1
|
Wang F, Gao Z, Chen B, Jiang Z, Renner DM, Li J, Tolufashe G, Du Y, Guo JT, Chang J. Modes of action of a small molecule antiviral compound targeting yellow fever virus NS4B protein. Proc Natl Acad Sci U S A 2025; 122:e2505498122. [PMID: 40378003 DOI: 10.1073/pnas.2505498122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Yellow fever virus (YFV) replicates its RNA genome in membranous vesicles derived from the invagination of endoplasmic reticulum membranes, designated as replication organelles (ROs). Nonstructural protein 4B (NS4B) of flaviviruses play essential roles in the biogenesis of ROs and evasion of innate immune responses. We report herein that the binding of an antiviral agent, acetic acid benzodiazepine (BDAA), to YFV NS4B not only rapidly inhibits YFV RNA synthesis, but also induces the activation of cytoplasmic double-stranded RNA (dsRNA)-sensing pathways to accelerate the apoptosis of infected cells. Genetic analyses revealed that all the three cytoplasmic dsRNA-sensing pathways contribute to YFV induction of apoptosis, whereas only retinoic acid-inducible gene I-like receptors and RNase L pathways are required for BDAA acceleration of infected cell death. Our findings support the notion that BDAA binding of NS4B impairs the integrity of ROs, leading to the inhibition of viral RNA synthesis and exposure of viral RNA replication intermediates for the activation of dsRNA sensors and acceleration of infected cell apoptosis. The unprecedented modes of action support the ongoing development of a potent BDAA derivative as a therapeutic agent of yellow fever that continues threatening the lives of millions of people.
Collapse
Affiliation(s)
- Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Bo Chen
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | | | - Jiaqi Li
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA 18902
| | | |
Collapse
|
2
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. Mol Cell 2025; 85:1147-1161.e9. [PMID: 39919747 PMCID: PMC11931551 DOI: 10.1016/j.molcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first-responder" cells during West Nile virus infection, we found that specific accumulation of antigenomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in first-responder cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late time points of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that, although most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
Affiliation(s)
| | - Jonathan Wilson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Joshua M Ames
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Caleb Stokes
- Department of Immunology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Dante Moreno
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Noa Etzyon
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA; Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, USA; Institute on Infectious Diseases, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
4
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
5
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
6
|
Kiemel D, Kroell ASH, Denolly S, Haselmann U, Bonfanti JF, Andres JI, Ghosh B, Geluykens P, Kaptein SJF, Wilken L, Scaturro P, Neyts J, Van Loock M, Goethals O, Bartenschlager R. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat Commun 2024; 15:6080. [PMID: 39030239 PMCID: PMC11271582 DOI: 10.1038/s41467-024-50437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.
Collapse
Affiliation(s)
- Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ann-Sophie Helene Kroell
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Evotec, Toulouse, France
| | - Jose Ignacio Andres
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Toledo, Spain
| | - Brahma Ghosh
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Spring House, PA, USA
| | | | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
7
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
8
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
9
|
Kazakova E, Lane TR, Jones T, Puhl AC, Riabova O, Makarov V, Ekins S. 1-Sulfonyl-3-amino-1 H-1,2,4-triazoles as Yellow Fever Virus Inhibitors: Synthesis and Structure-Activity Relationship. ACS OMEGA 2023; 8:42951-42965. [PMID: 38024733 PMCID: PMC10653066 DOI: 10.1021/acsomega.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Yellow fever virus (YFV) transmitted by infected mosquitoes causes an acute viral disease for which there are no approved small-molecule therapeutics. Our recently developed machine learning models for YFV inhibitors led to the selection of a new pyrazolesulfonamide derivative RCB16003 with acceptable in vitro activity. We report that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class, which was recently identified as active non-nucleoside reverse transcriptase inhibitors against HIV-1, can also be repositioned as inhibitors of yellow fever virus replication. As compared to other Flaviviridae or Togaviridae family viruses tested, both compounds RCB16003 and RCB16007 demonstrate selectivity for YFV over related viruses, with only RCB16007 showing some inhibition of the West Nile virus (EC50 7.9 μM, CC50 17 μM, SI 2.2). We also describe the absorption, distribution, metabolism, and excretion (ADME) in vitro and pharmacokinetics (PK) for RCB16007 in mice. This compound had previously been shown to not inhibit hERG, and we now describe that it has good metabolic stability in mouse and human liver microsomes, low levels of CYP inhibition, high protein binding, and no indication of efflux in Caco-2 cells. A single-dose oral PK study in mice has a T1/2 of 3.4 h and Cmax of 1190 ng/mL, suggesting good availability and stability. We now propose that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class may be prioritized for in vivo efficacy testing against YFV.
Collapse
Affiliation(s)
- Elena Kazakova
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thane Jones
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Vadim Makarov
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Ren H, Wang J, Tang H, Qian X, Xia B, Luo Z, Xu Z, Qi Z, Zhao P. Tiratricol inhibits yellow fever virus replication through targeting viral RNA-dependent RNA polymerase of NS5. Antiviral Res 2023; 219:105737. [PMID: 37879570 DOI: 10.1016/j.antiviral.2023.105737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Yellow fever virus (YFV) infection is a major public concern that threatens a large population in South America and Africa. No specific antiviral drugs are available for treating yellow fever. Here, we report that tiratricol (triiodothyroacetic acid, TRIAC), a clinically approved drug used to treat thyroid hormone resistance syndrome (THRS), is a potent YFV inhibitor both in host cells and in animal models.An in vitro study demonstrates that TRIAC remarkably suppresses viral RNA synthesis and protein expression in a dose-dependent manner in human hepatoma cell lines (Huh-7) with an EC50 value of 2.07 μM and a CC50 value of 385.77 μM respectively. The surface plasmon resonance assay and molecular docking analysis indicate that TRIAC hinders viral replication by binding to the RNA-dependent RNA polymerase (RdRp) domain of viral nonstructural protein NS5, probably through interacting with the active sites of RdRp.The inhibitory effect of TRIAC in vivo is also confirmed in 3-week old C57BL/6 mice challenged with YFV infection, from which the survival of the mice as well as lesions and infection in their tissues and serum issignificantly promoted following oral administration of TRIAC (0.2 mg/kg/day). Additionally, TRIAC shows a broad-spectrum antiviral activity against multiple flaviviruses such as TBEV, WNV,ZIKV, andJEV in vitro. Our data demonstrate that the TH analogue TRIAC is an effective anti-YFV compound and may act as a potential therapeutic candidate for the treatment of YFV infection if its clinical importance is determined in patients in future.
Collapse
Affiliation(s)
- Hao Ren
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Jiaqi Wang
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Zhenghan Luo
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Zhenghao Xu
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China.
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, China.
| |
Collapse
|
11
|
Jaeger AS, Marano J, Riemersma KK, Castaneda D, Pritchard EM, Pritchard JC, Bohm EK, Baczenas JJ, O'Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. J Virol 2023; 97:e0116223. [PMID: 37800949 PMCID: PMC10653995 DOI: 10.1128/jvi.01162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kasen K. Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Castaneda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Elise M. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
12
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
van den Elsen K, Chew BLA, Ho JS, Luo D. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets. Curr Opin Virol 2023; 59:101305. [PMID: 36870091 PMCID: PMC10023477 DOI: 10.1016/j.coviro.2023.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on the recent advances in understanding viral nonstructural (NS) proteins as antiviral drug targets. We briefly summarize the experimental structures and predicted models of flaviviral NS proteins and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins and provide an update about the latest development. NS4B emerges as one of the most promising drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other pathogenic flaviviruses may be available very soon.
Collapse
Affiliation(s)
- Kaïn van den Elsen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jun Sheng Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
14
|
Jaeger AS, Marano J, Riemersma K, Castañeda D, Pritchard E, Pritchard J, Bohm EK, Baczenas JJ, O’Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: Adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533515. [PMID: 36993525 PMCID: PMC10055270 DOI: 10.1101/2023.03.20.533515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Zika virus (ZIKV) is now in a post-pandemic period, for which the potential for re-emergence and future spread is unknown. Adding to this uncertainty is the unique capacity of ZIKV to directly transmit between humans via sexual transmission. Recently, we demonstrated that direct transmission of ZIKV between vertebrate hosts leads to rapid adaptation resulting in enhanced virulence in mice and the emergence of three amino acid substitutions (NS2A-A117V, NS2A-A117T, and NS4A-E19G) shared among all vertebrate-passaged lineages. Here, we further characterized these host-adapted viruses and found that vertebrate-passaged viruses also have enhanced transmission potential in mosquitoes. To understand the contribution of genetic changes to the enhanced virulence and transmission phenotype, we engineered these amino acid substitutions, singly and in combination, into a ZIKV infectious clone. We found that NS4A-E19G contributed to the enhanced virulence and mortality phenotype in mice. Further analyses revealed that NS4A-E19G results in increased neurotropism and distinct innate immune signaling patterns in the brain. None of the substitutions contributed to changes in transmission potential in mosquitoes. Together, these findings suggest that direct transmission chains could enable the emergence of more virulent ZIKV strains without compromising mosquito transmission capacity, although the underlying genetics of these adaptations are complex.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Kasen Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Elise Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Julia Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
15
|
Abstract
Flaviviruses are vector-borne pathogens capable of causing devastating human diseases. The re-emergence of Zika in 2016 notoriously led to a widescale epidemic in the Americas. New daunting evidence suggests that a single mutation in Zika virus genome may increase transmission and pathogenesis, further highlighting the need to be prepared for flavivirus outbreaks. Dengue, in particular infects about 400 million people each year, leading to reoccurring local outbreaks. Public health efforts to mitigate flavivirus transmission is largely dependent on vector control strategies, as only a limited number of flavivirus vaccines have been developed thus far. There are currently no commercially available antivirals for flaviviruses, leaving supportive care as the primary treatment option. In this review, we will briefly paint a broad picture of the flavivirus landscape in terms of therapeutics, with particular focus on viral targets, promising novel compounds entering the drug discovery pipeline, as well as model systems for evaluating drug efficacy.
Collapse
|
16
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|