1
|
Sun H, Hanson MA, Walsh SK, Imrie RM, Raymond B, Longdon B. Varying phylogenetic signal in susceptibility to four bacterial pathogens across species of Drosophilidae. Proc Biol Sci 2025; 292:20242239. [PMID: 40237085 PMCID: PMC12001086 DOI: 10.1098/rspb.2024.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Bacterial infections are a major threat to public health. Pathogen host shifts-where a pathogen jumps from one host species to another-are important sources of emerging infectious diseases. However, compared with viruses, we know relatively little about the factors that determine whether bacteria can infect a novel host, such as how host phylogenetics constrains variation in pathogen host range and the link between host phylogeny and the infectivity and virulence of a pathogen. Here, we experimentally examined susceptibility to bacterial infections using a panel of 36 Drosophilidae species and four pathogens (Providencia rettgeri, Pseudomonas entomophila, Enterococcus faecalis, Staphylococcus aureus). The outcomes of infection differed greatly among pathogens and across host species. The host phylogeny explains a considerable amount of variation in susceptibility, with the greatest phylogenetic signal for P. rettgeri infection, explaining 94% of the variation in mortality. Positive correlations were observed between mortality and bacterial load for three out of the four pathogens. Correlations in susceptibility between the four pathogens were positive but largely non-significant, suggesting susceptibility is mostly pathogen-specific. These results suggest that susceptibility to bacterial pathogens may be predicted by the host phylogeny, but the effect may vary in magnitude between different bacteria.
Collapse
Affiliation(s)
- Hongbo Sun
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Mark A. Hanson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Sarah K. Walsh
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| |
Collapse
|
2
|
Singh A, Hu Y, Lopes RF, Lane L, Woldemichael H, Xu C, Udeshi ND, Carr SA, Perrimon N. Cell-death induced immune response and coagulopathy promote cachexia in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631515. [PMID: 39829769 PMCID: PMC11741341 DOI: 10.1101/2025.01.07.631515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tumors can exert a far-reaching influence on the body, triggering systemic responses that contribute to debilitating conditions like cancer cachexia. To characterize the mechanisms underlying tumor-host interactions, we utilized a BioID-based proximity labeling method to identify proteins secreted by Ykiact adult Drosophila gut tumors into the bloodstream/hemolymph. Among the major proteins identified are coagulation and immune-responsive factors that contribute to the systemic wasting phenotypes associated with Ykiact tumors. The effect of innate immunity factors is mediated by NFκB transcription factors Relish, dorsal, and Dif, which in turn upregulate the expression of the cachectic factors Pvf1, Impl2, and Upd3. In addition, Ykiact tumors secrete Eiger, a TNF-alpha homolog, which activates the JNK signaling pathway in neighboring non-tumor cells, leading to cell death. The release of damage-associated molecular patterns (DAMPs) from these dying cells presumably amplifies the inflammatory response, exacerbating systemic wasting. Targeting the inflammatory response, the JNK pathway, or the production of cachectic factors could potentially alleviate the debilitating effects of cancer cachexia.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Raphael Fragoso Lopes
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Liz Lane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | | | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
- HHMI, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Singh DND, Roberts ARE, Wang X, Li G, Quesada Moraga E, Alliband D, Ballou E, Tsai HJ, Hidalgo A. Toll-1-dependent immune evasion induced by fungal infection leads to cell loss in the Drosophila brain. PLoS Biol 2025; 23:e3003020. [PMID: 39946503 PMCID: PMC11825051 DOI: 10.1371/journal.pbio.3003020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Fungi can intervene in hosts' brain function. In humans, they can drive neuroinflammation, neurodegenerative diseases and psychiatric disorders. However, how fungi alter the host brain is unknown. The mechanism underlying innate immunity to fungi is well-known and universally conserved downstream of shared Toll/TLR receptors, which via the adaptor MyD88 and the transcription factor Dif/NFκB, induce the expression of antimicrobial peptides (AMPs). However, in the brain, Toll-1 could also drive an alternative pathway via Sarm, which causes cell death instead. Sarm is the universal inhibitor of MyD88 and could drive immune evasion. Here, we show that exposure to the fungus Beauveria bassiana reduced fly life span, impaired locomotion and caused neurodegeneration. Beauveria bassiana entered the Drosophila brain and induced the up-regulation of AMPs, and the Toll adaptors wek and sarm, within the brain. RNAi knockdown of Toll-1, wek or sarm concomitantly with infection prevented B. bassiana-induced cell loss. By contrast, over-expression of wek or sarm was sufficient to cause neuronal loss in the absence of infection. Thus, B. bassiana caused cell loss in the host brain via Toll-1/Wek/Sarm signalling driving immune evasion. A similar activation of Sarm downstream of TLRs upon fungal infections could underlie psychiatric and neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Deepanshu N. D. Singh
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Abigail R. E. Roberts
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guiyi Li
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - David Alliband
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Ballou
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hung-Ji Tsai
- Institute of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Brain Plasticity & Regeneration Lab, Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Oi A, Shinoda N, Nagashima S, Miura M, Obata F. A nonsecretory antimicrobial peptide mediates inflammatory organ damage in Drosophila renal tubules. Cell Rep 2025; 44:115082. [PMID: 39719708 DOI: 10.1016/j.celrep.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/20/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
An excessive immune response damages organs, yet its molecular mechanism is incompletely understood. Here, we screened a factor mediating organ damage upon genetic activation of the innate immune pathway using Drosophila renal tubules. We found that an antimicrobial peptide, Attacin-D (AttD), causes organ damage upon immune deficiency (Imd) pathway activation in the Malpighian tubules. Loss of AttD function suppresses most of the pathological phenotypes induced by Imd activation, such as cell death, bloating of the whole animal, and mortality, without compromising the immune activation. AttD is required for the immune-induced damage specifically in the Malpighian tubules and not the midgut. Unlike other antimicrobial peptides, AttD lacks a signal peptide and stays inside tubular cells, potentially damaging the tubular cells via aggregation and oligomerization. Suppression of AttD almost completely attenuates the pathology caused by a gut-tumor-induced immune activation. Our study elucidates the mechanistic effector of immune-induced organ damage.
Collapse
Affiliation(s)
- Ayano Oi
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Tang G, Song S, Shang J, Luo Y, Li S, Wei D, Wang C. Fungal evasion of Drosophila immunity involves blocking the cathepsin-mediated cleavage maturation of the danger-sensing protease. Proc Natl Acad Sci U S A 2025; 122:e2419343122. [PMID: 39819219 PMCID: PMC11760918 DOI: 10.1073/pnas.2419343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the Metarhizium and Beauveria genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in Drosophila, knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in Metarhizium robertsii. Library screening and protein pull-down analysis unveiled that Fkp1 targets the cathepsin protease CtsK1 to inhibit its cleavage maturation of the danger-sensing serine protease Persephone (Psh), thereby facilitating fungal evasion of the Drosophila immune defenses. The Fkp1-like gene is also required in Beauveria bassiana for insect infection. Transgenic expression of Fkp1 in Drosophila suppressed hemolymph cysteine protease activity and down-regulated the expression of antifungal genes. Fkp1 can also mask the Psh cleavage site without interfering with its ability to bait fungal subtilisin proteases. Given the evident compensatory relationship, our data indicate that the protease cascade is more crucial than the molecular pattern pathway in defending flies against fungal infections. This work reveals that Metarhizium fungi have evolved distinct effectors to block the dual recognition pathways of flies for immune evasion and sheds lights on the effector mechanisms mediating microbe-animal interactions.
Collapse
Affiliation(s)
- Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai201106, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Li N, Gu X, Xin M, Wang X. Revealing the Immune Response of Sitona callosus Gyllenhal to Entomopathogenic Fungi Beauveria bassiana Infection Through Integrative Analyses of Transcriptomics and Metabolomics. INSECTS 2024; 15:940. [PMID: 39769543 PMCID: PMC11677578 DOI: 10.3390/insects15120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In this study, we selected Sitona callosus, one of the primary insect pests of alfalfa, as the experimental insect and infected it with Beauveria bassiana. Transcriptomic and metabolomic analyses were conducted to explore alterations in gene expression and metabolic processes in S. callosus at 48, 96, and 144 h post infection with B. bassiana. The transcriptomic analysis unveiled that B. bassiana infection boosted immune responses in tubercula, affecting carbohydrate metabolism, cytochrome P450 activity, lysosome function, apoptosis regulation, phagosome formation, glutathione metabolism, amino acid metabolism, and pathogen response pathways. Subsequent metabolomics analysis confirmed that glycerophospholipids, carboxylic acids and derivatives, organooxygen compounds, keto acids and derivatives, and azane immune metabolites were significantly upregulated in response to B. bassiana infection. Additionally, we utilized the Pearson correlation coefficient method to examine the relationships between differentially expressed immune-related genes and metabolites, revealing notably strong correlations between these two sets of variables. By leveraging the WGCNA method to analyze immune metabolite data for immune-related genes, we identified hub genes crucial at various stages of immune activation. These central genes predominantly included C-type lectin receptors for pattern recognition, cytochrome P450 enzymes linked to detoxification processes, and cathepsin proteases. By combining transcriptome and metabolome analyses, it was determined that autophagy and arachidonic acid metabolism play significant roles in the response of S. callosus to infection by B. bassiana. This research will facilitate the understanding of the immune response to B. bassiana infection in adult S. callosus, laying a theoretical groundwork for future biological control strategies targeting S. callosus.
Collapse
Affiliation(s)
- Nan Li
- School of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China;
| | - Xin Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Ming Xin
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Xinpu Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| |
Collapse
|
7
|
Yoon YB, Woo JW, Jun Park B, Park K, Kang S, Chung D, Lee DH, Do Y, Park SC, Cho SJ. Multiple diptericins of the black soldier fly (Hermetia illucens) differentially respond to bacterial challenges. J Invertebr Pathol 2024; 207:108234. [PMID: 39542086 DOI: 10.1016/j.jip.2024.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Due to its significant bioconversion potential, the black soldier fly (BSF), Hermetia illucens, shows great promise as a cost-effective alternative for recycling biological waste. BSF larvae (BSFL) are constantly exposed high levels of pathogenic microorganisms, including bacteria and fungi, which endows BSFL with a robust immune system. Diptericin, a type of glycine-rich antimicrobial peptide (AMP) that exhibits activity against gram-negative bacteria, contains proline-rich domains (P-domains) and glycine-rich domains (G-domains); these domains are separated by a furin cleavage site. Although the presence and expression patterns of BSFL diptericins have been documented, their basic molecular properties remain unclear. To the best of our knowledge, in the present study, we report, for the first time, the molecular characteristics of seven full-length cDNA sequences of H. illucens diptericins and their expression patterns following challenges with gram-positive or gram-negative bacteria. Seven diptericin paralogs are located in tandem on chromosome 2, spanning a total length of 38.6 kb, with an average intergenic distance of approximately 5.5 kb. Sequence analysis revealed that three diptericins (HipDptA/B/C) are pseudogenized due to premature stop codons. In contrast, the other diptericins (HiDpt1/2/3/4) possess mature-sized G-domains rich in glycine at the C-terminus, which are essential for AMP activity, along with proline-rich domain (P-domain) in the N-terminal and either two (HiDpt1/2/3) or one (HiDpt4) putative furin cleavage sites (R-X-R/K-R) between these domains. These furin cleavage sites possibly produce a glycine-rich AMP and one or two additional peptides with unknown functions. Similar to other diptericins, the expression of HiDpt1/2/3/4 mRNAs is predominantly induced by gram-negative bacteria, increasing typically by ≥ 1,000-fold (up to 5,000-fold). Additionally, HiDpt1/3/4 show significant responses to gram-positive bacteria such as Micrococcus luteus, though not as strongly as to gram-negative bacteria. These findings suggest that HiDpts function as a rapid, effective, and broad-spectrum first-line defense mechanism in the BSFL immune system.
Collapse
Affiliation(s)
- Yoo Bin Yoon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Won Woo
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Beom Jun Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kihwan Park
- ENTOMO Co., Ltd, Cheongju, Chungbuk 28304, Republic of Korea
| | - Sangwook Kang
- ENTOMO Co., Ltd, Cheongju, Chungbuk 28304, Republic of Korea
| | - David Chung
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Dong Ho Lee
- College of General Education, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Soon Cheol Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
8
|
Hong S, Gao H, Chen H, Wang C. Engineered fungus containing a caterpillar gene kills insects rapidly by disrupting their ecto- and endo-microbiomes. Commun Biol 2024; 7:955. [PMID: 39112633 PMCID: PMC11306560 DOI: 10.1038/s42003-024-06670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Similar to the physiological importance of gut microbiomes, recent works have shown that insect ectomicrobiotas can mediate defensive colonization resistance against fungal parasites that infect via cuticle penetration. Here we show that engineering the entomopathogenic fungus Metarhizium robertsii with a potent antibacterial moricin gene from silkworms substantially enhances the ability of the fungus to kill mosquitos, locusts, and two Drosophila species. Further use of Drosophila melanogaster as an infection model, quantitative microbiome analysis reveals that engineered strains designed to suppress insect cuticular bacteria additionally disrupt gut microbiomes. An overgrowth of harmful bacteria such as the opportunistic pathogens of Providencia species is detected that can accelerate insect death. In support, quantitative analysis of antimicrobial genes in fly fat bodies and guts indicates that topical fungal infections result in the compromise of intestinal immune responses. In addition to providing an innovative strategy for improving the potency of mycoinsecticides, our data solidify the importance of both the ecto- and endo-microbiomes in maintaining insect wellbeing.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hanchun Gao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Haimin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Gao B, Zhu S. The evolutionary novelty of insect defensins: from bacterial killing to toxin neutralization. Cell Mol Life Sci 2024; 81:230. [PMID: 38780625 PMCID: PMC11116330 DOI: 10.1007/s00018-024-05273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhang J, Shan J, Shi W, Feng T, Sheng Y, Xu Z, Dong Z, Huang J, Chen J. Transcriptomic Insights into Host Metabolism and Immunity Changes after Parasitization by Leptopilina myrica. INSECTS 2024; 15:352. [PMID: 38786908 PMCID: PMC11122121 DOI: 10.3390/insects15050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.
Collapse
Affiliation(s)
- Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Shan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zixuan Xu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Hanson MA. When the microbiome shapes the host: immune evolution implications for infectious disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230061. [PMID: 38497259 PMCID: PMC10945400 DOI: 10.1098/rstb.2023.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 03/19/2024] Open
Abstract
The microbiome includes both 'mutualist' and 'pathogen' microbes, regulated by the same innate immune architecture. A major question has therefore been: how do hosts prevent pathogenic infections while maintaining beneficial microbes? One idea suggests hosts can selectively activate innate immunity upon pathogenic infection, but not mutualist colonization. Another idea posits that hosts can selectively attack pathogens, but not mutualists. Here I review evolutionary principles of microbe recognition and immune activation, and reflect on newly observed immune effector-microbe specificity perhaps supporting the latter idea. Recent work in Drosophila has found a surprising importance for single antimicrobial peptides in combatting specific ecologically relevant microbes. The developing picture suggests these effectors have evolved for this purpose. Other defence responses like reactive oxygen species bursts can also be uniquely effective against specific microbes. Signals in other model systems including nematodes, Hydra, oysters, and mammals, suggest that effector-microbe specificity may be a fundamental principle of host-pathogen interactions. I propose this effector-microbe specificity stems from weaknesses of the microbes themselves: if microbes have intrinsic weaknesses, hosts can evolve effectors that exploit those weaknesses. I define this host-microbe relationship as 'the Achilles principle of immune evolution'. Incorporating this view helps interpret why some host-microbe interactions develop in a coevolutionary framework (e.g. Red Queen dynamics), or as a one-sided evolutionary response. This clarification should be valuable to better understand the principles behind host susceptibilities to infectious diseases. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mark A Hanson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9FE, UK
| |
Collapse
|
12
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of spinal muscular atrophy. BMC Biol 2024; 22:94. [PMID: 38664795 PMCID: PMC11044505 DOI: 10.1186/s12915-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Rebecca E Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address: Lake, Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Amanda C Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address, Radford University, Radford, VA, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
| | - Ashlyn M Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
13
|
Rommelaere S, Carboni A, Bada Juarez JF, Boquete JP, Abriata LA, Teixeira Pinto Meireles F, Rukes V, Vincent C, Kondo S, Dionne MS, Dal Peraro M, Cao C, Lemaitre B. A humoral stress response protects Drosophila tissues from antimicrobial peptides. Curr Biol 2024; 34:1426-1437.e6. [PMID: 38484734 DOI: 10.1016/j.cub.2024.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
7An efficient immune system must provide protection against a broad range of pathogens without causing excessive collateral tissue damage. While immune effectors have been well characterized, we know less about the resilience mechanisms protecting the host from its own immune response. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes. While protective against pathogens, AMPs can be cytotoxic to host cells. Here, we reveal that a family of stress-induced proteins, the Turandots, protect the Drosophila respiratory system from AMPs, increasing resilience to stress. Flies lacking Turandot genes are susceptible to environmental stresses due to AMP-induced tracheal apoptosis. Turandot proteins bind to host cell membranes and mask negatively charged phospholipids, protecting them from cationic pore-forming AMPs. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy.
Collapse
Affiliation(s)
- Samuel Rommelaere
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Alexia Carboni
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan F Bada Juarez
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jean-Philippe Boquete
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Fernando Teixeira Pinto Meireles
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Verena Rukes
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Crystal Vincent
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS London, UK
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 162-8601 Tokyo, Japan
| | - Marc S Dionne
- Centre for Bacterial Resistance Biology and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chan Cao
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. G3 (BETHESDA, MD.) 2024; 14:jkae030. [PMID: 38366796 PMCID: PMC10989886 DOI: 10.1093/g3journal/jkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/16/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin D McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Lu M, Wei D, Shang J, Li S, Song S, Luo Y, Tang G, Wang C. Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Rep 2024; 43:113642. [PMID: 38175756 DOI: 10.1016/j.celrep.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to β-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.
Collapse
Affiliation(s)
- Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571739. [PMID: 38168196 PMCID: PMC10760185 DOI: 10.1101/2023.12.14.571739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Spinal Muscular Atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the Survival Motor Neuron (SMN) protein. SMA presents across broad spectrum of disease severity. Unfortunately, vertebrate models of intermediate SMA have been difficult to generate and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. Results Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the Immune Deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of an ubiquitylation complex that includes Traf6, Bendless and Diap2, and plays a pivotal role in several signaling networks. Conclusions In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Chapel Hill
| | - Amanda C. Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- Department of Biology, University of North Carolina at Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashlyn M. Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro NC, USA
| |
Collapse
|
17
|
Brown JC, McMichael BD, Vandadi V, Mukherjee A, Salzler HR, Matera AG. Lysine-36 of Drosophila histone H3.3 supports adult longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559962. [PMID: 38196611 PMCID: PMC10775331 DOI: 10.1101/2023.09.28.559962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several posttranslational histone modifications (PTMs) have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine to arginine mutant that blocks the activity of its cognate modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in non-dividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.
Collapse
Affiliation(s)
- John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Aadit Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Arunkumar R, Zhou SO, Day JP, Bakare S, Pitton S, Zhang Y, Hsing CY, O’Boyle S, Pascual-Gil J, Clark B, Chandler RJ, Leitão AB, Jiggins FM. Natural selection has driven the recurrent loss of an immunity gene that protects Drosophila against a major natural parasite. Proc Natl Acad Sci U S A 2023; 120:e2211019120. [PMID: 37552757 PMCID: PMC10438844 DOI: 10.1073/pnas.2211019120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Polymorphisms in immunity genes can have large effects on susceptibility to infection. To understand the origins of this variation, we have investigated the genetic basis of resistance to the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster. We found that increased expression of the gene lectin-24A after infection by parasitic wasps was associated with a faster cellular immune response and greatly increased rates of killing the parasite. lectin-24A encodes a protein that is strongly up-regulated in the fat body after infection and localizes to the surface of the parasite egg. In certain susceptible lines, a deletion upstream of the lectin-24A has largely abolished expression. Other mutations predicted to abolish the function of this gene have arisen recurrently in this gene, with multiple loss-of-expression alleles and premature stop codons segregating in natural populations. The frequency of these alleles varies greatly geographically, and in some southern African populations, natural selection has driven them near to fixation. We conclude that natural selection has favored the repeated loss of an important component of the immune system, suggesting that in some populations, a pleiotropic cost to lectin-24A expression outweighs the benefits of resistance.
Collapse
Affiliation(s)
- Ramesh Arunkumar
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Shuyu Olivia Zhou
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Sherifat Bakare
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Department of Biochemical Sciences, School of Biosciences, University of Surrey, 388 Stag Hill, Guildford,GU2 7XH, United Kingdom
| | - Simone Pitton
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Biosciences Department, Università degli Studi di Milano, Via Celoria 26, Milano, MI20133, Italy
| | - Yexin Zhang
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Chi-Yun Hsing
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Sinead O’Boyle
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Juan Pascual-Gil
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Facultad de Ciencias, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente 7, 28049Madrid, Spain
| | - Belinda Clark
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Rachael J. Chandler
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Department of Biochemical Sciences, School of Biosciences, University of Surrey, 388 Stag Hill, Guildford,GU2 7XH, United Kingdom
| | - Alexandre B. Leitão
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| |
Collapse
|
19
|
Cabrera K, Hoard DS, Gibson O, Martinez DI, Wunderlich Z. Drosophila immune priming to Enterococcus faecalis relies on immune tolerance rather than resistance. PLoS Pathog 2023; 19:e1011567. [PMID: 37566589 PMCID: PMC10446173 DOI: 10.1371/journal.ppat.1011567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Innate immune priming increases an organism's survival of a second infection after an initial, non-lethal infection. We used Drosophila melanogaster and an insect-derived strain of Enterococcus faecalis to study transcriptional control of priming. In contrast to other pathogens, the enhanced survival in primed animals does not correlate with decreased E. faecalis load. Further analysis shows that primed organisms tolerate, rather than resist infection. Using RNA-seq of immune tissues, we found many genes were upregulated in only primed flies, suggesting a distinct transcriptional program in response to initial and secondary infections. In contrast, few genes continuously express throughout the experiment or more efficiently re-activate upon reinfection. Priming experiments in immune deficient mutants revealed Imd is largely dispensable for responding to a single infection but needed to fully prime. Together, this indicates the fly's innate immune response is plastic-differing in immune strategy, transcriptional program, and pathway use depending on infection history.
Collapse
Affiliation(s)
- Kevin Cabrera
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Duncan S. Hoard
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Olivia Gibson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Daniel I. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Zeba Wunderlich
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
21
|
Hanson MA, Lemaitre B. Antimicrobial peptides do not directly contribute to aging in Drosophila, but improve lifespan by preventing dysbiosis. Dis Model Mech 2023; 16:dmm049965. [PMID: 36847474 PMCID: PMC10163324 DOI: 10.1242/dmm.049965] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are innate immune effectors first studied for their role in host defence. Recent studies have implicated these peptides in the clearance of aberrant cells and in neurodegenerative syndromes. In Drosophila, many AMPs are produced downstream of Toll and Imd NF-κB pathways upon infection. Upon aging, AMPs are upregulated, drawing attention to these molecules as possible causes of age-associated inflammatory diseases. However, functional studies overexpressing or silencing these genes have been inconclusive. Using an isogenic set of AMP gene deletions, we investigated the net impact of AMPs on aging. Overall, we found no major effect of individual AMPs on lifespan, with the possible exception of Defensin. However, ΔAMP14 flies lacking seven AMP gene families displayed reduced lifespan. Increased bacterial load in the food of aged ΔAMP14 flies suggested that their lifespan reduction was due to microbiome dysbiosis, consistent with a previous study. Moreover, germ-free conditions extended the lifespan of ΔAMP14 flies. Overall, our results did not point to an overt role of individual AMPs in lifespan. Instead, we found that AMPs collectively impact lifespan by preventing dysbiosis during aging.
Collapse
Affiliation(s)
- Mark A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
23
|
Huang J, Lou Y, Liu J, Bulet P, Cai C, Ma K, Jiao R, Hoffmann JA, Liégeois S, Li Z, Ferrandon D. A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium. Proc Natl Acad Sci U S A 2023; 120:e2205140120. [PMID: 36917667 PMCID: PMC10041126 DOI: 10.1073/pnas.2205140120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.
Collapse
Affiliation(s)
- Jianqiong Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Yanyan Lou
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Philippe Bulet
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, 38000Grenoble, France
- Platform BioPark Archamps, 74160Archamps, France
| | - Chuping Cai
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
- Université de Strasbourg Institute for Advanced Study, 67000Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| |
Collapse
|
24
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
25
|
Ding SD, Leitão AB, Day JP, Arunkumar R, Phillips M, Zhou SO, Jiggins FM. Trans-regulatory changes underpin the evolution of the Drosophila immune response. PLoS Genet 2022; 18:e1010453. [PMID: 36342922 PMCID: PMC9671443 DOI: 10.1371/journal.pgen.1010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/17/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
When an animal is infected, the expression of a large suite of genes is changed, resulting in an immune response that can defend the host. Despite much evidence that the sequence of proteins in the immune system can evolve rapidly, the evolution of gene expression is comparatively poorly understood. We therefore investigated the transcriptional response to parasitoid wasp infection in Drosophila simulans and D. sechellia. Although these species are closely related, there has been a large scale divergence in the expression of immune-responsive genes in their two main immune tissues, the fat body and hemocytes. Many genes, including those encoding molecules that directly kill pathogens, have cis regulatory changes, frequently resulting in large differences in their expression in the two species. However, these changes in cis regulation overwhelmingly affected gene expression in immune-challenged and uninfected animals alike. Divergence in the response to infection was controlled in trans. We argue that altering trans-regulatory factors, such as signalling pathways or immune modulators, may allow natural selection to alter the expression of large numbers of immune-responsive genes in a coordinated fashion.
Collapse
Affiliation(s)
| | - Alexandre B. Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Champalimaud Foundation, Lisbon, Portugal
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Morgan Phillips
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shuyu Olivia Zhou
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010825. [PMID: 36084158 PMCID: PMC9491580 DOI: 10.1371/journal.ppat.1010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing “travelers’ diarrhea”, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species—P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs. Pathogens express special molecules or structures called virulence factors to successfully infect a host. By identifying these factors, we can learn how hosts fight and how pathogens cause infections. Here, we identified virulence factors of the human and fruit fly pathogen Providencia alcalifaciens, by infecting flies with a series of mutants of this pathogen. In this way, we detected 23 mutants that were less virulent. Some of these less virulent mutants were hypersensitive to fruit fly immune defense molecules called antimicrobial peptides (AMPs), while others were sensitive to reactive oxygen species (ROS) produced by the immune cells. Notably, AMPs-sensitive mutants remained virulent in a Drosophila mutant that lacks AMPs, while pathogens sensitive to oxidative stress retained their virulence in a fruit fly mutant devoid of oxidative species. These results suggest that the ability of P. alcalifaciens to resist two major host immune molecules, namely AMPs and ROS, is the major virulence mechanism. Overall, our systematic analysis of P. alcalifaciens virulence factors has identified the major defense mechanisms of the fruit fly against this pathogen and the bacterial mechanisms to combat these immune responses.
Collapse
|
27
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Jing H, Chang Q, Xu Y, Wang J, Wu X, Huang J, Wang L, Zhang Z. Effect of aging on acute pancreatitis through gut microbiota. Front Microbiol 2022; 13:897992. [PMID: 35966681 PMCID: PMC9366017 DOI: 10.3389/fmicb.2022.897992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Compared to younger people, older people have a higher risk and poorer prognosis of acute pancreatitis, but the effect of gut microbiota on acute pancreatitis is still unknown. We aim to investigate the effect of aging gut microbiota on acute pancreatitis and explore the potential mechanism of this phenomenon. Methods Eighteen fecal samples from healthy adult participants, including nine older and nine younger adults were collected. C57BL/6 mice were treated with antibiotics for fecal microbiota transplantation from older and younger participants. Acute pancreatitis was induced by cerulein and lipopolysaccharide in these mice. The effect of the aged gut microbiota was further tested via antibiotic treatment before or after acute pancreatitis induction. Results The gut microbiota of older and younger adults differed greatly. Aged gut microbiota exacerbated acute pancreatitis during both the early and recovery stages. At the same time, the mRNA expression of multiple antimicrobial peptides in the pancreas and ileum declined in the older group. Antibiotic treatment before acute pancreatitis could remove the effect of aging gut microbiota, but antibiotic treatment after acute pancreatitis could not. Conclusion Aging can affect acute pancreatitis through gut microbiota which characterizes the deletion of multiple types of non-dominant species. This change in gut microbiota may potentially regulate antimicrobial peptides in the early and recovery stages. The level of antimicrobial peptides has negative correlations with a more severe phenotype.
Collapse
Affiliation(s)
- Hui Jing
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qimeng Chang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Yayun Xu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jianfa Wang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Xubo Wu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiating Huang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Lishun Wang,
| | - Ziping Zhang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Ziping Zhang,
| |
Collapse
|
29
|
Hanson MA, Kondo S, Lemaitre B. Drosophila immunity: the Drosocin gene encodes two host defence peptides with pathogen-specific roles. Proc Biol Sci 2022; 289:20220773. [PMID: 35730150 PMCID: PMC9233930 DOI: 10.1098/rspb.2022.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key to defence against infection in plants and animals. Use of AMP mutations in Drosophila has now revealed that AMPs can additively or synergistically contribute to defence in vivo. However, these studies also revealed high specificity, wherein just one AMP contributes an outsized role in combatting a specific pathogen. Here, we show the Drosocin locus (CG10816) is more complex than previously described. In addition to its namesake peptide 'Drosocin', it encodes a second mature peptide from a precursor via furin cleavage. This peptide corresponds to the previously uncharacterized 'Immune-induced Molecule 7'. A polymorphism (Thr52Ala) in the Drosocin precursor protein previously masked the identification of this peptide, which we name 'Buletin'. Using mutations differently affecting Drosocin and Buletin, we show that only Drosocin contributes to Drosocin gene-mediated defence against Enterobacter cloacae. Strikingly, we observed that Buletin, but not Drosocin, contributes to the Drosocin gene-mediated defence against Providencia burhodogranariea, including an importance of the Thr52Ala polymorphism for survival. Our study reveals that the Drosocin gene encodes two prominent host defence peptides with different specificity against distinct pathogens. This finding emphasizes the complexity of the Drosophila humoral response and demonstrates how natural polymorphisms can affect host susceptibility.
Collapse
Affiliation(s)
- M. A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S. Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - B. Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Hanson MA, Lemaitre B. Repeated truncation of a modular antimicrobial peptide gene for neural context. PLoS Genet 2022; 18:e1010259. [PMID: 35714143 PMCID: PMC9246212 DOI: 10.1371/journal.pgen.1010259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading pathogens. These genes commonly encode multiple products as post-translationally cleaved polypeptides. Recent studies have highlighted roles for AMPs in neurological contexts suggesting functions for these defence molecules beyond infection. During our immune study characterizing the antimicrobial peptide gene Baramicin, we recovered multiple Baramicin paralogs in Drosophila melanogaster and other species, united by their N-terminal IM24 domain. Not all paralogs were immune-induced. Here, through careful dissection of the Baramicin family's evolutionary history, we find that paralogs lacking immune induction result from repeated events of duplication and subsequent truncation of the coding sequence from an immune-inducible ancestor. These truncations leave only the IM24 domain as the prominent gene product. Surprisingly, using mutation and targeted gene silencing we demonstrate that two such genes are adapted for function in neural contexts in D. melanogaster. We also show enrichment in the head for independent Baramicin genes in other species. The Baramicin evolutionary history reveals that the IM24 Baramicin domain is not strictly useful in an immune context. We thus provide a case study for how an AMP-encoding gene might play dual roles in both immune and non-immune processes via its multiple peptide products. As many AMP genes encode polypeptides, a full understanding of how immune effectors interact with the nervous system will require consideration of all their peptide products.
Collapse
Affiliation(s)
- Mark A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
31
|
Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23126499. [PMID: 35742941 PMCID: PMC9223523 DOI: 10.3390/ijms23126499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host–pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.
Collapse
|
32
|
Waring AL, Hill J, Allen BM, Bretz NM, Le N, Kr P, Fuss D, Mortimer NT. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. INSECTS 2022; 13:insects13050490. [PMID: 35621824 PMCID: PMC9147463 DOI: 10.3390/insects13050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Organisms can be infected by a wide range of pathogens, including bacteria, viruses, and parasites. Following infection, the host mounts an immune response to attempt to eliminate the pathogen. These responses are often specific to the type of pathogen and mediated by the expression of specialized genes. We have characterized the expression changes induced in host Drosophila fruit flies following infection by multiple types of pathogens, and identified a small number of genes that show expression changes in each infection. This includes genes that are known to be involved in pathogen resistance, and others that have not been previously studied as immune response genes. These findings provide new insight into transcriptional changes that accompany Drosophila immunity. They may suggest possible roles for the differentially expressed genes in innate immune responses to diverse classes of pathogens, and serve to identify candidate genes for further empirical study of these processes. Abstract Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from Drosophila melanogaster following infection with a wide array of pathogens. We identified 62 genes that are significantly induced by infection. While many of these infection-induced genes encode known immune response factors, we also identified 21 genes that have not been previously associated with host immunity. Examination of the upstream flanking sequences of the infection-induced genes lead to the identification of two conserved enhancer sites. These sites correspond to conserved binding sites for GATA and nuclear factor κB (NFκB) family transcription factors and are associated with higher levels of transcript induction. We further identified 31 genes with predicted functions in metabolism and organismal development that are significantly downregulated following infection by diverse pathogens. Our study identifies conserved gene expression changes in Drosophila melanogaster following infection with varied pathogens, and transcription factor families that may regulate this immune induction.
Collapse
|
33
|
Carboni AL, Hanson MA, Lindsay SA, Wasserman SA, Lemaitre B. Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Genetics 2022; 220:iyab188. [PMID: 34791204 PMCID: PMC8733632 DOI: 10.1093/genetics/iyab188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.
Collapse
Affiliation(s)
- Alexia L Carboni
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mark A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Scott A Lindsay
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Steven A Wasserman
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|