1
|
Herrera BB, Chaplin B, MBoup S, Abdullahi A, He M, Fisher SM, Akanmu S, Chang CA, Hamel DJ, Gupta RK, Kanki PJ. Pre-pandemic cross-reactive antibody and cellular responses against SARS-CoV-2 among female sex workers in Dakar, Senegal. Front Public Health 2025; 13:1522733. [PMID: 39916712 PMCID: PMC11798920 DOI: 10.3389/fpubh.2025.1522733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background The COVID-19 pandemic had a severe impact globally, yet African populations exhibited unexpectedly lower rates of severe disease and mortality. We investigated the potential role of pre-existing immunity in shaping the epidemiology of COVID-19 in Africa. Methods Plasma collected from Senegalese female sex workers prior to the COVID-19 pandemic was screened for SARS-CoV-2 and human coronavirus (hCoV) antibodies by virion immunoblots. For antibody-reactive plasma, paired peripheral blood mononuclear cells were stimulated by fusion proteins and IFN-γ cellular responses were assessed via ELISPOT. Results We observed substantial levels of pre-existing cross-reactive immunity to SARS-CoV-2, stemming from prior exposure to seasonal hCoVs. Our antibody analysis revealed a 23.5% (47/200) seroprevalence rate against SARS-CoV-2 nucleocapsid (N). These samples were then probed for antibodies against hCoV spike (S) and/or N antigens; 85.1% (40/47), 70.2% (33/47), and 95.7% (45/47) were antibody reactive against hCoV-229E, hCoV-OC43, or hCoV-HKU1, respectively. Our analysis of cellular responses also demonstrated cross-reactivity to SARS-CoV-2 with 80.0% (36/45) and 82.2% (37/45) showing IFN-γ responses against S and N, respectively. A unique pre-pandemic subject had cross-reactive SARS-CoV-2 S antibodies with detectable neutralization and cross-reactive cellular responses. Conclusion These findings suggest that prior hCoV exposure may induce cross-reactive adaptive immunity, potentially contributing to protection against COVID-19. Our study provides unique data on the dynamics of hCoV and SARS-CoV-2 immunity in Senegal and underscores the importance of understanding the role of pre-existing immunity in shaping COVID-19 outcomes globally.
Collapse
Affiliation(s)
- Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, United States
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Mir Biosciences, Inc., Dunellen, NJ, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Souleymane MBoup
- Institut De Recherche En Santé De Surveillance Épidémiologique Et De Formation (IRESSEF), Dakar, Senegal
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michelle He
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sydney M. Fisher
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sulaimon Akanmu
- Lagos University Teaching Hospital, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Charlotte A. Chang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Donald J. Hamel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Phyllis J. Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
2
|
Ahuja R, Vishwakarma P, Raj S, Kumar V, Khatri R, Lohiya B, Saxena S, Kaur G, Singh G, Asthana S, Ahmed S, Samal S. Characterization and immunogenicity assessment of MERS-CoV pre-fusion spike trimeric oligomers as vaccine immunogen. Hum Vaccin Immunother 2024; 20:2351664. [PMID: 38757508 PMCID: PMC11110700 DOI: 10.1080/21645515.2024.2351664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.
Collapse
MESH Headings
- Middle East Respiratory Syndrome Coronavirus/immunology
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Viral Vaccines/immunology
- Mice
- Female
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Immunogenicity, Vaccine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine
- Humans
Collapse
Affiliation(s)
- Rahul Ahuja
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Preeti Vishwakarma
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sneha Raj
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Varun Kumar
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Bharat Lohiya
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shikha Saxena
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Gurleen Kaur
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Gagandeep Singh
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sweety Samal
- Influenza and Respiratory Virus Laboratory, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Zhong Q, Lin QM, Long HB, Liao CX, Sun XX, Yang MD, Zhang ZH, Huang YH, Wang SM, Yang ZS. Bacterial pneumonia patients with elevated globulin levels did not get infected with SARS-CoV-2: two case reports. Front Immunol 2024; 15:1404542. [PMID: 39267743 PMCID: PMC11390513 DOI: 10.3389/fimmu.2024.1404542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background COVID-19 began in December 2019, rapidly spreading worldwide. China implemented a dynamic zero-COVID strategy and strict control measures after the outbreak. However, Guangzhou city ended closed-off management by the end of November 2022, leading to exposure to SARS-CoV-2. Despite most hospitalized patients being infected or co-infected with SARS-CoV-2, some remained uninfected. We report two cases of bacterial pneumonia with elevated globulin levels not infected with SARS-CoV-2, aiming to identify protection factors of SARS-CoV-2 infection and provide a scientific basis for SARS-CoV-2 prevention. Case presentation Case 1, a 92-year-old male, admitted on October 21, 2022, developed worsening cough and sputum after aspiration, diagnosed with bacterial pneumonia with Pseudomonas aeruginosa, Escherichia coli (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAB) infections. He was treated with imipenem anti-infective therapy and mechanical ventilation, then switched to a combination of meropenem, voriconazole and amikacin anti-infective therapy due to recurrent infections and septic shock, and died of sepsis on 8 January 2023. Case 2 is an 82-year-old male admitted on 30 September 2022, with recurrent cough, sputum, and shortness of breath, diagnosed with bacterial pneumonia with carbapenem-resistant Klebsiella pneumoniae (CRKP) and Mycobacterium pneumoniae infections. He was treated with ventilator-assisted ventilation, meropenem, amikacin, tigecycline and mucomycin nebulization and discharged with improvement on 26 October. He was readmitted on 21 November 2022 and diagnosed with bacterial pneumonia. He was treated with cefoperazone sulbactam, amikacin, meropenem and fluconazole and discharged on 31 December. Neither patient was infected with SARS-CoV-2 during hospitalization. Notably, their globulin levels were elevated before SARS-CoV-2 exposure, gradually decreasing afterward. Conclusions Patients with bacterial pneumonia with high globulin levels likely have large amounts of immunoglobulin, and that immunoglobulin cross-reactivity causes this protein to be involved in clearing SARS-CoV-2 and preventing infection. Therefore, bacterial pneumonia patients with high globulin levels included in this study were not infected with SARS-CoV-2. After exposure to SARS-CoV-2, the amount of globulin in the patient's body was reduced because it was used to clear SARS-CoV-2. The results of this study are expected to provide a theoretical basis for the study of the mechanism of prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qi Zhong
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qiu-Mei Lin
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hong-Bin Long
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Cai-Xia Liao
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiao-Xiao Sun
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Miao-du Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Zhang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yi-Hua Huang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shi-Min Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Shou Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Focosi D. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities. Curr Top Microbiol Immunol 2024. [PMID: 39126484 DOI: 10.1007/82_2024_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 have been widely deployed in the ongoing COVID-19 pandemic. I review here the impact of those therapeutics in the early pandemic, ranging from structural classification to outcomes in clinical trials to in vitro and in vivo evidence of basal and treatment-emergent immune escape. Unfortunately, the Omicron variant of concern has completely reset all achievements so far in mAb therapy for COVID-19. Despite the intrinsic limitations of this strategy, future developments such as respiratory delivery of further engineered mAb cocktails could lead to improved outcomes.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
5
|
Lidenge SJ, Yalcin D, Bennett SJ, Ngalamika O, Kweyamba BB, Mwita CJ, Tso FY, Mwaiselage J, West JT, Wood C. Viral Epitope Scanning Reveals Correlation between Seasonal HCoVs and SARS-CoV-2 Antibody Responses among Cancer and Non-Cancer Patients. Viruses 2024; 16:448. [PMID: 38543814 PMCID: PMC10975915 DOI: 10.3390/v16030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/01/2024] Open
Abstract
Seasonal coronaviruses (HCoVs) are known to contribute to cross-reactive antibody (Ab) responses against SARS-CoV-2. While these responses are predictable due to the high homology between SARS-CoV-2 and other CoVs, the impact of these responses on susceptibility to SARS-CoV-2 infection in cancer patients is unclear. To investigate the influence of prior HCoV infection on anti-SARS-CoV-2 Ab responses among COVID-19 asymptomatic individuals with cancer and controls without cancers, we utilized the VirScan technology in which phage immunoprecipitation and sequencing (PhIP-seq) of longitudinal plasma samples was performed to investigate high-resolution (i.e., epitope level) humoral CoV responses. Despite testing positive for anti-SARS-CoV-2 Ab in the plasma, a majority of the participants were asymptomatic for COVID-19 with no prior history of COVID-19 diagnosis. Although the magnitudes of the anti-SARS-CoV-2 Ab responses were lower in individuals with Kaposi sarcoma (KS) compared to non-KS cancer individuals and those without cancer, the HCoV Ab repertoire was similar between individuals with and without cancer independent of age, sex, HIV status, and chemotherapy. The magnitudes of the anti-spike HCoV responses showed a strong positive association with those of the anti-SARS-CoV-2 spike in cancer patients, and only a weak association in non-cancer patients, suggesting that prior infection with HCoVs might play a role in limiting SARS-CoV-2 infection and COVID-19 disease severity.
Collapse
Affiliation(s)
- Salum J. Lidenge
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | - Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Sydney J. Bennett
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| | - Owen Ngalamika
- Dermatology and Venereology Division, University Teaching Hospital, University of Zambia School of Medicine, Lusaka P.O. Box 50001, Zambia;
| | - Brenda B. Kweyamba
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
| | - Chacha J. Mwita
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Julius Mwaiselage
- Department of Clinical Research, Training, and Consultancy, Ocean Road Cancer Institute, Dar es Salaam P.O. Box 3592, Tanzania; (S.J.L.); (B.B.K.); (J.M.)
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| | - John T. West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.Y.); (S.J.B.); (F.Y.T.); (J.T.W.)
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| |
Collapse
|
6
|
Kumar S, Dasgupta S, Sajadi MM, Snyder GA, DeVico AL, Ray K. Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins. Viruses 2024; 16:407. [PMID: 38543772 PMCID: PMC10974403 DOI: 10.3390/v16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sameer Kumar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Mohammad M. Sajadi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Division of Clinical Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Gupta P, Sandhu D, Gupta V, Singhal L. Triple Burden: The Incorrigible Threat of Tuberculosis, HIV, and COVID-19. Infect Disord Drug Targets 2024; 24:1-7. [PMID: 37937570 DOI: 10.2174/0118715265259959231031104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
The Coronavirus-19 (COVID-19) hasn't seen the dawn since its emergence, however waxing and waning has resulted in the emergence of deadly variants. The effects of pandemic have not been limited to its virulence, but have rather conferred multiple collateral effects, especially in developing countries; thereby, designating it as a SYNDEMIC. The same culminated in neglect of non-COVID-19 conditions like tuberculosis (TB) and human immunodeficiency virus-acquired immunodeficiency syndrome (HIV/AIDS). Besides being the prognostic factor for severe COVID-19, these infections in hidden pockets served as reservoir for emergence of the deadly Omicron. Another significant impact of this juxtaposition was on the delivery of healthcare services for TB and HIV. The unanticipated COVID-19 pandemic turned the path of ongoing progress of elimination programs. Direct consequences of the COVID-19 pandemic were pronounced on diagnosis, treatment, and services for patients with TB and HIV. Essential TB services were reallocated to the COVID-19 rapid response task force. However, despite escalating the tribulations, this triple burden has simultaneously taught lessons to escalate the progress of halted programs. The pandemic has catalyzed an unusual level of collaboration among scientists, which can be exploited for TB and HIV. Fast-track diagnostics, digitalization, contact tracing, and vaccine development have enabled world to envision the same for TB/HIV. .
Collapse
Affiliation(s)
| | - Diljot Sandhu
- Department of Microbiology, GMCH-32, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, GMCH-32, Chandigarh, India
| | | |
Collapse
|
8
|
de Almeida DV, Cezar PA, Fernandes TFB, Schwarz MGA, Mendonça-Lima L, Giacoia-Gripp CBW, Côrtes FH, Lindenmeyer Guimarães M, Pilotto JH, De Sá NBR, Cazote ADS, Gomes LR, Quintana MDSB, Ribeiro-Alves M, Coelho LE, Geraldo KM, Ribeiro MPD, Cardoso SW, Grinsztejn B, Veloso VG, Morgado MG. The impact of early anti-SARS-CoV-2 antibody production on the length of hospitalization stay among COVID-19 patients. Microbiol Spectr 2023; 11:e0095923. [PMID: 37811977 PMCID: PMC10715214 DOI: 10.1128/spectrum.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The study provides valuable insights into the sociodemographic characteristics, clinical outcomes, and humoral immune response of those affected by the virus that has devastated every field of human life since 2019; the COVID-19 patients. Firstly, the association among clinical manifestations, comorbidities, and the production of neutralizing antibodies (Nabs) against SARS-CoV-2 is explored. Secondly, varying levels of Nabs among patients are revealed, and a significant correlation between the presence of Nabs and a shorter duration of hospitalization is identified, which highlights the potential role of Nabs in predicting clinical outcomes. Lastly, a follow-up conducted 7 months later demonstrates the progression and persistence of Nabs production in recovered unvaccinated individuals. The study contributes essential knowledge regarding the characteristics of the study population, the early humoral immune response, and the dynamics of Nabs production over time. These findings have significant implications for understanding the immune response to COVID-19 and informing clinical management approaches.
Collapse
Affiliation(s)
- Dalziza Victalina de Almeida
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Priscila Alves Cezar
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Nathalia Beatriz Ramos De Sá
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Andressa da Silva Cazote
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Larissa Rodrigues Gomes
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS)/Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas da População (INCT-IDPN), FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Kim Mattos Geraldo
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Maria Pia Diniz Ribeiro
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Valdiléa G Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Kumar S, Singh S, Chatterjee A, Bajpai P, Sharma S, Katpara S, Lodha R, Dutta S, Luthra K. Recognition determinants of improved HIV-1 neutralization by a heavy chain matured pediatric antibody. iScience 2023; 26:107579. [PMID: 37649696 PMCID: PMC10462834 DOI: 10.1016/j.isci.2023.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 μg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
10
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. Structure 2023; 31:801-811.e5. [PMID: 37167972 PMCID: PMC10171968 DOI: 10.1016/j.str.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Lilin Lai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
12
|
Elsner C, Appeltrath GA, Konik M, Parreuter J, Broecker-Preuss M, Krawczyk A, Esser S, Sammet S, Karsten CB. False-Positive Screening and Confirmatory HIV Diagnostic Test in a Patient with Cured SARS-CoV-2 Infection Is Not Mediated by Env/Spike Cross-Reactive Antibodies. Viruses 2023; 15:v15051161. [PMID: 37243248 DOI: 10.3390/v15051161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Acute SARS-CoV-2 infection has been associated with false-positive HIV screening tests. The underlying mechanism is unclear, and for clinical cases, evidence beyond a temporal connection is missing. However, several experimental studies point toward SARS-CoV-2 spike/HIV-1 envelope (Env) cross-reactive antibodies (Abs) as a cause. Here, we present the first case of an individual with convalescent SARS-CoV-2 infection testing false positive in both an HIV screening and confirmatory test. Longitudinal sampling showed that the phenomenon was temporary but lasted for at least 3 months before waning. After excluding a multitude of common determinants for assay interference, we further show by antibody depletion studies that SARS-CoV-2-spike-specific Abs did not cross-react with HIV-1 gp120 in the patient sample. No additional case of HIV test interference was identified in a cohort of 66 individuals who presented to a post-COVID-19 outpatient clinic. We conclude the SARS-CoV-2-associated HIV test interference to be a temporary process capable of disturbing both screening and confirmatory assays. The assay interference is short-lived and/or rare but should be considered by physicians as a possible explanation for unexpected HIV diagnostic results in patients with a recent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gwenllian A Appeltrath
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Margarethe Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Janine Parreuter
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martina Broecker-Preuss
- Laboratory Medicine Section, Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Clinic of Dermatology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stefanie Sammet
- Clinic of Dermatology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christina B Karsten
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
13
|
De La Torre-Tarazona E, González-Robles A, Cascajero A, Jiménez P, Miró JM, Sánchez-Palomino S, Alcamí J, Buzón MJ, García-Pérez J. Treatment with integrase inhibitors alters SARS-CoV-2 neutralization levels measured with HIV-based pseudotypes in people living with HIV. J Med Virol 2023; 95:e28543. [PMID: 36727646 DOI: 10.1002/jmv.28543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The presence of neutralizing antibodies (NAbs) is a major correlate of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Thus, different in vitro pseudoviruses-based assays have been described to detect NAbs against SARS-CoV-2. However, the determination of NAbs against SARS-CoV-2 in people living with HIV (PLWH) through HIV-based pseudoparticles could be influenced by cross-neutralization activity or treatment, impeding accurate titration of NAbs. Two assays were compared using replication-defective HIV or VSV-based particles pseudotyped with SARS-CoV-2 spike to measure NAbs in COVID-19-recovered and COVID-19-naïve PLWH. The assay based on HIV-pseudoparticles displayed neutralization activity in all COVID-19-recovered PLWH with a median neutralizing titer 50 (NT50) of 1417.0 (interquartile range [IQR]: 450.3-3284.0), but also in 67% of COVID-19-naïve PLWH (NT50: 631.5, IQR: 16.0-1535.0). Regarding VSV-pseudoparticles system, no neutralization was observed in COVID-19-naïve PLWH as expected, whereas in comparison with HIV-pseudoparticles assay lower neutralization titers were measured in 75% COVID-19-recovered PLWH (NT50: 100.5; IQR: 20.5-1353.0). Treatment with integrase inhibitors was associated with inaccurate increase in neutralization titers when HIV-based pseudoparticles were used. IgG purification and consequent elimination of drugs from samples avoided the interference with retroviral cycle and corrected the lack of specificity observed in HIV-pseudotyped assay. This study shows methodological alternatives based on pseudoviruses systems to determine specific SARS-CoV-2 neutralization titers in PLWH.
Collapse
Affiliation(s)
- Erick De La Torre-Tarazona
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
| | - Alba González-Robles
- Infectious Diseases Department, Hospital Universitario Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Almudena Cascajero
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
| | - Paloma Jiménez
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
| | - José María Miró
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
- HIV Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
- HIV Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
- HIV Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Maria José Buzón
- Infectious Diseases Department, Hospital Universitario Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Infecciosas, CIBERINFEC, Majadahonda, Spain
| |
Collapse
|
14
|
HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122089. [PMID: 36556453 PMCID: PMC9781275 DOI: 10.3390/life12122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused two major viral outbreaks during the last century. Two major aspects of HIV-1 and SARS-CoV-2 co-infection have been extensively investigated and deserve attention. First, the impact of the co-infection on the progression of disease caused by HIV-1 or SARS-CoV-2. Second, the impact of the HIV-1 anti-retroviral treatment on SARS-CoV-2 infection. In this review, we aim to summarize and discuss the works produced since the beginning of the SARS-CoV-2 pandemic ranging from clinical studies to in vitro experiments in the context of co-infection and drug development.
Collapse
|
15
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
16
|
Georgakilas GK, Galanopoulos AP, Tsinaris Z, Kyritsi M, Mouchtouri VA, Speletas M, Hadjichristodoulou C. Machine-Learning-Assisted Analysis of TCR Profiling Data Unveils Cross-Reactivity between SARS-CoV-2 and a Wide Spectrum of Pathogens and Other Diseases. BIOLOGY 2022; 11:1531. [PMID: 36290433 PMCID: PMC9598299 DOI: 10.3390/biology11101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
Abstract
During the last two years, the emergence of SARS-CoV-2 has led to millions of deaths worldwide, with a devastating socio-economic impact on a global scale. The scientific community's focus has recently shifted towards the association of the T cell immunological repertoire with COVID-19 progression and severity, by utilising T cell receptor sequencing (TCR-Seq) assays. The Multiplexed Identification of T cell Receptor Antigen (MIRA) dataset, which is a subset of the immunoACCESS study, provides thousands of TCRs that can specifically recognise SARS-CoV-2 epitopes. Our study proposes a novel Machine Learning (ML)-assisted approach for analysing TCR-Seq data from the antigens' point of view, with the ability to unveil key antigens that can accurately distinguish between MIRA COVID-19-convalescent and healthy individuals based on differences in the triggered immune response. Some SARS-CoV-2 antigens were found to exhibit equal levels of recognition by MIRA TCRs in both convalescent and healthy cohorts, leading to the assumption of putative cross-reactivity between SARS-CoV-2 and other infectious agents. This hypothesis was tested by combining MIRA with other public TCR profiling repositories that host assays and sequencing data concerning a plethora of pathogens. Our study provides evidence regarding putative cross-reactivity between SARS-CoV-2 and a wide spectrum of pathogens and diseases, with M. tuberculosis and Influenza virus exhibiting the highest levels of cross-reactivity. These results can potentially shift the emphasis of immunological studies towards an increased application of TCR profiling assays that have the potential to uncover key mechanisms of cell-mediated immune response against pathogens and diseases.
Collapse
Affiliation(s)
- Georgios K. Georgakilas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Laboratory of Genetics, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Achilleas P. Galanopoulos
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | - Zafeiris Tsinaris
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | | |
Collapse
|
17
|
Kumar S, Patel A, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Davis-Gardner ME, Edara VV, Linderman S, Nayak K, Dixit K, Sharma P, Bajpai P, Singh V, Frank F, Cheedarla N, Verkerke HP, Neish AS, Roback JD, Mantus G, Goel PK, Rahi M, Davis CW, Wrammert J, Godbole S, Henry AR, Douek DC, Suthar MS, Ahmed R, Ortlund E, Sharma A, Murali-Krishna K, Chandele A. Structural insights for neutralization of Omicron variants BA.1, BA.2, BA.4, and BA.5 by a broadly neutralizing SARS-CoV-2 antibody. SCIENCE ADVANCES 2022; 8:eadd2032. [PMID: 36197988 PMCID: PMC9534492 DOI: 10.1126/sciadv.add2032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, by characterizing several human monoclonal antibodies (mAbs) isolated from single B cells of the COVID-19–recovered individuals in India who experienced ancestral Wuhan strain (WA.1) of SARS-CoV-2 during early stages of the pandemic, we found a receptor binding domain (RBD)–specific mAb 002-S21F2 that has rare gene usage and potently neutralized live viral isolates of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron sublineages (BA.1, BA.2, BA.2.12.1, BA.4, and BA.5) with IC
50
ranging from 0.02 to 0.13 μg/ml. Structural studies of 002-S21F2 in complex with spike trimers of Omicron and WA.1 showed that it targets a conformationally conserved epitope on the outer face of RBD (class 3 surface) outside the ACE2-binding motif, thereby providing a mechanistic insights for its broad neutralization activity. The discovery of 002-S21F2 and the broadly neutralizing epitope it targets have timely implications for developing a broad range of therapeutic and vaccine interventions against SARS-CoV-2 variants including Omicron sublineages.
Collapse
Affiliation(s)
- Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lilin Lai
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi-110 016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Meredith E. Davis-Gardner
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Vanshika Singh
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P. Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grace Mantus
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Pawan Kumar Goel
- Shaheed Hasan Khan Mewat Government Medical College, Haryana, India
| | - Manju Rahi
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi-110 029, India
| | - Carl W. Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Eric Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi-110 077, India
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
- Department of Pediatrics, Emory University School of Medicine, Emory University Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi-110 067, India
| |
Collapse
|
18
|
Zanella I, Degli Antoni M, Marchese V, Castelli F, Quiros-Roldan E. Non-neutralizing antibodies: Deleterious or propitious during SARS-CoV-2 infection? Int Immunopharmacol 2022; 110:108943. [PMID: 35753123 PMCID: PMC9189100 DOI: 10.1016/j.intimp.2022.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Antibody-dependent enhancement (ADE) is a complex phenomenon mediated by antibodies, frequently pre-existing non-neutralizing or sub-neutralizing antibodies. In the course of infectious diseases, ADE may be responsible for worsening the clinical course of the disease by increasing the virulence of pathogens (ADE of infection) or enhancing disease severity (ADE of disease). Here we reviewed the mechanisms thought to be behind the ADE phenomenon and its potential relationship with COVID-19 severity. Since the early COVID-19 epidemics, ADE has been mentioned as a possible mechanism involved in severe COVID-19 disease and, later, as a potential risk in the case of infection after vaccination. However, current data do not support its role in disease severity, both after infection and reinfection.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy,Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Melania Degli Antoni
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Valentina Marchese
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
19
|
Habibzadeh F, Chumakov K, Sajadi MM, Yadollahie M, Stafford K, Simi A, Kottilil S, Hafizi-Rastani I, Gallo RC. Use of oral polio vaccine and the incidence of COVID-19 in the world. PLoS One 2022; 17:e0265562. [PMID: 35298546 PMCID: PMC8929581 DOI: 10.1371/journal.pone.0265562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background Several live attenuated vaccines were shown to provide temporary protection against a variety of infectious diseases through stimulation of the host innate immune system. Objective To test the hypothesis that countries using oral polio vaccine (OPV) have a lower cumulative number of cases diagnosed with COVID-19 per 100,000 population (CP100K) compared with those using only inactivated polio vaccine (IPV). Methods In an ecological study, the CP100K was compared between countries using OPV vs IPV. We used a random-effect meta-analysis technique to estimate the pooled mean for CP100K. We also used negative binomial regression with CP100K as the dependent variable and the human development index (HDI) and the type of vaccine used as independent variables. Results The pooled estimated mean CP100K was 4970 (95% CI 4030 to 5900) cases per 100,000 population for countries using IPV, significantly (p<0.001) higher than that for countries using OPV—1580 (1190 to 1960). Countries with higher HDI prefer to use IPV; those with lower HDI commonly use OPV. Both HDI and the type of vaccine were independent predictors of CP100K. Use of OPV compared to IPV could independently decrease the CP100K by an average of 30% at the mean HDI of 0.72. Conclusions Countries using OPV have a lower incidence of COVID-19 compared to those using IPV. This might suggest that OPV may either prevent SARS-CoV-2 infection at individual level or slow down the transmission at the community level.
Collapse
Affiliation(s)
- Farrokh Habibzadeh
- Global Virus Network, Middle East Region, Shiraz, Iran
- Research and Development Headquarters, Petroleum Industry Health Organization, Shiraz, Iran
| | - Konstantin Chumakov
- Office of Vaccines Research and Review, Food and Drug Administration, Global Virus Network Center of Excellence, Silver Spring, Maryland, United States of America
| | - Mohammad M. Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Global Virus Network, Baltimore, Maryland, United States of America
| | | | - Kristen Stafford
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Ashraf Simi
- Research and Development Headquarters, Petroleum Industry Health Organization, Shiraz, Iran
| | - Shyamasundaran Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Iman Hafizi-Rastani
- Research and Development Headquarters, Petroleum Industry Health Organization, Shiraz, Iran
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Global Virus Network, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|