1
|
Banete A, Griffin BD, Corredor JC, Chien E, Yip L, Gunawardena TNA, Nirmalarajah K, Liang J, Lee Y, Leacy A, Pagliarani S, de Borja R, Yim W, Lee H, Onodera Y, Aftanas P, Budylowski P, Ahn SK, Pei Y, Ouyang H, Kent L, Li XA, Ostrowski MA, Kozak RA, Wootton SK, Christie-Holmes N, Gray-Owen SD, Taipale M, Simpson JT, Maguire F, McGeer AJ, Zhang H, Susta L, Moraes TJ, Mubareka S. Pathogenesis and transmission of SARS-CoV-2 D614G, Alpha, Gamma, Delta, and Omicron variants in golden hamsters. NPJ VIRUSES 2025; 3:15. [PMID: 40295859 PMCID: PMC11850601 DOI: 10.1038/s44298-025-00092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025]
Abstract
Since the emergence of SARS-CoV-2 in humans, novel variants have evolved to become dominant circulating lineages. These include D614G (B.1 lineage), Alpha (B.1.1.7), Gamma (P.1), Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529) and BA.2 (B.1.1.529.2) viruses. Here, we compared the viral replication, pathogenesis, and transmissibility of these variants. Replication kinetics and innate immune response against the viruses were tested in ex vivo human nasal epithelial cells (HNEC) and induced pluripotent stem cell-derived lung organoids (IPSC-LOs), and the golden hamster model was employed to test pathogenicity and potential for transmission by the respiratory route. Delta, BA.1, and BA.2 viruses replicated more efficiently, and outcompeted D614G, Alpha, and Gamma viruses in an HNEC competition assay. BA.1 and BA.2 viruses, however, replicated poorly in IPSC-LOs compared to other variants. Moreover, BA.2 virus infection significantly increased secretion of IFN-λ1, IFN-λ2, IFN-λ3, IL-6, and IL-1RA in HNECs relative to D614G infection, but not in IPSC-LOs. The BA.1 and BA.2 viruses replicated less effectively in hamster lungs compared to the other variants; and while the Gamma virus reached titers comparable to D614G and Delta viruses, it caused greater lung pathology. Lastly, the Gamma and Delta variants transmitted more efficiently by the respiratory route compared to the other viruses, while BA.1 and BA.2 viruses transmitted less efficiently. These findings demonstrate the ongoing utility of experimental risk assessment as SARS-CoV-2 variants continue to evolve.
Collapse
Affiliation(s)
- Andra Banete
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bryan D Griffin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan C Corredor
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Emily Chien
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Lily Yip
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tarini N A Gunawardena
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yaejin Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Sara Pagliarani
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Winfield Yim
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hunsang Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Yu Onodera
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | | | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Laura Kent
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xinliu Angel Li
- Department of Microbiology, Sinai Health System, Toronto, ON, Canada
| | - Mario A Ostrowski
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Robert A Kozak
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Shared Hospital Laboratory, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Natasha Christie-Holmes
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Finlay Maguire
- Shared Hospital Laboratory, Toronto, ON, Canada
- Department of Community Health and Epidemiology, Faculty of Medicine Dalhousie University, Halifax, NS, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Allison J McGeer
- Department of Microbiology, Sinai Health System, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Samira Mubareka
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Imtiaz K, Farooqui N, Ahmed K, Zhamalbekova A, Anwar MF, Nasir A, Ansar Z, Gul K, Hussain A, Sarría-Santamera A, Abidi SH. Analysis of differential expression of matrix metalloproteinases and defensins in the nasopharyngeal milieu of mild and severe COVID-19 cases. PLoS One 2025; 20:e0304311. [PMID: 39965032 PMCID: PMC11835293 DOI: 10.1371/journal.pone.0304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION A subset of COVID-19 disease patients suffers a severe form of the illness; however, underlying early pathophysiological mechanisms associated with the severe form of COVID-19 disease remain to be fully understood. Several studies showed the association of COVID-19 disease severity with the changes in the expression profile of various matrix metalloproteinases (MMPs) and defensins (DA). However, the link between the changes in the expression of MMPs and DA in the nasopharyngeal milieu during early phases of infection and disease severity remains poorly understood. Therefore, we performed differential gene expression analysis of MMPs and DA in the nasopharyngeal swab samples collected from normal (COVID-19 negative), mild, and severe COVID-19 cases and examined the association between MMP and DA expression and disease severity. MATERIAL AND METHOD A total of 118 previously collected nasopharyngeal samples from mild and severe COVID-19 patients (as per the WHO criteria) and 10 healthy individuals (COVID-19 negative, controls) were used in this study. A real-time qPCR assay was used to determine the viral loads and assess the mRNA expression of MMPs and DA. One-way ANOVA was applied to perform multiple comparisons (estimate differences) in MMPs and defensin gene expression in the normal vs mild vs severe groups. In addition, a multivariable logistic regression analysis was carried out with all the variables from the data set using 'severity' as the outcome variable. RESULTS Our results showed that as compared to controls, DA1, DA3, and DA4 expression was significantly (p < 0.05) upregulated in the mild group, whereas the expression of DA6 was significantly downregulated in both mild and severe groups (p-value < 0.05). Similarly, compared to controls, the expression of MMP1 and MMP7 was significantly downregulated in both mild and severe groups, whereas MMP2 expression was upregulated in the mild group (p-value < 0.05). Additionally, the regression analysis showed that the expression of MMP1, MMP2, and MMP9 was significantly associated with the severity of the disease. CONCLUSION The early detection of changes in the expression of MMPs and defensins may act as a useful biomarker/predictor for possible severe COVID-19 disease, which may be useful in the clinical management of patients to reduce COVID-19-associated morbidity and mortality.
Collapse
Affiliation(s)
- Khekashan Imtiaz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zeeshan Ansar
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Khitab Gul
- Department of Biosciences, Muhammad Ali Jinnah University, Karachi, Pakistan
| | - Azhar Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
3
|
Solár P, Šerý O, Vojtíšek T, Krajsa J, Srník M, Dziedzinská R, Králík P, Kessler M, Dubový P, Joukal A, Balcar VJ, Joukal M. The Blood-Cerebrospinal Fluid Barrier as a Potential Entry Site for the SARS-CoV-2 Virus. J Med Virol 2025; 97:e70184. [PMID: 39835622 DOI: 10.1002/jmv.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain. Tissue samples from 24 deceased COVID-19-positive individuals were analyzed. Reverse transcription real-time PCR (RT-qPCR) was performed on selected brain regions, including the choroid plexus, to detect SARS-CoV-2 viral RNA. Additionally, immunofluorescence staining and confocal microscopy were used to detect and localize two characteristic proteins of SARS-CoV-2: the spike protein S1 and the nucleocapsid protein. RT-qPCR analysis confirmed the presence of SARS-CoV-2 viral RNA in the choroid plexus. Immunohistochemical staining revealed viral particles localized in the epithelial cells of the choroid plexus, with the spike protein S1 detected in the late endosomes. Our findings suggest that the blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus serves as a route of entry for SARS-CoV-2 into the CNS. This study contributes to the understanding of the mechanisms underlying CNS involvement in COVID-19 and highlights the importance of further research to explore potential therapeutic strategies targeting this entry pathway.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Omar Šerý
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Vojtíšek
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Krajsa
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Srník
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radka Dziedzinská
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Králík
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Markéta Kessler
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Sydney, New South Wales, Australia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
5
|
Cannavo A, Gelzo M, Vinciguerra C, Corbi G, Maglione M, Tipo V, Giannattasio A, Castaldo G. Serum endocan (ESM-1) as diagnostic and prognostic biomarker in Multisystem inflammatory syndrome in children (MIS-C). Cytokine 2024; 184:156797. [PMID: 39488191 DOI: 10.1016/j.cyto.2024.156797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Endothelial-cell-specific molecule-1 (ESM-1) also called endocan is a well-known biomarker for detecting inflammation, endothelial dysfunction (ED), and cardiovascular (CV) risk in COVID-19 patients. Upon SARS-CoV-2 infection, a small percentage of children develop Multisystem Inflammatory Syndrome in children (MIS-C). Whether endocan can be used as a biomarker of MIS-C is unknown. In this study, we assessed ESM-1 levels in MIS-C (n = 19) and healthy controls (HC; n = 17). We observed a significant increase in serum ESM-1 levels in MIS-C vs HC (p = 0.0074). In addition, ROC curve analysis demonstrated that this factor has a reasonable discriminatory power between MIS-C patients and HC (AUC of 0.7585). Notably, after one week of hospitalization and care, ESM-1 levels decreased, and this reduction was observed also for other inflammatory and pro-thrombotic markers like C-reactive protein, procalcitonin, fibrinogen, D-dimer, and ferritin, suggesting a general recovery trend in MIS-C patients. In fact, we observed that serum ESM-1 levels positively correlated with procalcitonin (PCT) (r = 0.468; p = 0.043). Finally, logistic regression analysis demonstrated an association between endocan levels and cardiac complications like myocarditis. Therefore, this study suggests that ESM-1 is a valuable diagnostic and prognostic biomarker in patients with MIS-C that may help identify those MIS-C patients at higher risk for cardiovascular complications and guide treatment strategies.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| | - Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy.
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marco Maglione
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Vincenzo Tipo
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Antonietta Giannattasio
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| |
Collapse
|
6
|
Wooding D, Buist K, Romero-Ramirez A, Savage H, Watkins R, Bengey D, Greenland-Bews C, Thompson CR, Kontogianni N, Body R, Hayward G, Byrne RL, Gould S, Myerscough C, Atkinson B, Shaw V, Greenhalf B, Adams E, Cubas-Atienzar A, Khoo S, Fletcher T, Edwards T. Optimization of SARS-CoV-2 culture from clinical samples for clinical trial applications. mSphere 2024; 9:e0030424. [PMID: 39412283 PMCID: PMC11580409 DOI: 10.1128/msphere.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
Clinical trials of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics often include virological secondary endpoints to compare viral clearance and viral load reduction between treatment and placebo arms. This is typically achieved using quantitative reverse-transcriptase PCR (RT-qPCR), which cannot differentiate replicant competent virus from non-viable virus or free RNA, limiting its utility as an endpoint. Culture-based methods for SARS-CoV-2 exist; however, these are often insensitive and poorly standardized for use as clinical trial endpoints. We report optimization of a culture-based approach evaluating three cell lines, three detection methods, and key culture parameters. We show that Vero-angiotensin-converting enzyme 2-transmembrane serine protease 2 cells in combination with RT-qPCR of culture supernatants from the first passage provides the greatest overall detection of Delta viral replication (22 of 32, 68.8%), being able to identify viable virus in 83.3% (20 of 24) of clinical samples with initial Ct values of <30. Likewise, we demonstrate that RT-qPCR using culture supernatants from the first passage of Vero human signaling lymphocytic activation molecule cells provides the highest overall detection of Omicron viral replication (9 of 31, 29%), detecting live virus in 39.1% (9 of 23) of clinical samples with initial Ct values of <25. This assessment demonstrates that combining RT-qPCR with virological endpoint analysis has utility in clinical trials of therapeutics for SARS-CoV-2; however, techniques may require optimization based on dominant circulating strain. IMPORTANCE RT-qPCR is commonly used for virological endpoints during clinical trials for antiviral therapy to determine the quantity and presence of virus in a sample. However, RT-qPCR identifies viral RNA and cannot determine if viable virus is present. Existing culture-based techniques for SARS-CoV-2 are insensitive and not sufficiently standardized to be employed as clinical study endpoints. The use of a culture system to monitor replicating viruses could mitigate the possibility of molecular techniques identifying viral RNA from inactive or lysed viral particles. The methodology optimized in this study for detecting infectious viruses may have application as a secondary virological endpoint in clinical trials of therapeutics for SARS-CoV-2 in addition to numerous research processes.
Collapse
Affiliation(s)
- Dominic Wooding
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Kate Buist
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Alessandra Romero-Ramirez
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Helen Savage
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Rachel Watkins
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Daisy Bengey
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Caitlin Greenland-Bews
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Caitlin R. Thompson
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Nadia Kontogianni
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Richard Body
- Manchester University NHS Foundation Trust, Research and Innovation, Manchester, United Kingdom
| | - Gail Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Byrne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Susan Gould
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - CONDOR Steering GroupAllenA. JoyBraybrookJulianBucklePeterDarkPaulDavisKerrieGordonAdamHalsteadAnnaHardenCharlotteInksonColetteJonesNaokoJonesWilliamLassersonDanLeeJosephLendremClareLewingtonAndrewLoganMaryMicocciMassimoNicholsonBrianPerera-SalazarRafaelPrestwichGrahamPriceD. AshleyReynardCharlesRileyBeverleySimpsonA. J.TateValerieTurnerPhilipWilcoxMarkZhifangMelody
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- Manchester University NHS Foundation Trust, Research and Innovation, Manchester, United Kingdom
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Christopher Myerscough
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Barry Atkinson
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | | | | | - Emily Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Ana Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Saye Khoo
- University of Liverpool, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Tom Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| |
Collapse
|
7
|
Pimentel E, Banoei MM, Kaur J, Lee CH, Winston BW. Metabolomic Insights into COVID-19 Severity: A Scoping Review. Metabolites 2024; 14:617. [PMID: 39590853 PMCID: PMC11596841 DOI: 10.3390/metabo14110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In 2019, SARS-CoV-2, the novel coronavirus, entered the world scene, presenting a global health crisis with a broad spectrum of clinical manifestations. Recognizing the significance of metabolomics as the omics closest to symptomatology, it has become a useful tool for predicting clinical outcomes. Several metabolomic studies have indicated variations in the metabolome corresponding to different disease severities, highlighting the potential of metabolomics to unravel crucial insights into the pathophysiology of SARS-CoV-2 infection. METHODS The PRISMA guidelines were followed for this scoping review. Three major scientific databases were searched: PubMed, the Directory of Open Access Journals (DOAJ), and BioMed Central, from 2020 to 2024. Initially, 2938 articles were identified and vetted with specific inclusion and exclusion criteria. Of these, 42 articles were retrieved for analysis and summary. RESULTS Metabolites were identified that were repeatedly noted to change with COVID-19 and its severity. Phenylalanine, glucose, and glutamic acid increased with severity, while tryptophan, proline, and glutamine decreased, highlighting their association with COVID-19 severity. Additionally, pathway analysis revealed that phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis were the most significantly impacted pathways in COVID-19 severity. CONCLUSIONS COVID-19 severity is intricately linked to significant metabolic alterations that span amino acid metabolism, energy production, immune response modulation, and redox balance.
Collapse
Affiliation(s)
- Eric Pimentel
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
| | - Mohammad Mehdi Banoei
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jasnoor Kaur
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
| | - Chel Hee Lee
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB T2N 5A1, Canada
| | - Brent W. Winston
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Departments of Medicine, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
8
|
Huang DY, Luo YX, Zheng WD, Wu SY, Huang PQ, Jin JW, Wu PP, Gan LS. Anti-coronavirus and anti-pulmonary inflammation effects of iridoids, the common component from Chinese herbal medicines for the treatment of COVID-19. J Nat Med 2024; 78:1003-1012. [PMID: 38775895 DOI: 10.1007/s11418-024-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 08/31/2024]
Abstract
The practice of Chinese herbal medicines for the treatment of COVID-19 in China played an essential role for the control of mortality rate and reduction of recovery time. The iridoids is one of the main constituents of many heat-clearing and detoxifying Chinese medicines that were largely planted and frequently used in clinical practice. Twenty-three representative high content iridoids from several staple Chinese medicines were obtained and tested by a SARS-CoV-2 pseudo-virus entry-inhibition assay on HEK-293 T/ACE2 cells, a live HCoV-OC43 virus infection assay on HRT-18 cells, and a SARS-CoV-2 3CL protease inhibitory FRET assay followed by molecular docking simulation. The anti-pulmonary inflammation activities were further evaluated on a TNF-α induced inflammation model in A549 cells and preliminary SARs were concluded. The results showed that specnuezhenide (7), cornuside (12), neonuezhenide (15), and picroside III (21) exhibited promising antiviral activities, and neonuezhenide (15) could inhibit 3CL protease with an IC50 of 14.3 μM. Docking computation showed that compound 15 could bind to 3CL protease through a variety of hydrogen bonding and hydrophobic interactions. In the anti-pulmonary inflammation test, cornuside (12), aucubin (16), monotropein (17), and shanzhiside methyl ester (18) could strongly decrease the content of IL-1β and IL-8 at 10 μM. Compound 17 could also upregulate the expression of the anti-inflammatory cytokine IL-10 significantly. The iridoids exhibited both anti-coronavirus and anti-pulmonary inflammation activities for their significance of existence in Chinese herbal medicines, which also provided a theoretical basis for their potential utilization in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Dan-Yu Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan St, Hangzhou, 311402, People's Republic of China
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China
| | - Yong-Xin Luo
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China
| | - Wen-De Zheng
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China
| | - Shu-Yu Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan St, Hangzhou, 311402, People's Republic of China
| | - Pei-Qi Huang
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China
| | - Jing-Wei Jin
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China
| | - Pan-Pan Wu
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China.
| | - Li-She Gan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan St, Hangzhou, 311402, People's Republic of China.
- School of Pharmacy and Food Engineering, International Healthcare Innovation Institute, Wuyi University, 99 Yingbin Ave, 529020, Jiangmen, People's Republic of China.
| |
Collapse
|
9
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
10
|
Kudryavtsev DS, Mozhaeva VA, Ivanov IA, Siniavin AE, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Tsetlin VI, Balykin VI, Melentiev PN. Optical detection of infectious SARS-CoV-2 virions by counting spikes. NANOSCALE 2024; 16:12424-12430. [PMID: 38887059 DOI: 10.1039/d4nr01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Vera A Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Andrey E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health, Moscow, 123098, Russia
| | | | | | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
- Higher School of Economics, National Research University, Moscow, 101000, Russia
| |
Collapse
|
11
|
Rasmussen L, Sanders S, Sosa M, McKellip S, Nebane NM, Martinez-Gzegozewska Y, Reece A, Ruiz P, Manuvakhova A, Zhai L, Warren B, Curry A, Zeng Q, Bostwick JR, Vinson PN. A high-throughput response to the SARS-CoV-2 pandemic. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100160. [PMID: 38761981 DOI: 10.1016/j.slasd.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Four years after the beginning of the COVID-19 pandemic, it is important to reflect on the events that have occurred during that time and the knowledge that has been gained. The response to the pandemic was rapid and highly resourced; it was also built upon a foundation of decades of federally funded basic and applied research. Laboratories in government, pharmaceutical, academic, and non-profit institutions all played roles in advancing pre-2020 discoveries to produce clinical treatments. This perspective provides a summary of how the development of high-throughput screening methods in a biosafety level 3 (BSL-3) environment at Southern Research Institute (SR) contributed to pandemic response efforts. The challenges encountered are described, including those of a technical nature as well as those of working under the pressures of an unpredictable virus and pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ling Zhai
- Southern Research, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
12
|
Miranda GASC, Corrêa IA, Amorim ÉA, Caldas LA, Carneiro FÁ, da Costa LJ, Granjeiro JM, Tanuri A, de Souza W, Baptista LS. Cost-effective 3D lung tissue spheroid as a model for SARS-CoV-2 infection and drug screening. Artif Organs 2024; 48:723-733. [PMID: 38385713 DOI: 10.1111/aor.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has spurred an unparalleled scientific endeavor to elucidate the virus' structure, infection mechanisms, and pathogenesis. Two-dimensional culture systems have been instrumental in shedding light on numerous aspects of COVID-19. However, these in vitro systems lack the physiological complexity to comprehend the infection process and explore treatment options. Three-dimensional (3D) models have been proposed to fill the gap between 2D cultures and in vivo studies. Specifically, spheroids, composed of lung cell types, have been suggested for studying SARS-CoV-2 infection and serving as a drug screening platform. METHODS 3D lung spheroids were prepared by coculturing human alveolar or bronchial epithelial cells with human lung stromal cells. The morphology, size, and ultrastructure of spheroids before and after SARS-CoV-2 infection were analyzed using optical and electron microscopy. Immunohistochemistry was used to detect spike protein and, thus, the virus presence in the spheroids. Multiplex analysis elucidated the cytokine release after virus infection. RESULTS The spheroids were stable and kept their size and morphology after SARS-CoV-2 infection despite the presence of multivesicular bodies, endoplasmic reticulum rearrangement, tubular compartment-enclosed vesicles, and the accumulation of viral particles. The spheroid responded to the infection releasing IL-6 and IL-8 cytokines. CONCLUSION This study demonstrates that coculture spheroids of epithelial and stromal cells can serve as a cost-effective infection model for the SARS-CoV-2 virus. We suggest using this 3D spheroid as a drug screening platform to explore new treatments related to the cytokines released during virus infection, especially for long COVID treatment.
Collapse
Affiliation(s)
| | - Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Almeida Amorim
- Gcell 3D, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ayres Caldas
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Ávila Carneiro
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Granjeiro
- Laboratório de Biologia de Células Eucarióticas, Duque de Caxias, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Odontologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandra Santos Baptista
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia de Células Eucarióticas, Duque de Caxias, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Lui WY, Ong CP, Cheung PHH, Ye ZW, Chan CP, To KKW, Yuen KS, Jin DY. Nsp1 facilitates SARS-CoV-2 replication through calcineurin-NFAT signaling. mBio 2024; 15:e0039224. [PMID: 38411085 PMCID: PMC11005343 DOI: 10.1128/mbio.00392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chon Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Kai-Wang To
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
15
|
Mjokane N, Akintemi EO, Sabiu S, Gcilitshana OMN, Albertyn J, Pohl CH, Sebolai OM. Aspergillus fumigatus secretes a protease(s) that displays in silico binding affinity towards the SARS-CoV-2 spike protein and mediates SARS-CoV-2 pseudovirion entry into HEK-293T cells. Virol J 2024; 21:58. [PMID: 38448991 PMCID: PMC10919004 DOI: 10.1186/s12985-024-02331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The novel coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Data from the COVID-19 clinical control case studies showed that this disease could also manifest in patients with underlying microbial infections such as aspergillosis. The current study aimed to determine if the Aspergillus (A.) fumigatus culture media (i.e., supernatant) possessed protease activity that was sufficient to activate the SARS-CoV-2 spike protein. METHODS The supernatant was first analysed for protease activity. Thereafter, it was assessed to determine if it possessed proteolytic activity to cleave a fluorogenic mimetic peptide of the SARS-CoV-2 spike protein that contained the S1/S2 site and a full-length spike protein contained in a SARS-CoV-2 pseudovirion. To complement this, a computer-based tool, HADDOCK, was used to predict if A. fumigatus alkaline protease 1 could bind to the SARS-CoV-2 spike protein. RESULTS We show that the supernatant possessed proteolytic activity, and analyses of the molecular docking parameters revealed that A. fumigatus alkaline protease 1 could bind to the spike protein. To confirm the in silico data, it was imperative to provide experimental evidence for enzymatic activity. Here, it was noted that the A. fumigatus supernatant cleaved the mimetic peptide as well as transduced the HEK-293T cells with SARS-CoV-2 pseudovirions. CONCLUSION These results suggest that A. fumigatus secretes a protease(s) that activates the SARS-CoV-2 spike protein. Importantly, should these two infectious agents co-occur, there is the potential for A. fumigatus to activate the SARS-CoV-2 spike protein, thus aggravating COVID-19 development.
Collapse
Affiliation(s)
- Nozethu Mjokane
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Eric O Akintemi
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, 4000, Durban, P.O. Box 1334, South Africa
| | - Onele M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, 9301, Bloemfontein, South Africa.
| |
Collapse
|
16
|
Polo-Megías D, Cano-Muñoz M, Berruezo AG, Laumond G, Moog C, Conejero-Lara F. Investigating vulnerability of the conserved SARS-CoV-2 spike's heptad repeat 2 as target for fusion inhibitors using chimeric miniproteins. Int J Biol Macromol 2024; 262:130132. [PMID: 38354919 DOI: 10.1016/j.ijbiomac.2024.130132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inhibition of SARS-CoV-2 membrane fusion is a highly desired target to combat COVID-19. The interaction between the spike's heptad repeat (HR) regions 1 (HR1) and 2 (HR2) is a crucial step during the fusion process and these highly conserved HR regions constitute attractive targets for fusion inhibitors. However, the relative importance of each subregion of the long HR1-HR2 interface for viral inhibition remains unclear. Here, we designed, produced, and characterized a series of chimeric miniproteins that mimic two different half subdomains of HR1. The proteins were designed as single polypeptide chains that spontaneously fold into antiparallel trimeric helical bundles aimed at structurally imitate the molecular surface of each HR1 half subregion. All the miniproteins folded stably as helical structures and could bind complementary HR2 peptides with moderate affinity. However, only the miniproteins mimicking the N-terminal HR1 half subdomain, but not those imitating C-terminal one, could inhibit cell infection by SARS-COV-2 real viruses in cell cultures. Most interestingly, the inhibitory activity of the miniproteins correlated with their structural stability, but not with their relative binding affinity for HR2 peptides. These results are highly relevant for designing more focused and active fusion inhibitors targeting the highly conserved HR2 region of the Spike.
Collapse
Affiliation(s)
- Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto G Berruezo
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France; Vaccine Research Institute (VRI), F-94000 Créteil, France
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
17
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
González-Paz L, Lossada C, Hurtado-León ML, Vera-Villalobos J, Paz JL, Marrero-Ponce Y, Martinez-Rios F, Alvarado Y. Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data. ACS OMEGA 2024; 9:8923-8939. [PMID: 38434903 PMCID: PMC10905729 DOI: 10.1021/acsomega.3c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Collapse
Affiliation(s)
- Lenin González-Paz
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC). Departamento de Biología. Laboratorio
de Genética y Biología Molecular (LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad
de Ciencias Naturales y Matemáticas, Departamento de Química
y Ciencias Ambientales, Laboratorio de Análisis Químico
Instrumental (LAQUINS), Escuela Superior
Politécnica del Litoral, Guayaquil EC090112, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Cercado de Lima, Lima 15081, Perú
| | - Yovani Marrero-Ponce
- Grupo
de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias
de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades
Médicas; e Instituto de Simulación Computacional (ISC-USFQ),
Diego de Robles y vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador
| | - Felix Martinez-Rios
- Universidad
Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México 03920, México
| | - Ysaías.
J. Alvarado
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE),Instituto
Venezolano de Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana
de Venezuela
| |
Collapse
|
19
|
Mjokane N, Sabiu S, Folorunso OS, Gcilitshana OMN, Albertyn J, Pohl CH, Sebolai OM. Cryptococcal proteases exhibit the potential to activate the latent SARS-CoV-2 spike protein. J Infect Public Health 2024; 17:263-270. [PMID: 38128410 DOI: 10.1016/j.jiph.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has affected more than 650 million people and resulted in over 6.8 million deaths. Notably, the disease could co-manifest with microbial infections, like cryptococcosis, which also presents as a primary lung infection. OBJECTIVE In this contribution, we sought to determine if cryptococcal supernatant (which contains secreted furin-like proteases) could activate the SARS-CoV-2 spike protein. METHODS Molecular docking of the crystal structures of the SARS-CoV-2 spike protein (target) and selected cryptococcal proteases (ligands) was executed using the high ambiguity driven protein-protein docking (HADDOCK) server, with the furin protease serving as a reference ligand. The furin protease is found in human cells and typically activates the SARS-CoV-2 spike protein. Importantly, in order to provide experimental evidence for enzymatic activity, we also assessed the biochemical efficiency of cryptococcal proteases to initiate viral entry into HEK-293 T cells by SARS-CoV-2 spike pseudotyped Lentivirus. RESULTS We show that the selected cryptococcal proteases could interact with the spike protein, and some had a better or comparable binding affinity for the spike protein than furin protease following an in silico comparative analysis of the molecular docking parameters. Furthermore, it was noted that the biochemical efficiency of the cryptococcal supernatant to transduce HEK-293 T cells with SARS-CoV-2 pseudovirions was comparable (p > 0.05) to that of recombinant furin. CONCLUSIONS Taken together, these data show that cryptococcal proteases could activate the SARS-CoV-2 spike protein. In practice, it may be critical to determine if patients have an underlying cryptococcal infection, as this microbe could secrete proteases that may further activate the SARS-CoV-2 viral particles, thus undermining COVID-19 intervention measures.
Collapse
Affiliation(s)
- Nozethu Mjokane
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, 121 Steve Biko Road, Berea Durban 4001, South Africa
| | - Olufemi S Folorunso
- Harvard Medical School, Department of Ophthalmology, Boston, MA, United States
| | - Onele M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa.
| |
Collapse
|
20
|
Doijen J, Heo I, Temmerman K, Vermeulen P, Diels A, Jaensch S, Burcin M, Van den Broeck N, Raeymaekers V, Peremans J, Konings K, Clement M, Peeters D, Van Loock M, Koul A, Buyck C, Van Gool M, Van Damme E. A flexible, image-based, high-throughput platform encompassing in-depth cell profiling to identify broad-spectrum coronavirus antivirals with limited off-target effects. Antiviral Res 2024; 222:105789. [PMID: 38158129 DOI: 10.1016/j.antiviral.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening. The platform is broadly applicable as it can be adapted to include various cell types, viruses, antibodies, and dyes. We demonstrated that the antiviral activity of compounds against SARS-CoV-2 variants (Omicron BA.5 and Omicron XBB.1.5), SARS-CoV, and human coronavirus 229E could easily be assessed. The inclusion of cellular dyes and immunostaining in combination with in-depth image analysis enabled us to identify compounds that induced undesirable phenotypes in host cells, such as changes in cell morphology or in lysosomal activity. With the platform, we screened ∼900K compounds and triaged hits, thereby identifying potential candidate compounds carrying broad-spectrum activity with limited off-target effects. The flexibility and early-stage identification of compounds with limited host cell effects provided by this high-content imaging platform can facilitate coronavirus drug discovery. We anticipate that its rapid deployability and fast turnaround can also be applied to combat future pandemics.
Collapse
Affiliation(s)
- Jordi Doijen
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Inha Heo
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Koen Temmerman
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Peter Vermeulen
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Annick Diels
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Steffen Jaensch
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Mark Burcin
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | | | | | - Joren Peremans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Katrien Konings
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Maxime Clement
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Danielle Peeters
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Marnix Van Loock
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Anil Koul
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Christophe Buyck
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Michiel Van Gool
- Therapeutics Discovery R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ellen Van Damme
- Global Public Health R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
21
|
Daba TM, Mokonon M, Niguse E, Getahun M. The Potential Mechanisms Behind Adverse Effect of Coronavirus Disease-19 on Heart and Liver Damage: A Review. Ethiop J Health Sci 2024; 34:85-100. [PMID: 38957334 PMCID: PMC11217793 DOI: 10.4314/ejhs.v34i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/02/2023] [Indexed: 07/04/2024] Open
Abstract
Background Coronaviruses (CoVs) belong to the RNA viruses family. The viruses in this family are known to cause mild respiratory disease in humans. The origin of the novel SARS-COV2 virus that caused the coronavirus-19 disease (COVID-19) is the Wuhan city in China from where it disseminated to cause a global pandemic. Although lungs are the predominant target organ for Coronavirus Disease-19 (COVID-19), since its outbreak, the disease is known to affect heart, blood vessels, kidney, intestine, liver and brain. This review aimed to summarize the catastrophic impacts of Coronavirus disease-19 on heart and liver along with its mechanisms of pathogenesis. Methods The information used in this review was obtained from relevant articles published on PubMed, Google Scholar, Google, WHO website, CDC and other sources. Key searching statements and phrases related to COVID-19 were used to retrieve information. Original research articles, review papers, research letters and case reports were used as a source of information. Results Besides causing severe lung injury, COVID-19 has also been reported to affect and cause dysfunction of many other organs. COVID-19 infection can affect people by downregulating membrane-bound active angiotensin-converting enzyme (ACE). People who have deficient ACE2 expression are more vulnerable to COVID-19 infection. The patients' pre-existing co-morbidities are major risk factors that predispose individuals to severe COVID-19. Conclusion The disease severity and its broad spectrum phenotype is a result of combined direct and indirect pathogenic factors. Therefore, protocols that harmonize many therapeutic preferences should be the best alternatives to de-escalate the disease and obviate deaths caused as a result of multiple organ damage and dysfunction induced by the disease.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Deparment of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Rwanda
- Institute of Pharmaceutical Science, Adama Science and Technology University, Adama, Ethiopia
| | - Mulatu Mokonon
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Elsa Niguse
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Meron Getahun
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
22
|
Bhargava A, Szachnowski U, Chazal M, Foretek D, Caval V, Aicher SM, Pipoli da Fonseca J, Jeannin P, Beauclair G, Monot M, Morillon A, Jouvenet N. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-κB pathway toward SARS-CoV-2. iScience 2023; 26:108449. [PMID: 38213785 PMCID: PMC10783605 DOI: 10.1016/j.isci.2023.108449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Ugo Szachnowski
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Dominika Foretek
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | | | - Patricia Jeannin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Monot
- Institut Pasteur, Université de Paris, Biomics Platform, C2RT, 75015 Paris, France
| | - Antonin Morillon
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| |
Collapse
|
23
|
Pérez-Vargas J, Worrall LJ, Olmstead AD, Ton AT, Lee J, Villanueva I, Thompson CAH, Dudek S, Ennis S, Smith JR, Shapira T, De Guzman J, Gang S, Ban F, Vuckovic M, Bielecki M, Kovacic S, Kenward C, Hong CY, Gordon DG, Levett PN, Krajden M, Leduc R, Boudreault PL, Niikura M, Paetzel M, Young RN, Cherkasov A, Strynadka NCJ, Jean F. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Emerg Microbes Infect 2023; 12:2246594. [PMID: 37555275 PMCID: PMC10453993 DOI: 10.1080/22221751.2023.2246594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anh-Tien Ton
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ivan Villanueva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Connor A. H. Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Svenja Dudek
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Jason R. Smith
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Joshua De Guzman
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shutong Gang
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Michael Bielecki
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Suzana Kovacic
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Calem Kenward
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Christopher Yee Hong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Danielle G. Gordon
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Paul N. Levett
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Robert N. Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Knizhnik E, Chumakov S, Svetlova J, Pavlova I, Khodarovich Y, Brylev V, Severov V, Alieva R, Kozlovskaya L, Andreev D, Aralov A, Varizhuk A. Unwinding the SARS-CoV-2 Ribosomal Frameshifting Pseudoknot with LNA and G-Clamp-Modified Phosphorothioate Oligonucleotides Inhibits Viral Replication. Biomolecules 2023; 13:1660. [PMID: 38002341 PMCID: PMC10668963 DOI: 10.3390/biom13111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.
Collapse
Affiliation(s)
- Ekaterina Knizhnik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Stepan Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Iulia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yuri Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Research and Educational Resource Center for Cellular Technologies of The Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Vladimir Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Rugiya Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Raman Spectroscopy Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey Aralov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
25
|
Rudramurthy GR, Naveenkumar CN, Bharathkumar K, Shandil RK, Narayanan S. Genomic Mutations in SARS-CoV-2 Genome following Infection in Syrian Golden Hamster and Associated Lung Pathologies. Pathogens 2023; 12:1328. [PMID: 38003792 PMCID: PMC10674674 DOI: 10.3390/pathogens12111328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous evolution of the SARS-CoV-2 virus led to constant developments and efforts in understanding the significance and impacts of SARS-CoV-2 variants on human health. Our study aimed to determine the accumulation of genetic mutations and associated lung pathologies in male and female hamsters infected with the ancestral Wuhan strain of SARS-CoV-2. The present study showed no significant difference in the viral load between male and female hamsters and peak infection was found to be on day four post infection in both sexes of the animals. Live virus particles were detected up to 5 days post infection (dpi) through the TCID-50 assay, while qRT-PCR could detect viral RNA up to 14 dpi from all the infected animals. Further, the determination of the neutralizing antibody titer showed the onset of the humoral immune response as early as 4 dpi in both sexes against SARS-CoV-2, and a significant cross-protection against the delta variant of SARS-CoV-2 was observed. Histopathology showed edema, inflammation, inflammatory cell infiltration, necrosis, and degeneration of alveolar and bronchial epithelium cells from 3 dpi to 14 dpi in both sexes. Furthermore, next-generation sequencing (NGS) showed up to 10 single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 (ancestral Wuhan strain) genome isolated from both male and female hamsters. The mutation observed at the 23014 position (Glu484Asp) in the SARS-CoV-2 genome isolated from both sexes of the hamsters plays a significant role in the antiviral efficacy of small molecules, vaccines, and the Mabs-targeting S protein. The present study shows that either of the genders can be used in the pre-clinical efficacy of antiviral agents against SARS-CoV-2 in hamsters. However, considering the major mutation in the S protein, the understanding of the genetic mutation in SARS-CoV-2 after passing through hamsters is crucial in deciding the efficacy of the antiviral agents targeting the S protein. Importance: Our study findings indicate the accumulation of genomic mutations in SARS-CoV-2 after passing through the Syrian golden hamsters. Understanding the genomic mutations showed that either of the hamster genders can be used in the pre-clinical efficacy of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Gudepalya Renukaiah Rudramurthy
- Foundation for Neglected Disease Research (FNDR), Plot No. 20A, KIADB Industrial Area, Bengaluru 561203, Karnataka, India; (C.N.N.); (K.B.); (R.K.S.); (S.N.)
| | | | | | | | | |
Collapse
|
26
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
27
|
Melano I, Cheng WC, Kuo LL, Liu YM, Chou YC, Hung MC, Lai MMC, Sher YP, Su WC. A disintegrin and metalloproteinase domain 9 facilitates SARS-CoV-2 entry into cells with low ACE2 expression. Microbiol Spectr 2023; 11:e0385422. [PMID: 37713503 PMCID: PMC10581035 DOI: 10.1128/spectrum.03854-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Li-Lan Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yuag-Meng Liu
- Department of Internal Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Changhua Christian Medical Foundation, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Michael M. C. Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Ju X, Wang Z, Wang P, Ren W, Yu Y, Yu Y, Yuan B, Song J, Zhang X, Zhang Y, Xu C, Tian B, Shi Y, Zhang R, Ding Q. SARS-CoV-2 main protease cleaves MAGED2 to antagonize host antiviral defense. mBio 2023; 14:e0137323. [PMID: 37439567 PMCID: PMC10470497 DOI: 10.1128/mbio.01373-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent causing the global pandemic of COVID-19. SARS-CoV-2 genome encodes a main protease (nsp5, also called Mpro) and a papain-like protease (nsp3, also called PLpro), which are responsible for processing viral polyproteins to assemble a functional replicase complex. In this study, we found that Mpro of SARS-CoV-2 can cleave human MAGED2 and other mammalian orthologs at Gln-263. Moreover, SARS-CoV and MERS-CoV Mpro can also cleave human MAGED2, suggesting MAGED2 cleavage by Mpro is an evolutionarily conserved mechanism of coronavirus infection in mammals. Intriguingly, Mpro from Beta variant cleaves MAGED2 more efficiently than wild type, but Omicron Mpro is opposite. Further studies show that MAGED2 inhibits SARS-CoV-2 infection at viral replication step. Mechanistically, MAGED2 is associated with SARS-CoV-2 nucleocapsid protein through its N-terminal region in an RNA-dependent manner, and this disrupts the interaction between SARS-CoV-2 nucleocapsid protein and viral genome, thus inhibiting viral replication. When MAGED2 is cleaved by Mpro, the N-terminal of MAGED2 will translocate into the nucleus, and the truncated MAGED2 is unable to suppress SARS-CoV-2 replication. This work not only discovers the antiviral function of MAGED2 but also provides new insights into how SARS-CoV-2 Mpro antagonizes host antiviral response. IMPORTANCE Host factors that restrict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain elusive. Here, we found that MAGED2 can be cleaved by SARS-CoV-2 main protease (Mpro) at Gln-263. SARS-CoV and MERS-CoV Mpro can also cleave MAGED2, and MAGED2 from multiple species can be cleaved by SARS-CoV-2 Mpro. Mpro from Beta variant cleaves MAGED2 more efficiently efficiently than wild type, but Omicron is the opposite. MAGED2 depletion enhances SARS-CoV-2 infection, suggesting its inhibitory role in SARS-CoV-2 infection. Mechanistically, MAGED2 restricts SARS-CoV-2 replication by disrupting the interaction between nucleocapsid and viral genomes. When MAGED2 is cleaved, its N-terminal will translocate into the nucleus. In this way, Mpro relieves MAGED2' inhibition on viral replication. This study improves our understanding of complex viral-host interaction and provides novel targets to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Ziqiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Pengcheng Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Wenlin Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Chang Xu
- School of Medicine, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | | |
Collapse
|
29
|
David D, Asiku J, Storm N, Lapin K, Berkowitz A, Kovtunenko A, Edery N, King R, Sol A. Identification, Isolation, and Molecular Characterization of Betacoronavirus in Oryx leucoryx. Microbiol Spectr 2023; 11:e0484822. [PMID: 37428095 PMCID: PMC10433975 DOI: 10.1128/spectrum.04848-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped viruses with a large RNA genome (26 to 32 kb) and are classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. CoV infections cause respiratory, enteric, and neurologic disorders in mammalian and avian species. In 2019, Oryx leucoryx animals suffered from severe hemorrhagic diarrhea and high morbidity rates. Upon initial diagnosis, we found that the infected animals were positive for coronavirus by pancoronavirus reverse transcriptase RT-PCR. Next, we detected the presence of CoV particles in these samples by electron microscopy and immunohistochemistry. CoV was isolated and propagated on the HRT-18G cell line, and its full genome was sequenced. Full-genome characterization and amino acid comparisons of this viral agent demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and the Betacoronavirus 1 species. Furthermore, we found that it is most similar to the subspecies dromedary camel coronavirus HKU23 by phylogenetic analysis. Here, we present the first report of isolation and characterization of Betacoronavirus associated with enteric disease in Oryx leucoryx. IMPORTANCE CoVs cause enteric and respiratory infections in humans and animal hosts. The ability of CoVs to cross interspecies barriers is well recognized, as emphasized by the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of novel CoV strains and surveillance of CoVs in both humans and animals are relevant and important to global health. In this study, we isolated and characterized a newly identified Betacoronavirus that causes enteric disease in a wild animal, Oryx leucoryx (the Arabian oryx). This work is the first report describing CoV infection in Oryx leucoryx and provides insights into its origin.
Collapse
Affiliation(s)
- Dan David
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Jimmy Asiku
- Kimron Veterinary Institute, Beit Dagan, Israel
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nick Storm
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Katya Lapin
- Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | - Nir Edery
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Roni King
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Asaf Sol
- Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
30
|
Roche R, Odeh NH, Andar AU, Tulapurkar ME, Roche JA. Protection against Severe Illness versus Immunity-Redefining Vaccine Effectiveness in the Aftermath of COVID-19. Microorganisms 2023; 11:1963. [PMID: 37630523 PMCID: PMC10459411 DOI: 10.3390/microorganisms11081963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-SARS-CoV-2 vaccines have played a pivotal role in reducing the risk of developing severe illness from COVID-19, thus helping end the COVID-19 global public health emergency after more than three years. Intriguingly, as SARS-CoV-2 variants emerged, individuals who were fully vaccinated did get infected in high numbers, and viral loads in vaccinated individuals were as high as those in the unvaccinated. However, even with high viral loads, vaccinated individuals were significantly less likely to develop severe illness; this begs the question as to whether the main effect of anti-SARS-CoV-2 vaccines is to confer protection against severe illness or immunity against infection. The answer to this question is consequential, not only to the understanding of how anti-SARS-CoV-2 vaccines work, but also to public health efforts against existing and novel pathogens. In this review, we argue that immune system sensitization-desensitization rather than sterilizing immunity may explain vaccine-mediated protection against severe COVID-19 illness even when the SARS-CoV-2 viral load is high. Through the lessons learned from COVID-19, we make the case that in the disease's aftermath, public health agencies must revisit healthcare policies, including redefining the term "vaccine effectiveness."
Collapse
Affiliation(s)
- Renuka Roche
- Occupational Therapy Program, School of Health Sciences, College of Health and Human Services, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Nouha H. Odeh
- Ph.D. Program in Immunology and Microbiology, Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Abhay U. Andar
- Baltimore County, Translational Life Science Technology, University of Maryland, Rockville, MD 20850, USA;
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph A. Roche
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
31
|
McGill AR, Markoutsa E, Mayilsamy K, Green R, Sivakumar K, Mohapatra S, Mohapatra SS. Acetate-encapsulated Linolenic Acid Liposomes Reduce SARS-CoV-2 and RSV Infection. Viruses 2023; 15:1429. [PMID: 37515117 PMCID: PMC10385125 DOI: 10.3390/v15071429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Emergent Coronaviridae viruses, such as SARS-CoV-1 in 2003, MERS-CoV in 2012, and SARS-CoV-2 (CoV-2) in 2019, have caused millions of deaths. These viruses have added to the existing respiratory infection burden along with respiratory syncytial virus (RSV) and influenza. There are limited therapies for respiratory viruses, with broad-spectrum treatment remaining an unmet need. Since gut fermentation of fiber produces short-chain fatty acids (SCFA) with antiviral potential, developing a fatty acid-based broad-spectrum antiviral was investigated. Molecular docking of fatty acids showed α-linolenic acid (ALA) is likely to interact with CoV-2-S, NL63-CoV-S, and RSV-F, and an ALA-containing liposome interacted with CoV-2 directly, degrading the particle. Furthermore, a combination of ALA and a SCFA-acetate synergistically inhibited CoV2-N expression and significantly reduced viral plaque formation and IL-6 and IL-1β transcript expression in Calu-3 cells, while increasing the expression of IFN-β. A similar effect was also observed in RSV-infected A549 cells. Moreover, mice infected with a murine-adapted SARS-CoV-2 (MA10) and treated with an ALA-liposome encapsulating acetate showed significant reductions in plaque-forming units present in lung tissue and in infection-associated lung inflammation and cytokines. Taken together, these results demonstrate that the ALA liposome-encapsulating acetate can be a promising broad antiviral therapy against respiratory infections.
Collapse
Affiliation(s)
- Andrew R McGill
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eleni Markoutsa
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kavya Sivakumar
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Taneja College of Pharmacy Graduate Programs, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Hakem A, Desmarets L, Sahli R, Malek RB, Camuzet C, François N, Lefèvre G, Samaillie J, Moureu S, Sahpaz S, Belouzard S, Ksouri R, Séron K, Rivière C. Luteolin Isolated from Juncus acutus L., a Potential Remedy for Human Coronavirus 229E. Molecules 2023; 28:molecules28114263. [PMID: 37298740 DOI: 10.3390/molecules28114263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, addressed the lack of specific antiviral drugs against coronaviruses. In this study, bioguided fractionation performed on both ethyl acetate and aqueous sub-extracts of Juncus acutus stems led to identifying luteolin as a highly active antiviral molecule against human coronavirus HCoV-229E. The apolar sub-extract (CH2Cl2) containing phenanthrene derivatives did not show antiviral activity against this coronavirus. Infection tests on Huh-7 cells, expressing or not the cellular protease TMPRSS2, using luciferase reporter virus HCoV-229E-Luc showed that luteolin exhibited a dose-dependent inhibition of infection. Respective IC50 values of 1.77 µM and 1.95 µM were determined. Under its glycosylated form (luteolin-7-O-glucoside), luteolin was inactive against HCoV-229E. Time of addition assay showed that utmost anti-HCoV-229E activity of luteolin was achieved when added at the post-inoculation step, indicating that luteolin acts as an inhibitor of the replication step of HCoV-229E. Unfortunately, no obvious antiviral activity for luteolin was found against SARS-CoV-2 and MERS-CoV in this study. In conclusion, luteolin isolated from Juncus acutus is a new inhibitor of alphacoronavirus HCoV-229E.
Collapse
Affiliation(s)
- Asma Hakem
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Centre of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Lowiese Desmarets
- Center for Infection and Immunity of Lille (CIIL), Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, 59000 Lille, France
| | - Ramla Sahli
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Centre of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Rawen Ben Malek
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| | - Charline Camuzet
- Center for Infection and Immunity of Lille (CIIL), Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, 59000 Lille, France
| | - Nathan François
- Center for Infection and Immunity of Lille (CIIL), Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, 59000 Lille, France
| | - Gabriel Lefèvre
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| | - Jennifer Samaillie
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| | - Sophie Moureu
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| | - Sevser Sahpaz
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| | - Sandrine Belouzard
- Center for Infection and Immunity of Lille (CIIL), Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, 59000 Lille, France
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Centre of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Karin Séron
- Center for Infection and Immunity of Lille (CIIL), Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017, 59000 Lille, France
| | - Céline Rivière
- Joint Research Unit 1158, BioEcoAgro, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59650 Villeneuve-d'Ascq, France
| |
Collapse
|
33
|
Liang X, Chen X, Zhai J, Li X, Zhang X, Zhang Z, Zhang P, Wang X, Cui X, Wang H, Zhou N, Chen ZJ, Su R, Zhou F, Holmes EC, Irwin DM, Chen RA, He Q, Wu YJ, Wang C, Du XQ, Peng SM, Xie WJ, Shan F, Li WP, Dai JW, Shen X, Feng Y, Xiao L, Chen W, Shen Y. Pathogenicity, tissue tropism and potential vertical transmission of SARSr-CoV-2 in Malayan pangolins. PLoS Pathog 2023; 19:e1011384. [PMID: 37196026 DOI: 10.1371/journal.ppat.1011384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.
Collapse
Affiliation(s)
- Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Sciences, Longyan University, Longyan, China
| | - Xu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhipeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Zu-Jin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Renwei Su
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Rui-Ai Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Qian He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xue-Qing Du
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shi-Ming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wei-Jun Xie
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wan-Ping Li
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jun-Wei Dai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
34
|
Li L, Sottas CM, Chen HY, Li Y, Cui H, Villano JS, Mankowski JL, Cannon PM, Papadopoulos V. SARS-CoV-2 Enters Human Leydig Cells and Affects Testosterone Production In Vitro. Cells 2023; 12:1198. [PMID: 37190107 PMCID: PMC10136776 DOI: 10.3390/cells12081198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a SARS-like coronavirus, continues to produce mounting infections and fatalities all over the world. Recent data point to SARS-CoV-2 viral infections in the human testis. As low testosterone levels are associated with SARS-CoV-2 viral infections in males and human Leydig cells are the main source of testosterone, we hypothesized that SARS-CoV-2 could infect human Leydig cells and impair their function. We successfully detected SARS-CoV-2 nucleocapsid in testicular Leydig cells of SARS-CoV-2-infected hamsters, providing evidence that Leydig cells can be infected with SARS-CoV-2. We then employed human Leydig-like cells (hLLCs) to show that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 is highly expressed in hLLCs. Using a cell binding assay and a SARS-CoV-2 spike-pseudotyped viral vector (SARS-CoV-2 spike pseudovector), we showed that SARS-CoV-2 could enter hLLCs and increase testosterone production by hLLCs. We further combined the SARS-CoV-2 spike pseudovector system with pseudovector-based inhibition assays to show that SARS-CoV-2 enters hLLCs through pathways distinct from those of monkey kidney Vero E6 cells, a typical model used to study SARS-CoV-2 entry mechanisms. We finally revealed that neuropilin-1 and cathepsin B/L are expressed in hLLCs and human testes, raising the possibility that SARS-CoV-2 may enter hLLCs through these receptors or proteases. In conclusion, our study shows that SARS-CoV-2 can enter hLLCs through a distinct pathway and alter testosterone production.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal M. Sottas
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoyi Cui
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jason S. Villano
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joseph L. Mankowski
- Departments of Molecular and Comparative Pathobiology, Pathology and Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
35
|
Li Y, Wang K, Sun H, Wu S, Wang H, Shi Y, Li X, Yan H, Yang G, Wu M, Li Y, Ding X, Si S, Jiang J, Du Y, Li Y, Hong B. Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2. Antiviral Res 2023; 214:105606. [PMID: 37076089 PMCID: PMC10110284 DOI: 10.1016/j.antiviral.2023.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate as a broad-spectrum anti-coronavirus agent that could rapidly respond to emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Yihua Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Du
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
36
|
Rizzi M, D'Onghia D, Tonello S, Minisini R, Colangelo D, Bellan M, Castello LM, Gavelli F, Avanzi GC, Pirisi M, Sainaghi PP. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int J Mol Sci 2023; 24:ijms24087099. [PMID: 37108262 PMCID: PMC10138390 DOI: 10.3390/ijms24087099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical knowledge about SARS-CoV-2 infection mechanisms and COVID-19 pathophysiology have enormously increased during the pandemic. Nevertheless, because of the great heterogeneity of disease manifestations, a precise patient stratification at admission is still difficult, thus rendering a rational allocation of limited medical resources as well as a tailored therapeutic approach challenging. To date, many hematologic biomarkers have been validated to support the early triage of SARS-CoV-2-positive patients and to monitor their disease progression. Among them, some indices have proven to be not only predictive parameters, but also direct or indirect pharmacological targets, thus allowing for a more tailored approach to single-patient symptoms, especially in those with severe progressive disease. While many blood test-derived parameters quickly entered routine clinical practice, other circulating biomarkers have been proposed by several researchers who have investigated their reliability in specific patient cohorts. Despite their usefulness in specific contexts as well as their potential interest as therapeutic targets, such experimental markers have not been implemented in routine clinical practice, mainly due to their higher costs and low availability in general hospital settings. This narrative review will present an overview of the most commonly adopted biomarkers in clinical practice and of the most promising ones emerging from specific population studies. Considering that each of the validated markers reflects a specific aspect of COVID-19 evolution, embedding new highly informative markers into routine clinical testing could help not only in early patient stratification, but also in guiding a timely and tailored method of therapeutic intervention.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Davide D'Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Gavelli
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
37
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
38
|
Steardo L, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res 2023; 48:1015-1025. [PMID: 35922744 PMCID: PMC9362636 DOI: 10.1007/s11064-022-03709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nervous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physiological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
- Università Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
39
|
Shin YS, Lee JY, Jeon S, Myung S, Gong HJ, Kim S, Kim HR, Jeong LS, Park CM. Discovery of 2-aminoquinolone acid derivatives as potent inhibitors of SARS-CoV-2. Bioorg Med Chem Lett 2023; 85:129214. [PMID: 36870624 PMCID: PMC9979702 DOI: 10.1016/j.bmcl.2023.129214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten human health and create socioeconomic problems worldwide. A library of 200,000 small molecules from the Korea Chemical Bank (KCB) were evaluated for their inhibitory activities against SARS-CoV-2 in a phenotypic-based screening assay to discover new therapeutics to combat COVID-19. A primary hit of this screen was the quinolone structure-containing compound 1. Based on the structure of compound 1 and enoxacin, which is a quinolone-based antibiotic previously reported to have weak activity against SARS-CoV-2, we designed and synthesized 2-aminoquinolone acid derivatives. Among them, compound 9b exhibited potent antiviral activity against SARS-CoV-2 (EC50 = 1.5 µM) without causing toxicity, while having satisfactory in vitro PK profiles. This study shows that 2-aminoquinolone acid 9b provides a promising new template for developing anti-SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Young Sup Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jun Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Subeen Myung
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea
| | - Hyun June Gong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
40
|
Akbar SMF, Al Mahtab M, Khan S. Cellular and Molecular Mechanisms of Pathogenic and Protective Immune Responses to SARS-CoV-2 and Implications of COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11030615. [PMID: 36992199 DOI: 10.3390/vaccines11030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has devastated the world with coronavirus disease 2019 (COVID-19), which has imparted a toll of at least 631 million reported cases with 6.57 million reported deaths. In order to handle this pandemic, vaccines against SARS-CoV-2 have been developed and billions of doses of various vaccines have been administered. In the meantime, several antiviral drugs and other treatment modalities have been developed to treat COVID-19 patients. At the end of the day, it seems that anti-SARS-CoV-2 vaccines and newly developed antiviral drugs may be improved based on various new developments. COVID-19 represents a virus-induced, immune-mediated pathological process. The severity of the disease is related to the nature and properties of the host immune responses. In addition, host immunity plays a dominant role in regulating the extent of COVID-19. The present reality regarding the role of anti-SARS-CoV-2 vaccines, persistence of SARS-CoV-2 infection even three years after the initiation of the pandemic, and divergent faces of COVID-19 have initiated several queries among huge populations, policy makers, general physicians, and scientific communities. The present review aims to provide some information regarding the molecular and cellular mechanisms underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| |
Collapse
|
41
|
Ding D, Xu S, da Silva-Júnior EF, Liu X, Zhan P. Medicinal chemistry insights into antiviral peptidomimetics. Drug Discov Today 2023; 28:103468. [PMID: 36528280 DOI: 10.1016/j.drudis.2022.103468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The (re)emergence of multidrug-resistant viruses and the emergence of new viruses highlight the urgent and ongoing need for new antiviral agents. The use of peptidomimetics as therapeutic drugs has often been associated with advantages, such as enhanced binding affinity, improved metabolic stability, and good bioavailability profiles. The development of novel antivirals is currently driven by strategies of converting peptides into peptidomimetic derivatives. In this review, we outline different structural modification design strategies for developing novel peptidomimetics as antivirals, involving N- or C-cap terminal structure modifications, pseudopeptides, amino acid modifications, inverse-peptides, cyclization, and molecular hybridization. We also present successful recent examples of peptidomimetic designs.
Collapse
Affiliation(s)
- Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | | | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
42
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Snouwaert JN, Jania LA, Nguyen T, Martinez DR, Schäfer A, Catanzaro NJ, Gully KL, Baric RS, Heise M, Ferris MT, Anderson E, Pressey K, Dillard JA, Taft-Benz S, Baxter VK, Ting JPY, Koller BH. Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathog 2023; 19:e1011168. [PMID: 36812267 PMCID: PMC9987828 DOI: 10.1371/journal.ppat.1011168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/06/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.
Collapse
Affiliation(s)
- John N. Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Trang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David R. Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kendra L. Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Anderson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katia Pressey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jacob A. Dillard
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
44
|
Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca Á, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today 2023; 28:103458. [PMID: 36427779 DOI: 10.1016/j.drudis.2022.103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Given their superior efficacy, rapid engineering, low-cost manufacturing, and safe delivery prospects, mRNA vaccines offer an intriguing alternative to conventional vaccination technologies. Several mRNA vaccine platforms targeting infectious diseases and various types of cancer have exhibited beneficial results both in vivo and in vitro. Issues related to mRNA stability and immunogenicity have been addressed. Current mRNA vaccines can generate robust immune responses, without being constrained by the major histocompatibility complex (MHC) haplotype of the recipient. Given that mRNA vaccinations are the only transient genetic information carriers, they are also safe. In this review, we provide an update and overview on mRNA vaccines, including their current state, and the problems that have prevented them from being used in more general therapeutic ways.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
45
|
Cancino-Bernardi J, Comparetti EJ, Ferreira NN, Miranda RR, Tuesta MM, Sampaio I, Inácio da Costa P, Zucolotto V. A SARS-CoV-2 impedimetric biosensor based on the immobilization of ACE-2 receptor-containing entire cell membranes as the biorecognition element. Talanta 2023; 253. [PMCID: PMC9595422 DOI: 10.1016/j.talanta.2022.124008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A SARS-CoV-2 biosensor based on the biorecognition of the spike protein to the angiotensin-converting enzyme 2 (ACE-2) transmembrane receptor was developed using entire cell membranes as the biorecognition layer. In this new SARS-CoV-2 detection platform, cellular membranes from VeroCCL81 (mVero) and Calu-3 (mCalu) cells (which overexpress the ACE-2 transmembrane receptors) were extracted and immobilized as vesicles on an indium tin oxide electrode (ITO). Electrochemical impedance spectroscopy was used to optimize the performance of the developed devices for SARS-CoV-2 detection. This novel biosensor comprises a low-cost system (less than one US$ dollar) that uses the unique properties of cell membranes combined with the catalytic properties of electrochemical platforms to allow spike proteins recognition. A linear response from 10 to 100 ng/mL was obtained from the optimized biosensors, a limit of detection of 10.0 pg/mL and 7.25 pg/mL and limit of quantification of 30.4 pg/mL and 21.9 pg/mL were achieved with satisfactory accuracy for ITO-APTES-mVero and ITO-APTES-mCalu, respectively. Selectivity studies revealed that this platform was able to differentiate the target spike proteins from NS1 proteins from dengue and Zika viruses. In addition, sensors comprising cell membranes devoid of the ACE-2 transmembrane receptor exhibited no biorecognition signal. The developed devices are suitable for SARS-CoV-2 detection based on spike protein recognition, and capable of providing a low-cost, accurate, and accessible tool for use in a pandemic and post-pandemic scenario.
Collapse
Affiliation(s)
- Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil,Bioanalytics of Nanosystems Laboratory, Department of Chemistry, FFCLRP-USP, University of São Paulo – USP, Ribeirão Preto, SP, Brazil,Corresponding author. Chemistry Department, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - FFCLRP University of São Paulo - USP, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, São Paulo State, Brazil
| | - Edson José Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Natalia Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Marco Montero Tuesta
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Isabella Sampaio
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo Inácio da Costa
- School of Pharmaceutical Sciences, São Paulo State University, Department of Clinical Analysis, Laboratory of Clinical Immunology and Molecular Biology, Araraquara, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil,Corresponding author. Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense 400, CEP 13566-590, São Carlos, São Paulo State, Brazil
| |
Collapse
|
46
|
Valyaeva AA, Zharikova AA, Sheval EV. SARS-CoV-2 cellular tropism and direct multiorgan failure in COVID-19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biol Int 2023; 47:308-326. [PMID: 36229927 PMCID: PMC9874490 DOI: 10.1002/cbin.11928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/24/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has led to an unprecedented public health emergency worldwide. While common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. Organ damage in COVID-19 patients is partially associated with the indirect effects of SARS-CoV-2 infection (e.g., systemic inflammation, hypoxic-ischemic damage, coagulopathy), but early processes in COVID-19 patients that trigger a chain of indirect effects are connected with the direct infection of cells by the virus. To understand the virus transmission routes and the reasons for the wide-spectrum of complications and severe outcomes of COVID-19, it is important to identify the cells targeted by SARS-CoV-2. This review summarizes the major steps of investigation and the most recent findings regarding SARS-CoV-2 cellular tropism and the possible connection between the early stages of infection and multiorgan failure in COVID-19. The SARS-CoV-2 pandemic is the first epidemic in which data extracted from single-cell RNA-seq (scRNA-seq) gene expression data sets have been widely used to predict cellular tropism. The analysis presented here indicates that the SARS-CoV-2 cellular tropism predictions are accurate enough for estimating the potential susceptibility of different cells to SARS-CoV-2 infection; however, it appears that not all susceptible cells may be infected in patients with COVID-19.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Anastasia A. Zharikova
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Eugene V. Sheval
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- Department of Cell Biology and Histology, School of BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
47
|
Gomes da Silva P, Gonçalves J, Torres Franco A, Rodriguez E, Diaz I, Orduña Domingo A, Garcinuño Pérez S, March Roselló GA, Dueñas Gutiérrez CJ, São José Nascimento M, Sousa SI, Garcia Encina P, Mesquita JR. Environmental Dissemination of SARS-CoV-2 in a University Hospital during the COVID-19 5th Wave Delta Variant Peak in Castile-León, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1574. [PMID: 36674328 PMCID: PMC9866319 DOI: 10.3390/ijerph20021574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The dominant SARS-CoV-2 Delta variant (B.1.617.2) became the main circulating variant among countries by mid 2021. Attention was raised to the increased risk of airborne transmission, leading to nosocomial outbreaks even among vaccinated individuals. Considering the increased number of COVID-19 hospital admissions fueled by the spread of the variant, with Spain showing the highest COVID-19 rates in mainland Europe by July 2021, the aim of this study was to assess SARS-CoV-2 environmental contamination in different areas of a University Hospital in the region of Castile-León, Spain, during the peak of the 5th wave of COVID-19 in the country (July 2021). Air samples were collected from sixteen different areas of the Hospital using a Coriolis® μ air sampler. Surface samples were collected in these same areas using sterile flocked plastic swabs. RNA extraction followed by a one-step RT-qPCR were performed for detection of SARS-CoV-2 RNA. Of the 21 air samples, only one was positive for SARS-CoV-2 RNA, from the emergency waiting room. Of the 40 surface samples, 2 were positive for SARS-CoV-2 RNA, both from the microbiology laboratory. These results may be relevant for risk assessment of nosocomial infection within healthcare facilities, thus helping prevent and minimize healthcare staff's exposure to SARS-CoV-2, reinforcing the importance of always wearing appropriate and well-fit masks at all times and proper PPE when in contact with infected patients.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Andrés Torres Franco
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Elisa Rodriguez
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Antonio Orduña Domingo
- Microbiology Service, Valladolid University Clinical Hospital (HCUV), Faculty of Medicine, University of Valladolid, 47011 Valladolid, Spain
| | | | | | - Carlos Jesús Dueñas Gutiérrez
- Internal Medicine, Infectious Diseases Section, Valladolid University Clinical Hospital (HCUV), 47011 Valladolid, Spain
| | | | - Sofia I.V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - Pedro Garcia Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
| |
Collapse
|
48
|
Kumar D, Verma S, Mysorekar IU. COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Transl Res 2023; 251:84-95. [PMID: 35970470 PMCID: PMC9371980 DOI: 10.1016/j.trsl.2022.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 02/04/2023]
Abstract
As the COVID-19 pandemic continues into its third year, emerging data indicates increased risks associated with SARS-CoV-2 infection during pregnancy, including pre-eclampsia, intrauterine growth restriction, preterm birth, stillbirth, and risk of developmental defects in neonates. Here, we review clinical reports to date that address different COVID-19 pregnancy complications. We also document placental pathologies induced by SARS-CoV-2 infection, entry mechanisms in placental cells, and immune responses at the maternal-fetal interface. Since new variants of SARS-CoV-2 are emerging with characteristics of higher transmissibility and more effective immune escape strategies, we also briefly highlight the genomic and proteomic features of SARS-CoV-2 investigated to date. Vector and mRNA-based COVID-19 vaccines continue to be rolled out globally. However, because pregnant individuals were not included in the vaccine clinical trials, some pregnant individuals have safety concerns and are hesitant to take these vaccines. We describe the recent studies that have addressed the effectiveness and safety of the current vaccines during pregnancy. This review also sheds light on important areas that need to be carefully or more fully considered with respect to understanding SARS-CoV-2 disease mechanisms of concern during pregnancy.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Sonam Verma
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
49
|
Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol 2023; 95:e28212. [PMID: 36224449 PMCID: PMC9874878 DOI: 10.1002/jmv.28212] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to public health and has quickly become a global concern. The infection of SARS-CoV-2 begins with the binding of its spike protein to the receptor-angiotensin-converting enzyme 2 (ACE2), which, after a series of conformation changes, results in the fusion of viral-cell membranes and the release of the viral RNA genome into the cytoplasm. In addition, infected host cells can express spike protein on their cell surface, which will interact with ACE2 on neighboring cells, leading to cell membrane fusion and the formation of multinucleated cells or syncytia. Both viral entry and syncytia formation are mediated by spike-ACE2 interaction and share some common mechanisms of membrane fusion. Here in this review, we will summarize our current understanding of spike-mediated membrane fusion, which may shed light on future broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Huijun Yuan
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaozhen Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Hongliang Wang
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
50
|
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, Israely T, Dessau M, Gal-Tanamy M. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol Spectr 2022; 10:e0115022. [PMID: 36314945 PMCID: PMC9769977 DOI: 10.1128/spectrum.01150-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.
Collapse
Affiliation(s)
- Tom Domovitz
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Ayoub
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lee Izhaki Tavor
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Evgeny Tikhonov
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Maman
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|