1
|
Tsouka A, Fu Y, Ricardo MG, Seeberger PH, Wang Y, Pier GB, Schuppan D, Boon L, van Dijl JM, Bolling MC, Buist G, Loeffler FF, Laman JD. Synthetic High-Throughput Microarrays of Peptidoglycan Fragments as a Novel Sero-Diagnostic Tool for Patient Antibody Profiling. Angew Chem Int Ed Engl 2025; 64:e202420874. [PMID: 39945485 PMCID: PMC12036811 DOI: 10.1002/anie.202420874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Peptidoglycan (PGN) is a complex biopolymer crucial for cell wall integrity and function of all bacterial species. While the strong inflammatory properties of PGN and its derived muropeptides are well-documented in human innate immune responses, adaptive immunity, including antibody responses to PGN, remain inadequately characterized. Microarray technology represents a cost- and time-efficient method for studying such interactions. Our laser-based technology enables the high-throughput synthesis of biomolecules on functionalized glass slides. Here, this on-chip synthesis was developed for PGN fragments, to generate a variety of 216 stem peptides and attach six different glycan moieties that are major structural components of bacterial cell walls. Thereby, 864 PGN fragments from different Gram-negative and Gram-positive species were generated. The arrays were validated with four different monoclonal antibodies against PGN or poly-N-acetyl glucosamine and identified their epitopes. Finally, proof of concept for antibody profiling in patient samples was performed by comparing a panel of well-characterized plasma samples of epidermolysis bullosa (EB) patients suffering from (chronic) wounds with Staphylococcus aureus infection. EB patients show an increased response to the muramyl dipeptide. Therefore, this novel high-throughput PGN glycopeptide microarray technology promises to identify distinct antibody profiles against human microbiomes in diseases, notably in those involving the intestine.
Collapse
Affiliation(s)
- Alexandra Tsouka
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Yanyan Fu
- Department of Medical Microbiology and Infection PreventionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Manuel G. Ricardo
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Yue Wang
- A*STAR Infectious Diseases LabsAgency for Science and Technology Research (A*STAR)SingaporeSingapore138648
| | - Gerald B. Pier
- Mass General BrighamHarvard Medical SchoolBostonMA02115USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Celiac CenterMedical CenterJohannes-Gutenberg University55099MainzGermany
- Division of GastroenterologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection PreventionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Maria C. Bolling
- Department of DermatologyUMCG Center of Expertise for Blistering DiseasesUniversity Medical Center GroningenTheNetherlands
| | - Girbe Buist
- Department of Medical Microbiology and Infection PreventionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Felix F. Loeffler
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Jon D. Laman
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Gabby ME, Bandara A, Outrata LM, Ebohon O, Ahmad SS, Dressler JM, McClune ME, Trimble RN, Mullen L, Jutras BL. A high-resolution screen identifies a preexisting beta-lactam that specifically treats Lyme disease in mice. Sci Transl Med 2025; 17:eadr9091. [PMID: 40267215 DOI: 10.1126/scitranslmed.adr9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
Lyme disease, caused by Borrelia burgdorferi in the United States, is an escalating human health problem that can cause severe disease if not properly treated. Doxycycline is the primary treatment option for Lyme disease; however, several concerns are associated with high-dose doxycycline treatment. For example, doxycycline is a broad-spectrum antibiotic and kills beneficial bacteria. Doxycycline is also known to produce unwanted off-target effects in eukaryotic cells. Some at-risk populations such as young children cannot be prescribed doxycycline, and in addition to these shortcomings, the treatment appears to fail in 10 to 20% of cases. We reasoned that safe, alternative therapies may currently exist but have not yet been found because of the challenges associated with drug screening approaches. We screened nearly 500 US Food and Drug Administration-approved compounds using an array of physiological, cellular, and molecular techniques. Top-performing candidates were counter screened to identify compounds that did not affect other bacterial phyla. Piperacillin emerged as a compound that eradicated B. burgdorferi at low-nanomolar concentrations by specifically interfering with the unusual, multizonal peptidoglycan synthesis pattern common to the Borrelia clade. Mechanistic in vitro studies identified the cellular target of piperacillin in B. burgdorferi and produced key insights that may explain both the specificity and efficacy of the compound. Further, in vivo studies using an experimental mouse infection model demonstrated that piperacillin treated animals at a 100-fold lower dose than the effective dose of doxycycline without affecting the murine microbiome. Our findings suggest that piperacillin may offer clinicians another therapeutic option for Lyme disease.
Collapse
Affiliation(s)
- Maegan E Gabby
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abey Bandara
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - L M Outrata
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Osamudiamen Ebohon
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Saadman S Ahmad
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebecca N Trimble
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lainey Mullen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
McClune ME, Ebohon O, Dressler JM, Davis MM, Tupik JD, Lochhead RB, Booth CJ, Steere AC, Jutras BL. The peptidoglycan of Borrelia burgdorferi can persist in discrete tissues and cause systemic responses consistent with chronic illness. Sci Transl Med 2025; 17:eadr2955. [PMID: 40267217 DOI: 10.1126/scitranslmed.adr2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Persistent symptoms after an acute infection is an emerging public health concern, but the pathobiology of such conditions is not well understood. One possible scenario involves the persistence of lingering antigen. We have previously reported that patients with postinfectious Lyme arthritis often harbor the peptidoglycan (PG) cell wall of Borrelia burgdorferi, the Lyme disease agent, in the synovial fluid of their inflamed joints after treatment. However, it is not yet known how B. burgdorferi PG persists, in what form, or if it may play a role in other postinfectious complications after Lyme disease. Using a murine model, we developed a real-time in vivo system to track B. burgdorferi PG as a function of cell wall chemistry and validated our findings using both molecular and cellular approaches. Unlike typical bacterial PG, the unique chemical properties of polymeric B. burgdorferi PG drive murine liver accumulation, where the cell wall material persists for weeks. Kupffer cells and hepatocytes phagocytose and retain B. burgdorferi PG and, although liver occupancy coincides with minimal pathology, both organ-specific and secreted protein profiles produced under these conditions bear some similarities to reported proteins enriched in patients with chronic illness after acute infection. Moreover, transcriptomic profiling indicated that B. burgdorferi PG affects energy metabolism in peripheral blood mononuclear cells. Our findings provide mechanistic insights into how a pathogenic molecule can persist after agent clearance, potentially contributing to illness after infection.
Collapse
Affiliation(s)
- Mecaila E McClune
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Osamudiamen Ebohon
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Marisela M Davis
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Juselyn D Tupik
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical and Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert B Lochhead
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brandon L Jutras
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Zeiher C, Kuhrt H, Rifflet A, Winter K, Boon L, Stassart RM, Nutma E, Middeldorp J, Strating IM, Boneca IG, Bechmann I, Laman JD. Peptidoglycan accumulates in distinct brain regions and cell types over lifetime but is absent in newborns. Brain Behav Immun 2025; 123:799-812. [PMID: 39442638 DOI: 10.1016/j.bbi.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/28/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Peptidoglycan (PGN) is a large complex polymer critical to structure and function of all bacterial species. Intact PGN and its fragments are inflammatory, contributing to infectious and autoimmune disease. Recent studies show that PGN physiologically contributes to immune setpoints, and importantly also to mouse brain development and behavior. However, for the human brain, it remains unknown whether PGN and its fragments differentially gain access to distinct brain regions, which cell types accumulate it, and whether PGN brain load varies with age. Therefore, we investigated human postmortem brain samples of donors with an extensive age range, from newborns to nonagenarians. We examined two monoclonal antibodies against PGN which were validated using dot blot analysis, competition assays and immunofluorescence experiments on bacteria sacculi, which jointly showed specific detection of Gram-positive PGN. As positive reference tissue, brain tissue from sepsis patients, and human liver were used, both showing the expected high PGN levels. In adult brain tissue of different age (34- to 94-year-old) and sex, we detected PGN signals in seven different brain regions, with highest loads in the occipital cortex, hippocampal formation, frontal cortex, the periventricular region and the olfactory bulb. Age-dependent increase of signals was not evident by microscopic observations and only weak correlation was found by statistical analysis in this cohort. PGN was found intracellularly in the cytoplasm surrounding the cell nucleus in astrocytes, oligodendrocytes, neurons, and endothelial cells, but not in macrophages like microglia. PGN was absent in brain tissues of three human newborns (stillbirth to four weeks old). For comparison, three brain regions from non-human primates of varying age (newborn to 21 years) were immunohistochemically stained. The highest PGN-load was observed in brain tissue from 18- to 21-year-old macaques. This first systematic evaluation of PGN in human postmortem brain suggests that PGN accumulates during lifetime until it reaches a plateau by homeostatic turnover and highlights the ubiquitous presence of PGN in human brain tissues, and their ability to participate in physiological as well as pathological processes throughout life.
Collapse
Affiliation(s)
- Carolin Zeiher
- Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | - Heidrun Kuhrt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Aline Rifflet
- Institute Pasteur, Université Paris Cité, INSERM U1306, Biology and Genetics of the Bacterial Cell Wall Unit, F-75015 Paris, France
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | | | - Erik Nutma
- Biomedical Primate Research Centre (BPRC), Department of Neurobiology and Aging, Rijswijk, Netherlands (The)
| | - Jinte Middeldorp
- Biomedical Primate Research Centre (BPRC), Department of Neurobiology and Aging, Rijswijk, Netherlands (The)
| | - Inge M Strating
- University Groningen, University Medical Center Groningen (UMCG), Dept. Pathology & Medical Biology, and MS Center Noord Nederland (MSCNN), Groningen, Netherlands (The)
| | - Ivo G Boneca
- Institute Pasteur, Université Paris Cité, INSERM U1306, Biology and Genetics of the Bacterial Cell Wall Unit, F-75015 Paris, France.
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | - Jon D Laman
- University Groningen, University Medical Center Groningen (UMCG), Dept. Pathology & Medical Biology, and MS Center Noord Nederland (MSCNN), Groningen, Netherlands (The).
| |
Collapse
|
5
|
Sigal LH. Proposed Immunopathogenetic Mechanisms Underlying Lyme Arthritis. J Clin Rheumatol 2024; 30:315-325. [PMID: 39730138 DOI: 10.1097/rhu.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
ABSTRACT Lyme disease is commonly associated with musculoskeletal features, inflammatory and noninflammatory. The precise pathogenesis of the clinical features of this infection are complex and often multiple. A better understanding of how Borrelia burgdorferi causes these musculoskeletal manifestations is necessary in order to determine the proper treatment and eschew that which is unlikely to work, often associated with toxicities. The following review seeks to summarize the various immunopathogenic mechanisms that may cause these features of Lyme disease and suggests a series of approaches based on the most likely underlying mechanism(s).
Collapse
Affiliation(s)
- Leonard H Sigal
- From the Gateway Immunosciences and RUTGERS-Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
6
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
7
|
Rouse JR, Danner R, Wahhab A, Pereckas M, Nguyen C, McClune ME, Steere AC, Strle K, Jutras BL, Lochhead RB. HLA-DR-Expressing Fibroblast-Like Synoviocytes Are Inducible Antigen Presenting Cells That Present Autoantigens in Lyme Arthritis. ACR Open Rheumatol 2024; 6:678-689. [PMID: 39073021 PMCID: PMC11471949 DOI: 10.1002/acr2.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE HLA-DR-expressing fibroblast-like synoviocytes (FLS) are a prominent cell type in synovial tissue in chronic inflammatory forms of arthritis. FLS-derived extracellular matrix (ECM) proteins, including fibronectin-1 (FN1), contain immunogenic CD4+ T cell epitopes in patients with postinfectious Lyme arthritis (LA). However, the role of FLS in presentation of these T cell epitopes remains uncertain. METHODS Primary LA FLS and primary murine FLS stimulated with interferon gamma (IFNγ), Borrelia burgdorferi, and/or B burgdorferi peptidoglycan (PG) were assessed for properties associated with antigen presentation. HLA-DR-presented peptides from stimulated LA FLS were identified by immunopeptidomics analysis. OT-II T cells were co-cultured with stimulated murine FLS in the presence of cognate ovalbumin antigen to determine the potential of FLS to act as inducible antigen presenting cells (APCs). RESULTS FLS expressed HLA-DR molecules within inflamed synovial tissue and tendons from patients with postinfectious LA in situ. Major histocompatibility complex (MHC) class II and co-stimulatory molecules were expressed by FLS following in vitro stimulation with IFNγ and B burgdorferi and presented both foreign and self-MHC-II peptides, including an immunogenic T cell epitope derived from Lyme autoantigen FN1. Stimulated FLS induced proliferation of naive OT-II CD4+ T cells that were dependent on OT-II antigen and CD40. Stimulation with B burgdorferi PG enhanced FLS-mediated T cell activation. CONCLUSION MHC-II+ FLS are inducible APCs that can induce CD4+ T cell activation in an antigen- and CD40-dependent manner. Activated FLS can also present ECM-derived Lyme autoantigens, implicating FLS in amplifying tissue-localized autoimmunity in LA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allen C. Steere
- Massachusetts General Hospital and Harvard Medical SchoolBoston
| | | | | | | |
Collapse
|
8
|
Ocius KL, Kolli SH, Ahmad SS, Dressler JM, Chordia MD, Jutras BL, Rutkowski MR, Pires MM. Noninvasive Analysis of Peptidoglycan from Living Animals. Bioconjug Chem 2024; 35:489-498. [PMID: 38591251 PMCID: PMC11036361 DOI: 10.1021/acs.bioconjchem.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
The role of the intestinal microbiota in host health is increasingly revealed in its contributions to disease states. The host-microbiome interaction is multifactorial and dynamic. One of the factors that has recently been strongly associated with host physiological responses is peptidoglycan from bacterial cell walls. Peptidoglycan from gut commensal bacteria activates peptidoglycan sensors in human cells, including the nucleotide-binding oligomerization domain-containing protein 2. When present in the gastrointestinal tract, both the polymeric form (sacculi) and depolymerized fragments can modulate host physiology, including checkpoint anticancer therapy efficacy, body temperature and appetite, and postnatal growth. To utilize this growing area of biology toward therapeutic prescriptions, it will be critical to directly analyze a key feature of the host-microbiome interaction from living hosts in a reproducible and noninvasive way. Here we show that metabolically labeled peptidoglycan/sacculi can be readily isolated from fecal samples collected from both mice and humans. Analysis of fecal samples provided a noninvasive route to probe the gut commensal community including the metabolic synchronicity with the host circadian clock. Together, these results pave the way for noninvasive diagnostic tools to interrogate the causal nature of peptidoglycan in host health and disease.
Collapse
Affiliation(s)
- Karl L. Ocius
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sree H. Kolli
- Department
of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Saadman S. Ahmad
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jules M. Dressler
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mahendra D. Chordia
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brandon L. Jutras
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Melanie R. Rutkowski
- Department
of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
9
|
King KA, Benton AH, Caudill MT, Stoyanof ST, Kang L, Michalak P, Lahmers KK, Dunman PM, DeHart TG, Ahmad SS, Jutras BL, Poncin K, De Bolle X, Caswell CC. Post-transcriptional control of the essential enzyme MurF by a small regulatory RNA in Brucella abortus. Mol Microbiol 2024; 121:129-141. [PMID: 38082493 DOI: 10.1111/mmi.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/15/2024]
Abstract
Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.
Collapse
Affiliation(s)
- Kellie A King
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Angela H Benton
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Mitchell T Caudill
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - S Tristan Stoyanof
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Pawel Michalak
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
- Institute for Evolution, University of Haifa, Haifa, Israel
| | - Kevin K Lahmers
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanner G DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Saadman S Ahmad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Katy Poncin
- URBM, Narilis, University of Namur, Namur, Belgium
| | | | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
10
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
11
|
Rouse JR, Danner R, Wahhab A, Pereckas M, McClune ME, Steere AC, Strle K, Jutras BL, Lochhead RB. Human leukocyte antigen HLA-DR-expressing fibroblast-like synoviocytes are inducible antigen presenting cells that present autoantigens in Lyme arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568066. [PMID: 38045407 PMCID: PMC10690166 DOI: 10.1101/2023.11.21.568066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background HLA-DR-expressing fibroblast-like synoviocytes (FLS) are a prominent cell type in synovial tissue in chronic inflammatory forms of arthritis. We recently showed that peptides from several extracellular matrix (ECM) proteins, including fibronectin-1 (FN1), contained immunogenic CD4+ T cell epitopes in patients with postinfectious Lyme arthritis (LA). However, the role of FLS in presentation of these T cell epitopes remains uncertain. Methods Primary LA FLS and primary murine FLS stimulated with interferon gamma (IFNγ), Borrelia burgdorferi, and/or B. burgdorferi peptidoglycan (PG) were assessed for properties associated with antigen presentation. HLA-DR-presented peptides from stimulated LA FLS were identified by immunopeptidomics analysis. OT-II T cells were cocultured with stimulated murine FLS in the presence of cognate ovalbumin antigen to determine the potential of FLS to act as inducible antigen presenting cells (APC). Results FLS expressed HLA-DR molecules within inflamed synovial tissue and tendons from patients with post-infectious LA patients in situ. MHC class II and costimulatory molecules were expressed by FLS following in vitro stimulation with IFNγ and B. burgdorferi and presented both foreign and self MHC-II peptides, including T cell epitopes derived from two Lyme autoantigens fibronectin-1 (FN1) and endothelial cell growth factor (ECGF). Stimulated murine FLS induced proliferation of naïve OT-II CD4+ T cells, particularly when FLS were stimulated with both IFNγ and PG. Conclusions MHC-II+ FLS are inducible APCs that can induce CD4+ T cell activation and can present Lyme autoantigens derived from ECM proteins, thereby amplifying tissue-localized autoimmune CD4+ T cell responses in LA.
Collapse
Affiliation(s)
- Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Robert B Lochhead
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Ocius KL, Kolli SH, Ahmad SS, Dressler JM, Chordia MD, Jutras BL, Rutkowski MR, Pires MM. Non-invasive Analysis of Peptidoglycan from Living Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549941. [PMID: 37693563 PMCID: PMC10491127 DOI: 10.1101/2023.07.21.549941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The role of the intestinal microbiota in host health is increasingly revealed in its contributions to disease states. The host-microbiome interaction is multifactorial and dynamic. One of the factors that has recently been strongly associated with host physiological responses is peptidoglycan from bacterial cell walls. Peptidoglycan from gut commensal bacteria activate peptidoglycan sensors in human cells, including the Nucleotide-binding oligomerization domain containing protein 2 (NOD2). When present in the gastrointestinal tract, both the polymeric form (sacculi) and de-polymerized fragments can modulate host physiology, including checkpoint anticancer therapy efficacy, body temperature and appetite, and postnatal growth. To leverage this growing area of biology towards therapeutic prescriptions, it will be critical to directly analyze a key feature of the host-microbiome interaction from living hosts in a reproducible and non-invasive way. Here we show that metabolically labeled peptidoglycan/sacculi can be readily isolated from fecal samples collected from both mice and humans. Analysis of fecal samples provided a non-invasive route to probe the gut commensal community including the metabolic synchronicity with the host circadian clock. Together, these results pave the way for non-invasive diagnostic tools to interrogate the causal nature of peptidoglycan in host health and disease.
Collapse
|
13
|
Hayes KA, Dressler JM, Norris SJ, Edmondson DG, Jutras BL. A large screen identifies beta-lactam antibiotics which can be repurposed to target the syphilis agent. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:4. [PMID: 38686211 PMCID: PMC11057208 DOI: 10.1038/s44259-023-00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/02/2024]
Abstract
Syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (hereafter called T. pallidum), is re-emerging as a worldwide sexually transmitted infection. A single intramuscular dose of benzathine penicillin G is the preferred syphilis treatment option. Both supply shortage concerns and the potential for acquired antibiotic resistance further the need to broaden the repertoire of syphilis therapeutics. We reasoned that other β-lactams may be equally or more effective at targeting the disease-causing agent, Treponema pallidum, but have yet to be discovered due to a previous lack of a continuous in vitro culture system. Recent technical advances with respect to in vitro T. pallidum propagation allowed us to conduct a high-throughput screen of almost 100 β-lactams. Using several molecular and cellular approaches that we developed or adapted, we identified and confirmed the efficacy of several β-lactams that were similar to or outperformed the current standard, benzathine penicillin G. These options are either currently used to treat bacterial infections or are synthetic derivatives of naturally occurring compounds. Our studies not only identified additional potential therapeutics in the resolution of syphilis, but provide techniques to study the complex biology of T. pallidum-a spirochete that has plagued human health for centuries.
Collapse
Affiliation(s)
- Kathryn A. Hayes
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jules M. Dressler
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Brandon L. Jutras
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061 USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
14
|
Saylor TC, Casselli T, Lethbridge KG, Moore JP, Owens KM, Brissette CA, Zückert WR, Stevenson B. Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. PLoS One 2022; 17:e0274125. [PMID: 36178885 PMCID: PMC9524633 DOI: 10.1371/journal.pone.0274125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Some species of bacteria respond to antibiotic stresses by altering their transcription profiles, in order to produce proteins that provide protection against the antibiotic. Understanding these compensatory mechanisms allows for informed treatment strategies, and could lead to the development of improved therapeutics. To this end, studies were performed to determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits genetically-encoded responses to the commonly prescribed antibiotics doxycycline and amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were significant increases in a substantial number of transcripts for proteins that are involved with translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi has a mechanism(s) that detects translational inhibition by doxycycline, and increases production of mRNAs for proteins involved with translation machinery in an attempt to compensate for that stress.
Collapse
Affiliation(s)
- Timothy C. Saylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Timothy Casselli
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kathryn G. Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Jessamyn P. Moore
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Katie M. Owens
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kentucky, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
15
|
Tereshkin EV, Loiko NG, Tereshkina KB, Kovalenko VV, Krupyanskii YF. Possible Mechanisms of 4-Hexylresorcinol Influence on DNA and DNA–Dps Nanocrystals Affecting Stress Sustainability of Escherichia coli. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Codolo G, Coletta S, D’Elios MM, de Bernard M. HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Front Immunol 2022; 13:944139. [PMID: 35844568 PMCID: PMC9277015 DOI: 10.3389/fimmu.2022.944139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The miniferritin HP-NAP of Helicobacter pylori was originally described as a neutrophil-activating protein because of the capacity to activate neutrophils to generate oxygen radicals and adhere to endothelia. Currently, the main feature for which HP-NAP is known is the ability to promote Th1 responses and revert the immune suppressive profile of macrophages. In this review, we discuss the immune modulating properties of the protein regarding the H. pylori infection and the evidence that support the potential clinical application of HP-NAP in allergy and cancer immunotherapy.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padova, Padova, Italy
| | - Sara Coletta
- Department of Biology, University of Padova, Padova, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- *Correspondence: Marina de Bernard, ; Mario Milco D’Elios,
| | - Marina de Bernard
- Department of Biology, University of Padova, Padova, Italy
- *Correspondence: Marina de Bernard, ; Mario Milco D’Elios,
| |
Collapse
|
17
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
19
|
A simple method to detect Borrelia burgdorferi sensu lato proteins in different sub-cellular compartments by immunofluorescence. Ticks Tick Borne Dis 2021; 12:101808. [PMID: 34455142 DOI: 10.1016/j.ttbdis.2021.101808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
Spirochaetes constitute a unique phylum of bacteria, many of which cause severe clinical diseases. Borrelia burgdorferi sensu lato (B. burgdorferi s.l.)-the primary agent of Lyme borreliosis (LB)-is a quintessential member of this poorly understood phylum and the leading cause of tick-borne illness throughout most of the northern hemisphere. Despite its importance in human health, we lack a fundamental understanding of how B. burgdorferi s.l. is able to accomplish basic physiological tasks, such as DNA replication/segregation, and cell elongation or division. Recent advances in molecular tools to probe these essential cellular processes are great strides forward but require genetic manipulation. The latter is important since not all agents of LB are genetically tractable. Here, we describe a single method that is capable of fluorescently labeling B. burgdorferi s.l. proteins in different sub-cellular compartments. A comparative analysis of six different methods indicates that our optimized procedure outperforms all others and is the first to localize a cytoplasmic protein in B. burgdorferi s.l. by immunofluorescence. We contend that this strategy could be easily adapted to study the localization of any protein, in many Borrelia genospecies, information that will yield functional insights into the complex biology of this fascinating group of bacteria. In addition, it may provide new avenues of research in both in situ studies and in Lyme diagnostics.
Collapse
|
20
|
DeHart TG, Kushelman MR, Hildreth SB, Helm RF, Jutras BL. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol 2021; 6:1583-1592. [PMID: 34819646 PMCID: PMC8612929 DOI: 10.1038/s41564-021-01003-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) β-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.
Collapse
Affiliation(s)
- Tanner G. DeHart
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Mara R. Kushelman
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Sherry B. Hildreth
- grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Richard F. Helm
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Brandon L. Jutras
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Molecular and Cellular Biology, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|