1
|
Burton EM, Maestri D, White S, Liang JH, Mitra B, Asara JM, Gewurz BE. Epstein-Barr virus latent membrane protein 1 subverts IMPDH pathways to drive B-cell oncometabolism. PLoS Pathog 2025; 21:e1013092. [PMID: 40367275 DOI: 10.1371/journal.ppat.1013092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/01/2025] [Indexed: 05/16/2025] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 contributes to both epithelial and B-cell transformation. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism. To gain insights into key B-cell metabolic pathways subverted by LMP1, we performed systematic metabolomic analyses on B cells with conditional LMP1 expression. This approach highlighted that LMP highly induces de novo purine biosynthesis, with xanthosine-5-P (XMP) as one of the most highly LMP1-upregulated metabolites. Consequently, IMPDH inhibition by mycophenolic acid (MPA) triggered death of LMP1-expressing EBV-transformed lymphoblastoid cell lines (LCL), a key model for EBV-driven immunoblastic lymphomas. Whereas MPA instead caused growth arrest of Burkitt lymphoma cells with the EBV latency I program, conditional LMP1 expression triggered their death, and this phenotype was rescuable by guanosine triphosphate (GTP) supplementation, implicating LMP1 as a key driver of B-cell GTP biosynthesis. Although both IMPDH isozymes are expressed in LCLs, only IMPDH2 was critical for LCL survival, whereas both contributed to proliferation of Burkitt cells with the EBV latency I program. Both LMP1 C-terminal cytoplasmic tail domains critical for primary human B-cell transformation were important for XMP production, and each contributed to LMP1-driven Burkitt cell sensitivity to MPA. Metabolomic analyses further highlighted roles of NF-kB, mitogen activated kinase and protein kinase C downstream of LMP1 in support of XMP abundance. Of these, only protein kinase C activity was important for supporting GTP levels in LMP1 expressing Burkitt cells. MPA also de-repressed EBV lytic antigens, including LMP1 itself in latency I Burkitt cells, highlighting crosstalk between the purine biosynthesis pathway and the EBV epigenome. These results suggest novel oncometabolism-based therapeutic approaches to LMP1-driven lymphomas.
Collapse
Affiliation(s)
- Eric M Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Davide Maestri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shaowen White
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jin-Hua Liang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
3
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Citu C, Chang L, Manuel AM, Enduru N, Zhao Z. Identification and catalog of viral transcriptional regulators in human diseases. iScience 2025; 28:112081. [PMID: 40124487 PMCID: PMC11928865 DOI: 10.1016/j.isci.2025.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Viral genomes encode viral transcriptional regulators (vTRs) that manipulate host gene expression to facilitate replication and evade immune detection. Nevertheless, their role in non-cancerous diseases remains largely underexplored. Here, we unveiled 268 new candidate vTRs from 14 of the 20 viral families we investigated. We mapped vTRs' genome-wide binding profiles and identified their potential human targets, which were enriched in immune-mediated pathways, neurodegenerative disorders, and cancers. Through vTR DNA-binding preference analysis, 283 virus-specific and human-like motifs were identified. Prioritized Epstein-Barr virus (EBV) vTR target genes were associated with multiple sclerosis (MS), rheumatoid arthritis, and systemic lupus erythematosus. The partitioned heritability study among 19 diseases indicated significant enrichment of these diseases in EBV vTR-binding sites, implicating EBV vTRs' roles in immune-mediated disorders. Finally, drug repurposing analysis pinpointed candidate drugs for MS, asthma, and Alzheimer disease. This study enhances our understanding of vTRs in diverse human diseases and identifies potential therapeutic targets for future investigation.
Collapse
Affiliation(s)
- Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Le Chang
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
5
|
Castro-Muñoz JL, Maestri D, Yoon L, Karisetty BC, Tempera I, Lieberman P. Histone Variant H2A.Z Cooperates with EBNA1 to Maintain Epstein-Barr Virus Latent Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635203. [PMID: 39975074 PMCID: PMC11838259 DOI: 10.1101/2025.01.28.635203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chromatin structure plays a central role in the regulation of Epstein-Barr Virus (EBV) latency. The histone variant H2A.Z.1 has been implicated in chromatin structures associated with initiation of transcription and DNA replication. Here, we investigate the functional role of H2AZ.1 in the regulation of EBV chromatin, gene expression and copy number during latent infection. We found that H2A.Z.1 is highly enriched with EBNA1 binding sites at oriP and Qp, and to a lesser extent with transcriptionally active CTCF binding sites on the EBV genomes in both Mutu I Burkitt lymphoma (BL) and SNU719 EBV-associated gastric carcinoma (EBVaGC) cell lines. RNA-interference depletion of H2A.Z.1 resulted in the reactivation of viral lytic genes (ZTA and EAD) and increases viral DNA copy numbers in both MutuI and SNU719 cells. H2A.Z depletion also led to a decrease in EBNA1 binding to oriP and Qp, on the viral episome as well as on oriP plasmids independently of other viral genes and genomes. H2A.Z.1 depletion also reduced peaks of H3K27ac and H4K20me3 at regulatory elements in the EBV genome. In the cellular genome, H2A.Z.1 colocalized with only a subset of EBNA1 binding sites and H2A.Z.1 depletion altered transcription of genes associated with myc targets and mTORC1 signaling. Taken together, these findings indicate that H2A.Z.1 cooperates with EBNA1 to regulate chromatin structures important for epigenetic programming of the latent episome.
Collapse
Affiliation(s)
| | | | - Leena Yoon
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
6
|
Müller-Durovic B, Jäger J, Bantug GR, Hess C. Epstein-Barr virus hijacks B cell metabolism to establish persistent infection and drive pathogenesis. Trends Immunol 2025; 46:7-16. [PMID: 39709272 DOI: 10.1016/j.it.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
When B cells engage in an immune response, metabolic reprogramming is key to meeting cellular energetic and biosynthetic demands. Epstein-Barr virus (EBV) is a highly prevalent gamma-herpesvirus, latently infecting B cells for the human host's lifetime. By hijacking signaling pathways of T cell-dependent humoral immunity, EBV activates B cells in a T cell-independent manner, forcing lymphoblastoid transformation. Interlinked with this coercion of signaling pathways, EBV has also evolved strategies to manipulate B cell metabolism. In this opinion article we integrate recent findings from studies of B cell metabolic reprogramming after EBV infection and during antigen-specific activation, respectively. We hypothesize that defining EBV host-cell metabolic vulnerabilities that differ from pathways required for B cell immunity might uncover novel therapeutic targets against EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital and University of Zürich, Zürich, Switzerland.
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Choi UY, Lee SH. Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus. J Microbiol Biotechnol 2024; 34:2143-2152. [PMID: 39403716 PMCID: PMC11637867 DOI: 10.4014/jmb.2407.07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024]
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| |
Collapse
|
8
|
Burton EM, Liang JH, Mitra B, Asara JM, Gewurz BE. Epstein-Barr Virus Latent Membrane Protein 1 Subverts IMPDH pathways to drive B-cell oncometabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622457. [PMID: 39574729 PMCID: PMC11581047 DOI: 10.1101/2024.11.07.622457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the key viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 is the only EBV-encoded protein whose expression is sufficient to transform both epithelial and B-cells. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism. To gain insights into key B-cell metabolic pathways subverted by LMP1, we performed systematic metabolomic analyses on B cells with conditional LMP1 expression. This approach highlighted that LMP highly induces de novo purine biosynthesis, with xanthosine-5-P (XMP) as one of the most highly LMP1-upregulated metabolites. Consequently, IMPDH inhibition by mycophenolic acid (MPA) triggered apoptosis of LMP1-expressing EBV-transformed lymphoblastoid cell lines (LCL), a key model for EBV-driven immunoblastic lymphomas. Whereas MPA instead caused growth arrest of Burkitt lymphoma cells with the EBV latency I program, conditional LMP1 expression triggered their apoptosis. Although both IMPDH isozymes are expressed in LCLs, only IMPDH2 was critical for LCL survival, whereas both contributed to proliferation of Burkitt cells with the EBV latency I program. Both LMP1 C-terminal cytoplasmic tail domains critical for primary human B-cell transformation were important for XMP production, and each contributed to LMP1-driven Burkitt cell sensitivity to MPA. MPA also de-repressed EBV lytic antigens including LMP1 in latency I Burkitt cells, highlighting crosstalk between the purine biosynthesis pathway and the EBV epigenome. These results suggest novel oncometabolism-based therapeutic approaches to LMP1-driven lymphomas. IMPORTANCE Altered metabolism is a hallmark of cancer, yet much remains to be learned about how EBV rewires host cell metabolism to support multiple malignancies. While the oncogene LMP1 is the only EBV-encoded gene that is sufficient to transform murine B-cells and rodent fibroblasts, knowledge has remained incomplete about how LMP1 alters host cell oncometabolism to aberrantly drive infected B-cell growth and survival. Likewise, it has remained unknown whether LMP1 expression creates metabolic vulnerabilities that can be targeted by small molecule approaches to trigger EBV-transformed B-cell programmed cell death. We therefore used metabolomic profiling to define how LMP1 signaling remodels the B-cell metabolome. We found that LMP1 upregulated purine nucleotide biosynthesis, likely to meet increased demand. Consequently, LMP1 expression sensitized Burkitt B-cells to growth arrest upon inosine monophosphate dehydrogenase blockade. Thus, while LMP1 itself may not be a therapeutic target, its signaling induces dependence on downstream druggable host cell nucleotide metabolism enzymes, suggesting rational therapeutic approaches.
Collapse
|
9
|
Pudelko L, Cabianca DS. The influencers' era: how the environment shapes chromatin in 3D. Curr Opin Genet Dev 2024; 85:102173. [PMID: 38417271 DOI: 10.1016/j.gde.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024]
Abstract
Environment-epigenome interactions are emerging as contributors to disease risk and health outcomes. In fact, organisms outside of the laboratory are constantly exposed to environmental changes that can influence chromatin regulation at multiple levels, potentially impacting on genome function. In this review, we will summarize recent findings on how major external cues impact on 3D chromatin organization in different experimental systems. We will describe environment-induced 3D genome alterations ranging from chromatin accessibility to the spatial distribution of the genome and discuss their role in regulating gene expression.
Collapse
Affiliation(s)
- Lorenz Pudelko
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany; Faculty of Medicine, Ludwig-Maximilians Universität München, Munich, Germany. https://twitter.com/@lorenz_pudelko
| | - Daphne S Cabianca
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
11
|
Baccianti F, Masson C, Delecluse S, Li Z, Poirey R, Delecluse HJ. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response. mBio 2023; 14:e0178423. [PMID: 37830871 PMCID: PMC10653912 DOI: 10.1128/mbio.01784-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The Epstein-Barr virus efficiently infects and transforms B lymphocytes. During this process, infectious viral particles transport the viral genome to the nucleus of target cells. We show here that these complex viral structures serve additional crucial roles by activating transcription of the transforming genes encoded by the virus. We show that components of the infectious particle sequentially activate proinflammatory B lymphocyte signaling pathways that, in turn, activate viral gene expression but also cause cytokine release. However, virus infection activates expression of ZFP36L1, an RNA-binding stress protein that limits the length and the intensity of the cytokine response. Thus, the infectious particles can activate viral gene expression and initiate cellular transformation at the price of a limited immune response.
Collapse
Affiliation(s)
- Francesco Baccianti
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Charlène Masson
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
- Nierenzentrum Heidelberg e.V., Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany
| | - Zhe Li
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| |
Collapse
|
12
|
Monaco MCG, Soldan SS, Su C, Clauze A, Cooper JF, Patel RJ, Lu F, Hughes RJ, Messick TE, Andrada FC, Ohayon J, Lieberman PM, Jacobson S. EBNA1 Inhibitors Block Proliferation of Spontaneous Lymphoblastoid Cell Lines From Patients With Multiple Sclerosis and Healthy Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200149. [PMID: 37562974 PMCID: PMC10414776 DOI: 10.1212/nxi.0000000000200149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV+ B cells. Currently, there are no EBV-specific antiviral therapies available for targeting EBV latent infection in MS and limited experimental models to study EBV in MS. METHODS In this study, we describe the establishment of spontaneous lymphoblastoid cell lines (SLCLs) generated ex vivo with the endogenous EBV of patients with MS and controls and treated with either an Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibitor (VK-1727) or cladribine, a nucleoside analog that eliminates B cells. RESULTS We showed that a small molecule inhibitor of EBNA1, a critical regulator of the EBV life cycle, blocks the proliferation and metabolic activity of these SLCLs. In contrast to cladribine, a highly cytotoxic B cell depleting therapy currently used in MS, the EBNA1 inhibitor VK-1727 was cytostatic rather than cytotoxic and selective for EBV+ cells, while having no discernible effects on EBV- cells. We validate that VK-1727 reduces EBNA1 DNA binding at known viral and cellular sites by ChIP-qPCR. DISCUSSION This study shows that patient-derived SLCLs provide a useful tool for interrogating the role of EBV+ B cells in MS and suggests that a clinical trial testing the effect of EBNA1 inhibitors in MS may be warranted.
Collapse
Affiliation(s)
- Maria Chiara G Monaco
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Samantha S Soldan
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Chenhe Su
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Annaliese Clauze
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - John F Cooper
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Rishi J Patel
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Fang Lu
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Randall J Hughes
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Troy E Messick
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Frances C Andrada
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Joan Ohayon
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Paul M Lieberman
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| | - Steven Jacobson
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| |
Collapse
|
13
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Shi T, Ding Q, Liu X, Ai G, Zhou H, Huang L. Concordance of adenosine deaminase with immunoglobulins and lymphocyte subsets in EBV-related diseases. Ital J Pediatr 2023; 49:49. [PMID: 37095577 PMCID: PMC10127006 DOI: 10.1186/s13052-023-01457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Clinical manifestations of Epstein-Barr virus (EBV) infection are diverse. This study aimed to explore the immune response in EBV-related diseases and the correlation between immune cells and adenosine deaminase (ADA) levels. METHODS This study was conducted at the Children's Hospital of Soochow University. In total, 104 patients with EBV-associated respiratory tract infection (EBV-RTI), 32 patients with atypical EBV infection, 54 patients with EBV-associated infectious mononucleosis (IM1, with normal alanine aminotransferase [ALT] levels), 50 patients with EBV-IM2 (with elevated ALT levels), 50 patients with acute respiratory infection (AURI, with other pathogens), and 30 healthy controls were enrolled in this study. Indicators of ADA, immunoglobulins (Igs), and lymphocyte subsets were analyzed for EBV-related diseases. RESULTS Differences in the white blood cell, lymphocyte counts, ADA levels, IgA, IgG and IgM titers, percentage of CD3+, CD3+CD4+, CD3+CD8+, CD16+CD56+, CD3-CD19+, and CD19+CD23+ lymphocytes, and CD4+/CD8+ ratio between EBV-related disease groups were all statistically significant (P < 0.01). ADA levels in the EBV-related disease groups were significantly higher than those in the control group (P < 0.01). The lymphocyte count, ADA levels, IgA and IgG titers, and percentage of CD3+ and CD3+CD8 + lymphocytes in the atypical EBV infection, EBV-IM1, and EBV-IM2 groups were significantly higher than those in the EBV-RTI, AUTI, and control groups (P < 0.01), whereas the percentage of CD3+CD4+, CD3-CD19+, and CD19+CD23+ lymphocytes and CD4+/CD8+ ratio showed the opposite trend. ADA levels were consistent with and closely related to the viral load and cellular and humoral immunity in EBV-related diseases. CONCLUSIONS ADA levels, humoral immunity, and cellular immunity were diverse in EBV-related diseases, and ADA was closely related to Igs and lymphocyte subsets.
Collapse
Affiliation(s)
- Ting Shi
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China
| | - Qi Ding
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Ai
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhou
- Department of Pediatrics, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Huang
- Department of Infectious Diseases, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou, 215000, Jiangsu, China.
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol 2023; 22:338-349. [PMID: 36764322 DOI: 10.1016/s1474-4422(22)00471-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 02/10/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the CNS that results from the interplay between heritable and environmental factors. Mounting evidence from different fields of research supports the pivotal role of the Epstein-Barr virus (EBV) in the development of multiple sclerosis. However, translating this knowledge into clinically actionable information requires a better understanding of the mechanisms linking EBV to pathophysiology. Ongoing research is trying to clarify whether EBV causes neuroinflammation via autoimmunity or antiviral immunity, and if the interaction of EBV with genetic susceptibility to multiple sclerosis can explain why a ubiquitous virus promotes immune dysfunction in susceptible individuals. If EBV also has a role in driving disease activity, the characterisation of this role will help diagnosis, prognosis, and treatment in people with multiple sclerosis. Ongoing clinical trials targeting EBV and new anti-EBV vaccines provide hope for future treatments and preventive interventions.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine and Blizard Institute, Queen Mary University, London, UK
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
16
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
17
|
Li S, Yang L, Li Y, Yue W, Xin S, Li J, Long S, Zhang W, Cao P, Lu J. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr 2023; 11:e0123722. [PMID: 36728436 PMCID: PMC10101146 DOI: 10.1128/spectrum.01237-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.
Collapse
Affiliation(s)
- Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wenxing Yue
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Sijing Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, Trujillo-Alonso V, Puri R, Giulino-Roth L, Gewurz BE. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab 2022; 34:1280-1297.e9. [PMID: 36070681 PMCID: PMC9482757 DOI: 10.1016/j.cmet.2022.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) subverts host epigenetic pathways to switch between viral latency programs, colonize the B cell compartment, and reactivate. Within memory B cells, the reservoir for lifelong infection, EBV genomic DNA and histone methylation marks restrict gene expression. But this epigenetic strategy also enables EBV-infected tumors, including Burkitt lymphomas, to evade immune detection. Little is known about host cell metabolic pathways that support EBV epigenome landscapes. We therefore used amino acid restriction, metabolomic, and CRISPR approaches to identify that an abundant methionine supply and interconnecting methionine and folate cycles maintain Burkitt EBV gene silencing. Methionine restriction, or methionine cycle perturbation, hypomethylated EBV genomes and de-repressed latent membrane protein and lytic gene expression. Methionine metabolism also shaped EBV latency gene regulation required for B cell immortalization. Dietary methionine restriction altered murine Burkitt xenograft metabolomes and de-repressed EBV immunogens in vivo. These results highlight epigenetic/immunometabolism crosstalk supporting the EBV B cell life cycle and suggest therapeutic approaches.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jin Hua Liang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael Lutchenkov
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vicenta Trujillo-Alonso
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Virology, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
SoRelle ED, Dai J, Reinoso-Vizcaino NM, Barry AP, Chan C, Luftig MA. Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Rep 2022; 40:111286. [PMID: 36044865 PMCID: PMC9879279 DOI: 10.1016/j.celrep.2022.111286] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Gulve N, Su C, Deng Z, Soldan SS, Vladimirova O, Wickramasinghe J, Zheng H, Kossenkov AV, Lieberman PM. DAXX-ATRX regulation of p53 chromatin binding and DNA damage response. Nat Commun 2022; 13:5033. [PMID: 36028493 PMCID: PMC9418176 DOI: 10.1038/s41467-022-32680-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
DAXX and ATRX are tumor suppressor proteins that form a histone H3.3 chaperone complex and are frequently mutated in cancers with the alternative lengthening of telomeres (ALT). Here, we show that DAXX and ATRX knock-out (KO) U87-T cells that have acquired ALT-like features have defects in p53 chromatin binding and DNA damage response. RNA-seq analysis revealed that p53 pathway is among the most perturbed. ChIP-seq and ATAC-seq revealed a genome-wide reduction in p53 DNA-binding and corresponding loss of chromatin accessibility at many p53 response elements across the genome. Both DAXX and ATRX null cells showed a depletion of histone H3.3 and accumulation of γH2AX at many p53 sites, including subtelomeres. These findings indicate that loss of DAXX or ATRX can compromise p53 chromatin binding and p53 DNA damage response in ALT-like cells, providing a link between histone composition, chromatin accessibility and tumor suppressor function of p53.
Collapse
Affiliation(s)
- Nitish Gulve
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | | | | | - Hongwu Zheng
- Weill School of Medicine, Cornell University, New York, NY, USA
| | | | | |
Collapse
|
21
|
Yu CT, Chao BN, Barajas R, Haznadar M, Maruvada P, Nicastro HL, Ross SA, Verma M, Rogers S, Zanetti KA. An evaluation of the National Institutes of Health grants portfolio: identifying opportunities and challenges for multi-omics research that leverage metabolomics data. Metabolomics 2022; 18:29. [PMID: 35488937 PMCID: PMC9056487 DOI: 10.1007/s11306-022-01878-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Through the systematic large-scale profiling of metabolites, metabolomics provides a tool for biomarker discovery and improving disease monitoring, diagnosis, prognosis, and treatment response, as well as for delineating disease mechanisms and etiology. As a downstream product of the genome and epigenome, transcriptome, and proteome activity, the metabolome can be considered as being the most proximal correlate to the phenotype. Integration of metabolomics data with other -omics data in multi-omics analyses has the potential to advance understanding of human disease development and treatment. AIM OF REVIEW To understand the current funding and potential research opportunities for when metabolomics is used in human multi-omics studies, we cross-sectionally evaluated National Institutes of Health (NIH)-funded grants to examine the use of metabolomics data when collected with at least one other -omics data type. First, we aimed to determine what types of multi-omics studies included metabolomics data collection. Then, we looked at those multi-omics studies to examine how often grants employed an integrative analysis approach using metabolomics data. KEY SCIENTIFIC CONCEPTS OF REVIEW We observed that the majority of NIH-funded multi-omics studies that include metabolomics data performed integration, but to a limited extent, with integration primarily incorporating only one other -omics data type. Some opportunities to improve data integration may include increasing confidence in metabolite identification, as well as addressing variability between -omics approach requirements and -omics data incompatibility.
Collapse
Affiliation(s)
- Catherine T Yu
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Brittany N Chao
- Office of Workforce Planning and Development, National Cancer Institute, Rockville, MD, USA
| | - Rolando Barajas
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Majda Haznadar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Rockville, MD, USA
| | - Padma Maruvada
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Holly L Nicastro
- Office of Nutrition Research, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Ross
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Mukesh Verma
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Scott Rogers
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Krista A Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022; 52:78-88. [PMID: 34891084 PMCID: PMC9112224 DOI: 10.1016/j.coviro.2021.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide, causes infectious mononucleosis, is etiologically linked to multiple sclerosis and is associated with 200 000 cases of cancer each year. EBV manipulates host epigenetic pathways to switch between a series of latency programs and to reactivate from latency in order to colonize the memory B-cell compartment for lifelong infection and to ultimately spread to new hosts. Here, we review recent advances in the understanding of epigenetic mechanisms that control EBV latency and lytic gene expression in EBV-transformed B and epithelial cells. We highlight newly appreciated roles of DNA methylation epigenetic machinery, host histone chaperones, the Hippo pathway, m6A RNA modification and nonsense mediated decay in control of the EBV lifecycle.
Collapse
|
24
|
EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathog 2021; 17:e1009834. [PMID: 34352044 PMCID: PMC8370649 DOI: 10.1371/journal.ppat.1009834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Viruses suppress immune recognition through diverse mechanisms. Epstein-Barr Virus (EBV) establishes latent infection in memory B-lymphocytes and B-cell malignancies where it impacts B-cell immune function. We show here that EBV primary infection of naïve B-cells results in a robust down-regulation of HLA genes. We found that the viral encoded transcriptional regulatory factor EBNA2 bound to multiple regulatory regions in the HLA locus. Conditional expression of EBNA2 correlated with the down regulation of HLA class II transcription. EBNA2 down-regulation of HLA transcription was found to be dependent on CIITA, the major transcriptional activator of HLA class II gene transcription. We identified a major EBNA2 binding site downstream of the CIITA gene and upstream of DEXI, a dexamethasone inducible gene that is oriented head-to-head with CIITA gene transcripts. CRISPR/Cas9 deletion of the EBNA2 site upstream of DEXI attenuated CIITA transcriptional repression. EBNA2 caused an increase in DEXI transcription and a graded change in histone modifications with activation mark H3K27ac near the DEXI locus, and a loss of activation marks at the CIITA locus. A prominent CTCF binding site between CIITA and DEXI enhancers was mutated and further diminished the effects of EBNA2 on CIITA. Analysis of HiC data indicate that DEXI and CIITA enhancers are situated in different chromosome topological associated domains (TADs). These findings suggest that EBNA2 down regulates HLA-II genes through the down regulation of CIITA, and that this down regulation is an indirect consequence of EBNA2 enhancer formation at a neighboring TAD. We propose that enhancer competition between these neighboring chromosome domains represents a novel mechanism for gene regulation demonstrated by EBNA2.
Collapse
|
25
|
Shire K, Marcon E, Greenblatt J, Frappier L. Characterization of a cancer-associated Epstein-Barr virus EBNA1 variant reveals a novel interaction with PLOD1 and PLOD3. Virology 2021; 562:103-109. [PMID: 34304093 DOI: 10.1016/j.virol.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequence analysis of Epstein-Barr virus genomes from tumours and healthy individuals identified three amino acid changes in EBNA1 that are strongly associated with gastric carcinoma and nasopharyngeal carcinoma. Here we show that, while these mutations do not impact EBNA1 plasmid maintenance function, one of them (Thr85Ala) decreases transcriptional activation and results in a gain of function interaction with PLOD1 and PLOD3. PLOD family proteins are strongly linked to multiple cancers, and PLOD1 is recognized as a prognostic marker of gastric carcinoma. We identified the PLOD1 binding site in EBNA1as the N-terminal transactivation domain and show that lysine 83 is critical for this interaction. The results provide a novel link between EBV infection and the cancer-associated PLOD proteins.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada; Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
26
|
Mattola S, Hakanen S, Salminen S, Aho V, Mäntylä E, Ihalainen TO, Kann M, Vihinen-Ranta M. Concepts to Reveal Parvovirus-Nucleus Interactions. Viruses 2021; 13:1306. [PMID: 34372512 PMCID: PMC8310053 DOI: 10.3390/v13071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/23/2023] Open
Abstract
Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Satu Hakanen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Sami Salminen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Vesa Aho
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| |
Collapse
|