transcription/two-component regulatory systems, and chemotaxis/motility and attachment. The most frequently mutated gene was oprD, which codes for outer membrane porin involved in uptake of carbapenems. Reduced growth performance and motility were found to be adaptive phenotypic traits, as was high level of carbapenem resistance, which correlated with higher carbapenem consumption during the outbreak. Multiple prominent linages evolved each of the three traits in parallel providing evidence that they afford a fitness advantage for P. aeruginosa in the context of human burn infection. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative pathogen causing infections in acutely burned patients. The precise mechanisms required for the establishment of infection in the burn setting, and adaptive traits underpinning prolonged outbreaks are not known. We have assessed genotypic data from 58 independent P. aeruginosa isolates taken from a single lineage that was responsible for an outbreak of infection in a burn ICU that lasted for almost 2.5 years and affected 23 patients. We identified a core set of 15 genes that we predict to control pathoadaptive traits in the burn infection based on the frequency with which independent mutations evolved. We combined the genotypic data with phenotypic data (growth performance, motility, antibiotic resistance) and clinical data (antibiotic consumption) to identify adaptive phenotypes that emerged in parallel. High-level carbapenem resistance evolved rapidly, and frequently, in response to high clinical demand for this antibiotic class during the outbreak.
Collapse
Affiliation(s)
- David R. Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melissa Pitton
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Katja Schlegel
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Guy Prod’hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique S. Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Chowdhury AR, Mukherjee D, Singh AK, Chakravortty D. Loss of outer membrane protein A (OmpA) impairs the survival of Salmonella Typhimurium by inducing membrane damage in the presence of ceftazidime and meropenem. J Antimicrob Chemother 2022; 77:3376-3389. [PMID: 36177811 DOI: 10.1093/jac/dkac327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Salmonella enterica serovar Typhimurium is one of the significant non-typhoidal Salmonella serovars that causes gastroenteritis. The rapid development of antimicrobial resistance necessitates studying new antimicrobials and their therapeutic targets in this pathogen. Our study aimed to investigate the role of four prominent outer membrane porins of S. Typhimurium, namely OmpA, OmpC, OmpD and OmpF, in developing resistance against ceftazidime and meropenem. METHODS The antibiotic-mediated inhibition of bacterial growth was determined by measuring the absorbance and the resazurin assay. DiBAC4 (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol), 2,7-dichlorodihydrofluoroscein diacetate (DCFDA) and propidium iodide were used to determine the outer membrane depolarization, reactive oxygen species (ROS) generation and subsequent killing of Salmonella. The expression of oxidative stress-response and efflux pump genes was quantified by quantitative RT-qPCR. HPLC was done to determine the amount of antibiotics that entered the bacteria. The damage to the bacterial outer membrane was studied by confocal and atomic force microscopy. The in vivo efficacy of ceftazidime and meropenem were tested in the C57BL/6 mouse model. RESULTS Deleting ompA reduced the survival of Salmonella in the presence of ceftazidime and meropenem. Massive outer membrane depolarization and reduced expression of oxidative stress-response genes in S. Typhimurium ΔompA hampered its growth in the presence of antibiotics. The enhanced uptake of antibiotics and decreased expression of efflux pump genes in S. Typhimurium ΔompA resulted in damage to the bacterial outer membrane. The clearance of the S. Typhimurium ΔompA from C57BL/6 mice with ceftazidime treatment proved the role of OmpA in rendering protection against β-lactam antibiotics. CONCLUSIONS OmpA protects S. Typhimurium from two broad-spectrum β-lactam antibiotics, ceftazidime and meropenem, by maintaining the stability of the outer membrane.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
29
|
González JF, Hitt R, Laipply B, Gunn JS. The Effect of the Gallbladder Environment during Chronic Infection on Salmonella Persister Cell Formation. Microorganisms 2022; 10:microorganisms10112276. [PMID: 36422346 PMCID: PMC9698170 DOI: 10.3390/microorganisms10112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Typhoid fever is caused by Salmonella enterica serovar Typhi (S. Typhi). Around 3-5% of individuals infected become chronic carriers, with the gallbladder (GB) as the predominant site of persistence. Gallstones (GS) aid in the development and maintenance of GB carriage, serving as a substrate to which Salmonellae attach and form a biofilm. This biofilm matrix protects bacteria from the host immune system and environmental stress. This shielded environment is an ideal place for the development of persister cells, a transient phenotype of a subset of cells within a population that allows survival after antibiotic treatment. Persisters can also arise in response to harsh environments such as the GB. Here we investigate if GB conditions affect the number of persisters in a Salmonella population. To simulate the chronic GB environment, we cultured biofilms in cholesterol-coated 96-well plates in the presence of ox or human bile. We then treated planktonic or biofilm Salmonella cultures with high concentrations of different antibiotics. This study suggests that biofilms provide a niche for persister cells, but GB conditions either play no role or have a negative influence on persister formation, especially after kanamycin treatment. The antibiotic target was important, as antimicrobials directed against DNA replication or the cell wall had no effect on persister cell formation. Interestingly, repeated treatment with ciprofloxacin increased the percentage of S. Typhimurium persisters in a biofilm, but this increase was abolished by GB conditions. On the other hand, repeated ciprofloxacin treatment of S. Typhi biofilms in GB conditions slightly increased the fraction of persisters. Thus, while the harsh conditions in the GB would be thought to give rise to increased persisters, therefore contributing to the development of chronic carriage, these data suggest persister cell formation is dampened in this environment.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-(614)-355-3403
| |
Collapse
|
30
|
Antibiotic tolerance and persistence have distinct fitness trade-offs. PLoS Pathog 2022; 18:e1010963. [DOI: 10.1371/journal.ppat.1010963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Genetically susceptible bacteria can escape the action of bactericidal antibiotics through antibiotic tolerance or persistence. However, one major difference between the two phenomena is their distinct penetrance within an isogenic population. While with antibiotic persistence, susceptible and persister cells co-exist, antibiotic tolerance affects the entire bacterial population. Here, we show that antibiotic tolerance can be achieved in numerous non-specific ways in vitro and during infection. More importantly, we highlight that, due to their impact on the entire bacterial population, these tolerance-inducing conditions completely mask persistence and the action of its molecular determinants. Finally, we show that even though tolerant populations display a high survival rate under bactericidal drug treatment, this feature comes at the cost of having impaired proliferation during infection. In contrast, persistence is a risk-limiting strategy that allows bacteria to survive antibiotic treatment without reducing the ability of the population to colonize their host. Altogether, our data emphasise that the distinction between these phenomena is of utmost importance to improve the design of more efficient antibiotic therapies.
Collapse
|
31
|
Witzany C, Regoes RR, Igler C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc Biol Sci 2022; 289:20221300. [PMID: 36350213 PMCID: PMC9653239 DOI: 10.1098/rspb.2022.1300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
To curb the rising threat of antimicrobial resistance, we need to understand the routes to antimicrobial treatment failure. Bacteria can survive treatment by using both genetic and phenotypic mechanisms to diminish the effect of antimicrobials. We assemble empirical data showing that, for example, Pseudomonas aeruginosa infections frequently contain persisters, transiently non-growing cells unaffected by antibiotics (AB) and hyper-mutators, mutants with elevated mutation rates, and thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic population modelling and deterministic fitness calculations to investigate the relative importance of genetic and phenotypic mechanisms for immediate treatment failure and establishment of prolonged, chronic infections. We find that persistence causes 'hidden' treatment failure with very low cell numbers if antimicrobial concentrations prevent growth of genetically resistant cells. Persister cells can regrow after treatment is discontinued and allow for resistance evolution in the absence of AB. This leads to different mutational routes during treatment and relapse of an infection. By contrast, hyper-mutation facilitates resistance evolution during treatment, but rarely contributes to treatment failure. Our findings highlight the time and concentration dependence of different bacterial mechanisms to escape AB killing, which should be considered when designing 'failure-proof' treatments.
Collapse
Affiliation(s)
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Antibiotic combinations reduce Staphylococcus aureus clearance. Nature 2022; 610:540-546. [PMID: 36198788 PMCID: PMC9533972 DOI: 10.1038/s41586-022-05260-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/22/2022] [Indexed: 12/17/2022]
Abstract
The spread of antibiotic resistance is attracting increased attention to combination-based treatments. Although drug combinations have been studied extensively for their effects on bacterial growth1–11, much less is known about their effects on bacterial long-term clearance, especially at cidal, clinically relevant concentrations12–14. Here, using en masse microplating and automated image analysis, we systematically quantify Staphylococcus aureus survival during prolonged exposure to pairwise and higher-order cidal drug combinations. By quantifying growth inhibition, early killing and longer-term population clearance by all pairs of 14 antibiotics, we find that clearance interactions are qualitatively different, often showing reciprocal suppression whereby the efficacy of the drug mixture is weaker than any of the individual drugs alone. Furthermore, in contrast to growth inhibition6–10 and early killing, clearance efficacy decreases rather than increases as more drugs are added. However, specific drugs targeting non-growing persisters15–17 circumvent these suppressive effects. Competition experiments show that reciprocal suppressive drug combinations select against resistance to any of the individual drugs, even counteracting methicillin-resistant Staphylococcus aureus both in vitro and in a Galleria mellonella larva model. As a consequence, adding a β-lactamase inhibitor that is commonly used to potentiate treatment against β-lactam-resistant strains can reduce rather than increase treatment efficacy. Together, these results underscore the importance of systematic mapping the long-term clearance efficacy of drug combinations for designing more-effective, resistance-proof multidrug regimes. Different pairs of antibiotics show qualitatively different bacterial clearance interactions—some pairs show reciprocal suppression whereby the drug mixture efficacy is weaker than the individual drugs alone, and the clearance efficacy decreases as more drugs are added.
Collapse
|
33
|
Grandy S, Raudonis R, Cheng Z. The identification of Pseudomonas aeruginosa persisters using flow cytometry. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36287586 DOI: 10.1099/mic.0.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa persisters are a rare and poorly characterized subpopulation of cells that are responsible for many recurrent infections. The lack of knowledge on the mechanisms that lead to persister cell development is mainly a result of the difficulty in isolating and characterizing this rare population. Flow cytometry is an ideal method for identifying such subpopulations because it allows for high-content single-cell analysis. However, there are fewer established protocols for bacterial flow cytometry compared to mammalian cell work. Herein, we describe and propose a flow cytometry protocol to identify and isolate P. aeruginosa persister cells. Additionally, we show that the percentage of potential persister cells increases with increasing antibiotic concentrations above the MIC.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
34
|
Drevinek P, Canton R, Johansen HK, Hoffman L, Coenye T, Burgel PR, Davies JC. New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J Cyst Fibros 2022; 21:937-945. [DOI: 10.1016/j.jcf.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
35
|
Planet PJ. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung. J Pediatric Infect Dis Soc 2022; 11:S23-S31. [PMID: 36069898 PMCID: PMC9451014 DOI: 10.1093/jpids/piac073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) provide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
Collapse
Affiliation(s)
- Paul J Planet
- Corresponding Author: Paul J. Planet, MD, PhD, 3615 Civic Center Blvd, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
36
|
LiPuma JJ. The Sense and Nonsense of Antimicrobial Susceptibility Testing in Cystic Fibrosis. J Pediatric Infect Dis Soc 2022; 11:S46-S52. [PMID: 36069902 DOI: 10.1093/jpids/piac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
Antimicrobial susceptibility testing (AST) has been used to guide therapy of airway infection in persons with cystic fibrosis (CF) for decades. However, evidence that AST adds benefit to treatment outcomes in CF is lacking. In fact, the routine use of AST has potential to exacerbate inappropriate antibiotic use. Several features of airway infection in CF contribute to the limitations of AST in predicting treatment outcomes, providing rationale for abandoning this practice altogether. Other features of CF infection suggest, however, that select use of AST can provide worthwhile guidance to antibiotic selection.
Collapse
Affiliation(s)
- John J LiPuma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
38
|
Mutation to
ispA
Produces Stable Small-Colony Variants of Pseudomonas aeruginosa That Have Enhanced Aminoglycoside Resistance. Antimicrob Agents Chemother 2022; 66:e0062122. [PMID: 35852364 PMCID: PMC9295567 DOI: 10.1128/aac.00621-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in burn wound infections. We present one of the first reports of small-colony variant (SCV) emergence of P. aeruginosa, taken from a patient under aminoglycosides for a persistent burn wound infection. We confirm the causative role of a single ispA mutation in SCV emergence and increased aminoglycoside resistance. IspA is involved in the synthesis of ubiquinone, providing a possible link between electron transport and SCV formation in P. aeruginosa.
Collapse
|
39
|
Zheng EJ, Andrews IW, Grote AT, Manson AL, Alcantar MA, Earl AM, Collins JJ. Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies. Nat Commun 2022; 13:2525. [PMID: 35534481 PMCID: PMC9085803 DOI: 10.1038/s41467-022-30272-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are often characterized by a low metabolic state, against which most clinically used antibiotics are ineffective. Here, we show that tolerance readily evolves against antibiotics that are strongly dependent on bacterial metabolism, but does not arise against antibiotics whose efficacy is only minimally affected by metabolic state. We identify a mechanism of tolerance evolution in E. coli involving deletion of the sodium-proton antiporter gene nhaA, which results in downregulated metabolism and upregulated stress responses. Additionally, we find that cycling of antibiotics with different metabolic dependencies interrupts evolution of tolerance in vitro, increasing the lifetime of treatment efficacy. Our work highlights the potential for limiting the occurrence and extent of tolerance by accounting for antibiotic dependencies on bacterial metabolism.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra T Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Miguel A Alcantar
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
40
|
La Rosa R, Johansen HK, Molin S. Persistent Bacterial Infections, Antibiotic Treatment Failure, and Microbial Adaptive Evolution. Antibiotics (Basel) 2022; 11:419. [PMID: 35326882 PMCID: PMC8944626 DOI: 10.3390/antibiotics11030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is expected by the WHO to be the biggest threat to human health before 2050. In this overview, we argue that this prediction may in fact be too optimistic because it is often overlooked that many bacterial infections frequently 'go under the radar' because they are difficult to diagnose and characterize. Due to our lifestyle, persistent infections caused by opportunistic bacteria-well-known or emerging-show increasing success of infecting patients with reduced defense capacity, and often antibiotics fail to be sufficiently effective, even if the bacteria are susceptible, leaving small bacterial populations unaffected by treatment in the patient. The mechanisms behind infection persistence are multiple, and therefore very difficult to diagnose in the laboratory and to treat. In contrast to antibiotic resistance associated with acute infections caused by traditional bacterial pathogens, genetic markers associated with many persistent infections are imprecise and mostly without diagnostic value. In the absence of effective eradication strategies, there is a significant risk that persistent infections may eventually become highly resistant to antibiotic treatment due to the accumulation of genomic mutations, which will transform colonization into persistence.
Collapse
Affiliation(s)
- Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
Persisters represent a small subpopulation of cells that are tolerant of killing by antibiotics and are implicated in the recalcitrance of chronic infections to antibiotic therapy. One general theme has emerged regarding persisters formed by different bacterial species, namely, a state of relative dormancy characterized by diminished activity of antibiotic targets. Within this framework, a number of studies have linked persister formation to stochastic decreases in energy-generating components, leading to low ATP and target activity. In this study, we screen knockouts in the main global regulators of Escherichia coli for their effect on persisters. A knockout in integration host factor (IHF) had elevated ATP and a diminished level of persisters. This was accompanied by an overexpression of isocitrate dehydrogenase (Icd) and a downregulation of isocitrate lyase (AceA), two genes located at the bifurcation between the tricarboxylic acid (TCA) cycle and the glyoxylate bypass. Using a translational ihfA-mVenus fusion, we sort out rare bright cells, and this subpopulation is enriched in persisters. Our results suggest that noise in the expression of ihf produces rare cells with low Icd/high AceA, diverting substrates into the glyoxylate bypass, which decreases ATP, leading to antibiotic-tolerant persisters. We further examine noise in a simple model, the lac operon, and show that a knockout of the lacI repressor increases expression of the operon and decreases persister formation. Our results suggest that noise quenching by overexpression serves as a general approach to determine the nature of persister genes in a variety of bacterial species and conditions. IMPORTANCE Persisters are phenotypic variants that survive exposure to antibiotics through temporary dormancy. Mutants with increased levels of persisters have been identified in clinical isolates, and evidence suggests these cells contribute to chronic infections and antibiotic treatment failure. Understanding the underlying mechanism of persister formation and tolerance is important for developing therapeutic approaches to treat chronic infections. In this study, we examine a global regulator, IHF, that plays a role in persister formation. We find that noise in expression of IHF contributes to persister formation, likely by regulating the switch between the TCA cycle that efficiently produces energy and the glyoxylate bypass. We extend this study to a simple model lac operon and show that when grown on lactose as the sole carbon source, noise in its expression influences ATP levels and determines persister formation. This noise is quenched by overexpression of the lac operon, providing a simple approach to test the involvement of a gene in persister formation.
Collapse
|
42
|
Lv B, Zeng Y, Zhang H, Li Z, Xu Z, Wang Y, Gao Y, Chen Y, Fu X. Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake. Antimicrob Agents Chemother 2022; 66:e0112521. [PMID: 34902270 PMCID: PMC8846477 DOI: 10.1128/aac.01125-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Improving the efficacy of existing antibiotics is a promising strategy for combating antibiotic-resistant/tolerant bacterial pathogens that have become a severe threat to human health. We previously reported that aminoglycoside antibiotics could be dramatically potentiated against stationary-phase Escherichia coli cells under hypoionic shock conditions (i.e., treatment with ion-free solutions), but the underlying molecular mechanism remains unknown. Here, we show that mechanosensitive (MS) channels, a ubiquitous protein family sensing mechanical forces of cell membrane, mediate such hypoionic shock-induced aminoglycoside potentiation. Two-minute treatment under conditions of hypoionic shock (e.g., in pure water) greatly enhances the bactericidal effects of aminoglycosides against both spontaneous and triggered E. coli persisters, numerous strains of Gram-negative pathogens in vitro, and Pseudomonas aeruginosa in mice. Such potentiation is achieved by hypoionic shock-enhanced bacterial uptake of aminoglycosides and is linked to hypoionic shock-induced destabilization of the cytoplasmic membrane in E. coli. Genetic and biochemical analyses reveal that MscS-family channels directly and redundantly mediate aminoglycoside uptake upon hypoionic shock and thus potentiation, with MscL channel showing reduced effect. Molecular docking and site-directed mutagenesis analyses reveal a putative streptomycin-binding pocket in MscS, critical for streptomycin uptake and potentiation. These results suggest that hypoionic shock treatment destabilizes the cytoplasmic membrane and thus changes the membrane tension, which immediately activates MS channels that are able to effectively transport aminoglycosides into the cytoplasm for downstream killing. Our findings reveal the biological effects of hypoionic shock on bacteria and can help to develop novel adjuvants for aminoglycoside potentiation to combat bacterial pathogens via activating MS channels.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Youhui Zeng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhongyan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhaorong Xu
- Fujian Burn Institute, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yajuan Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| |
Collapse
|
43
|
Bugs on Drugs: A Drosophila melanogaster Gut Model to Study In Vivo Antibiotic Tolerance of E. coli. Microorganisms 2022; 10:microorganisms10010119. [PMID: 35056568 PMCID: PMC8780219 DOI: 10.3390/microorganisms10010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
With an antibiotic crisis upon us, we need to boost antibiotic development and improve antibiotics’ efficacy. Crucial is knowing how to efficiently kill bacteria, especially in more complex in vivo conditions. Indeed, many bacteria harbor antibiotic-tolerant persisters, variants that survive exposure to our most potent antibiotics and catalyze resistance development. However, persistence is often only studied in vitro as we lack flexible in vivo models. Here, I explored the potential of using Drosophila melanogaster as a model for antimicrobial research, combining methods in Drosophila with microbiology techniques: assessing fly development and feeding, generating germ-free or bacteria-associated Drosophila and in situ microscopy. Adult flies tolerate antibiotics at high doses, although germ-free larvae show impaired development. Orally presented E. coli associates with Drosophila and mostly resides in the crop. E. coli shows an overall high antibiotic tolerance in vivo potentially resulting from heterogeneity in growth rates. The hipA7 high-persistence mutant displays an increased antibiotic survival while the expected low persistence of ΔrelAΔspoT and ΔrpoS mutants cannot be confirmed in vivo. In conclusion, a Drosophila model for in vivo antibiotic tolerance research shows high potential and offers a flexible system to test findings from in vitro assays in a broader, more complex condition.
Collapse
|
44
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
45
|
Tümmler B. What Makes Pseudomonas aeruginosa a Pathogen? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:283-301. [DOI: 10.1007/978-3-031-08491-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Hill PWS, Moldoveanu AL, Sargen M, Ronneau S, Glegola-Madejska I, Beetham C, Fisher RA, Helaine S. The vulnerable versatility of Salmonella antibiotic persisters during infection. Cell Host Microbe 2021; 29:1757-1773.e10. [PMID: 34731646 DOI: 10.1016/j.chom.2021.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Tolerance and persistence are superficially similar phenomena by which bacteria survive bactericidal antibiotics. It is assumed that the same physiology underlies survival of individual tolerant and persistent bacteria. However, by comparing tolerance and persistence during Salmonella Typhimurium infection, we reveal that these two phenomena are underpinned by different bacterial physiologies. Multidrug-tolerant mutant Salmonella enter a near-dormant state protected from immune-mediated genotoxic damages. However, the numerous tolerant cells, optimized for survival, lack the capabilities necessary to initiate infection relapse following antibiotic withdrawal. In contrast, persisters retain an active state. This leaves them vulnerable to accumulation of macrophage-induced dsDNA breaks but concurrently confers the versatility to initiate infection relapse if protected by RecA-mediated DNA repair. Accordingly, recurrent, invasive, non-typhoidal Salmonella clinical isolates display hallmarks of persistence rather than tolerance during antibiotic treatment. Our study highlights the complex trade-off that antibiotic-recalcitrant Salmonella balance to act as a reservoir for infection relapse.
Collapse
Affiliation(s)
- Peter W S Hill
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| | - Ana Laura Moldoveanu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Molly Sargen
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Séverin Ronneau
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Izabela Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Catrin Beetham
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Robert A Fisher
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Verstraete L, Van den Bergh B, Verstraeten N, Michiels J. Ecology and evolution of antibiotic persistence. Trends Microbiol 2021; 30:466-479. [PMID: 34753652 DOI: 10.1016/j.tim.2021.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria have at their disposal a battery of strategies to withstand antibiotic stress. Among these, resistance is a well-known mechanism, yet bacteria can also survive antibiotic attack by adopting a tolerant phenotype. In the case of persistence, only a small fraction within an isogenic population switches to this antibiotic-tolerant state. Persistence depends on the ecological niche and the genetic background of the strains involved. Furthermore, it has been shown to be under direct and indirect evolutionary pressure. Persister cells play a role in chronic infections and the development of resistance, and therefore a better understanding of this phenotype could contribute to the development of effective antibacterial therapies. In the current review, we discuss how ecological and evolutionary forces shape persistence.
Collapse
Affiliation(s)
- L Verstraete
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - B Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - N Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - J Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
48
|
Brauner A, Balaban NQ. Quantitative biology of survival under antibiotic treatments. Curr Opin Microbiol 2021; 64:139-145. [PMID: 34715469 DOI: 10.1016/j.mib.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/14/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023]
Abstract
The mathematical formulation for the dynamics of growth reduction and/or killing under antibiotic treatments has a long history. Even before the extensive use of antibiotics, attempts to model the killing dynamics of biocides were made [1]. Here, we review relatively simple quantitative formulations of the two main modes of survival under antibiotics, resistance and tolerance, as well as their heterogeneity in bacterial populations. We focus on the two main types of heterogeneity that have been described: heteroresistance and antibiotic persistence, each linked to the variation in a different parameter of the antibiotic response dynamics. Finally, we review the effects on survival of combining resistance and tolerance mutations as well as on the mode and tempo of evolution under antibiotic treatments.
Collapse
Affiliation(s)
- Asher Brauner
- Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nathalie Q Balaban
- Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
49
|
Antibiotic persistence and tolerance: not just one and the same. Curr Opin Microbiol 2021; 64:76-81. [PMID: 34634678 DOI: 10.1016/j.mib.2021.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Distinguished by their penetrance within a population, antibiotic tolerance and persistence are superficially similar phenomena by which growth-restricted bacteria survive treatment with bactericidal antibiotics. Owing to their apparent similarity, it is often assumed that the same physiological states and molecular mechanisms underlie the ability of individual antibiotic tolerant and persistent bacteria to survive treatment. Experimentally, antibiotic persistence is an extremely challenging phenomenon to study due to both its transience and the co-existence of persisters with non-persisters in the population of interest. In contrast, antibiotic tolerance operates at the whole population level as a result of bacteria acquiring genetic mutations or encountering environmental conditions that result in growth restriction. Therefore, studying antibiotic tolerance is often used as a convenient way to understand the molecular mechanisms governing antibiotic persistence. In this opinion, we discuss our current understanding of these two phenomena, outlining how tolerance and persistence can be distinguished experimentally. We argue that this approach will help avoid controversies in the field, especially in instances where the two phenomena co-exist. Finally, we evaluate the clinical evidence implicating tolerance and persistence in recalcitrance and relapse of bacterial infections.
Collapse
|
50
|
Effects of Resonant Electromagnetic Fields on Biofilm Formation in Pseudomonas aeruginosa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global rise of antimicrobial resistance (AMR) constitutes a future health threat and dictates a need to explore alternative and non-chemical approaches. The aim of this study was to explore the use of weak resonant electromagnetic fields as a method to disrupt biofilm formation of a pathogenic bacterium in cystic fibrosis patients. We developed a bioresonance laboratory setup able to distinguish between changes in planktonic growth and changes in biofilm formation and showed that certain resonant frequencies were able to affect biofilm formation without affecting planktonic growth. In addition, we show that the ambient day-to-day magnetic field affects biofilm formation in a non-consistent manner. Overall, we conclude that our assay is suitable for studying the potential of resonant magnetic fields as a treatment and prevention strategy to prevent biofilm infections, and that certain resonant frequencies may be used as future medical applications to combat antimicrobial resistance.
Collapse
|