1
|
Ouyang WO, Lv H, Liu W, Lei R, Mou Z, Pholcharee T, Talmage L, Tong M, Wang Y, Dailey KE, Gopal AB, Choi D, Ardagh MR, Rodriguez LA, Dai X, Wu NC. High-throughput synthesis and specificity characterization of natively paired antibodies using oPool + display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610421. [PMID: 39257766 PMCID: PMC11383711 DOI: 10.1101/2024.08.30.610421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Antibody discovery is crucial for developing therapeutics and vaccines as well as understanding adaptive immunity. However, the lack of approaches to synthesize antibodies with defined sequences in a high-throughput manner represents a major bottleneck in antibody discovery. Here, we presented oPool+ display, a high-throughput cell-free platform that combined oligo pool synthesis and mRNA display to rapidly construct and characterize many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool+ display to probe the binding specificity of >300 uncommon influenza hemagglutinin (HA) antibodies against 9 HA variants through 16 different screens. Over 5,000 binding tests were performed in 3-5 days with further scaling potential. Follow-up structural analysis of two HA stem antibodies revealed the previously unknown versatility of IGHD3-3 gene segment in recognizing the HA stem. Overall, this study established an experimental platform that not only accelerate antibody characterization, but also enable unbiased discovery of antibody molecular signatures.
Collapse
Affiliation(s)
- Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenkan Liu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Tossapol Pholcharee
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meixuan Tong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katrine E Dailey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B Gopal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madison R Ardagh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lucia A Rodriguez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Hastie KM, Salie ZL, Ke Z, Halfmann PJ, DeWald LE, McArdle S, Grinyó A, Davidson E, Schendel SL, Hariharan C, Norris MJ, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook MR, Doranz B, Crozier I, Kawaoka Y, Branco LM, Kuhn JH, Briggs JAG, Worwa G, Davis CW, Ahmed R, Saphire EO. Anti-Ebola virus mAb 3A6 protects highly viremic animals from fatal outcome via binding GP (1,2) in a position elevated from the virion membrane. Nat Commun 2025; 16:1293. [PMID: 39900911 PMCID: PMC11791206 DOI: 10.1038/s41467-025-56452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro and are protective in a mouse model of EVD. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Using X-ray crystallography and cryo-electron tomography of mAb 3A6 complexed with its stalk-MPER epitope, we reveal a previously undescribed mechanism in which 3A6 binds to a conformation of GP1,2 that is lifted from the virion membrane. We further show that in both domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high-viremia advanced disease stages and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. The findings reported here can guide design of next-generation highly potent anti-EBOV therapeutics and vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Ebolavirus/immunology
- Ebolavirus/drug effects
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Hemorrhagic Fever, Ebola/prevention & control
- Macaca mulatta
- Guinea Pigs
- Virion/immunology
- Virion/metabolism
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Mice
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Envelope Proteins/chemistry
- Cryoelectron Microscopy
- Viremia/immunology
- Viremia/prevention & control
- Humans
- Crystallography, X-Ray
- Epitopes/immunology
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zhe Li Salie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Eli Lilly, San Diego, CA, USA
| | - Zunlong Ke
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Lisa Evans DeWald
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sara McArdle
- Microscopy Core, La Jolla Institute for Immunology, La Jolla, La Jolla, CA, USA
| | - Ariadna Grinyó
- Integral Molecular, Philadelphia, PA, USA
- Vall d'Hebron Institute of Oncology, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael J Norris
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Arcturus Therapeutics, San Diego, CA, USA
| | | | - Xiaoli Xiong
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Science Park, Guangzhou, Guangdong Province, China
| | | | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | | | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - John A G Briggs
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany.
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, USA.
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Sastalla I, Kwon K, Huntley C, Taylor K, Brown L, Samuel T, Zou L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13:87. [PMID: 39852866 PMCID: PMC11768834 DOI: 10.3390/vaccines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
On 14-15 November 2023, the National Institute of Allergy and Infectious Diseases (NIAID) organized a workshop entitled "Systematic Approaches for ESKAPE Bacteria Antigen Discovery". The goal of the workshop was to engage scientists from diverse relevant backgrounds to explore novel technologies that can be harnessed to identify and address current roadblocks impeding advances in antigen and vaccine discoveries for the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The workshop consisted of four sessions that addressed ESKAPE infections, antigen discovery and vaccine efforts, and new technologies including systems immunology and vaccinology approaches. Each session was followed by a panel discussion. In total, there were over 260 in-person and virtual attendees, with high levels of engagement. This report provides a summary of the event and highlights challenges and opportunities in the field of ESKAPE vaccine discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanling Zou
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (I.S.); (K.K.); (C.H.); (K.T.); (L.B.); (T.S.)
| |
Collapse
|
4
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
5
|
Harrison TE, Alam N, Farrell B, Quinkert D, Lias AM, King LDW, Barfod LK, Draper SJ, Campeotto I, Higgins MK. Rational structure-guided design of a blood stage malaria vaccine immunogen presenting a single epitope from PfRH5. EMBO Mol Med 2024; 16:2539-2559. [PMID: 39223355 PMCID: PMC11473951 DOI: 10.1038/s44321-024-00123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope. Here we use structure-guided approaches to design a small synthetic immunogen, RH5-34EM which recapitulates this epitope. Structural biology and biophysics demonstrate that RH5-34EM is correctly folded and binds neutralising monoclonal antibodies with nanomolar affinity. In immunised rats, RH5-34EM induces PfRH5-targeting antibodies that inhibit parasite growth. While PfRH5-specific antibodies were induced at a lower concentration by RH5-34EM than by PfRH5, RH5-34EM induced antibodies that were a thousand-fold more growth-inhibitory as a factor of PfRH5-specific antibody concentration. Finally, we show that priming with RH5-34EM and boosting with PfRH5 achieves the best balance between antibody quality and quantity and induces the most effective growth-inhibitory response. This rationally designed vaccine immunogen is now available for use as part of future malaria vaccines, alone or in combination with other immunogens.
Collapse
Affiliation(s)
- Thomas E Harrison
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Nawsad Alam
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Brendan Farrell
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Doris Quinkert
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Amelia M Lias
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Lloyd D W King
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Lea K Barfod
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Ivan Campeotto
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
- School of Biosciences, Division of Microbiology, Brewing and Biotechnology, University of Nottingham, Sutton Bonnington Campus, Sutton Bonington, LE12 5RD, UK.
| | - Matthew K Higgins
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Peter AS, Hoffmann DS, Klier J, Lange CM, Moeller J, Most V, Wüst CK, Beining M, Gülesen S, Junker H, Brumme B, Schiffner T, Meiler J, Schoeder CT. Strategies of rational and structure-driven vaccine design for Arenaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105626. [PMID: 38908736 PMCID: PMC12010953 DOI: 10.1016/j.meegid.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.
Collapse
Affiliation(s)
- Antonia Sophia Peter
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Dieter S Hoffmann
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johannes Klier
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina M Lange
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
| | - Victoria Most
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina K Wüst
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Molecular Medicine Studies, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Max Beining
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; SECAI, School of Embedded Composite Artificial Intelligence, Dresden/Leipzig, Germany
| | - Sevilay Gülesen
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Hannes Junker
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Birke Brumme
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Torben Schiffner
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; The Scripps Research Institute, Department for Immunology and Microbiology, La Jolla, CA, United States
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany.
| |
Collapse
|
7
|
Schiffner T, Phung I, Ray R, Irimia A, Tian M, Swanson O, Lee JH, Lee CCD, Marina-Zárate E, Cho SY, Huang J, Ozorowski G, Skog PD, Serra AM, Rantalainen K, Allen JD, Baboo S, Rodriguez OL, Himansu S, Zhou J, Hurtado J, Flynn CT, McKenney K, Havenar-Daughton C, Saha S, Shields K, Schultze S, Smith ML, Liang CH, Toy L, Pecetta S, Lin YC, Willis JR, Sesterhenn F, Kulp DW, Hu X, Cottrell CA, Zhou X, Ruiz J, Wang X, Nair U, Kirsch KH, Cheng HL, Davis J, Kalyuzhniy O, Liguori A, Diedrich JK, Ngo JT, Lewis V, Phelps N, Tingle RD, Spencer S, Georgeson E, Adachi Y, Kubitz M, Eskandarzadeh S, Elsliger MA, Amara RR, Landais E, Briney B, Burton DR, Carnathan DG, Silvestri G, Watson CT, Yates JR, Paulson JC, Crispin M, Grigoryan G, Ward AB, Sok D, Alt FW, Wilson IA, Batista FD, Crotty S, Schief WR. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat Immunol 2024; 25:1073-1082. [PMID: 38816615 PMCID: PMC11147780 DOI: 10.1038/s41590-024-01833-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Collapse
Affiliation(s)
- Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Adriana Irimia
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun D Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - So Yeon Cho
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jiachen Huang
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Skog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Andreia M Serra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia T Flynn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chi-Hui Liang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Toy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Fabian Sesterhenn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaoya Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer Ruiz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jillian Davis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan D Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Skye Spencer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Marc A Elsliger
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Generate Biomedicines, Inc., Somerville, MA, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| |
Collapse
|
8
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
9
|
Saphire E, Salie ZL, Ke Z, Halfmann P, DeWald LE, McArdle S, Grinyo A, Davidson E, Schendel S, Hariharan C, Norris M, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook M, Doranz B, Crozier I, Hastie K, Kawaoka Y, Branco L, Kuhn J, Briggs J, Worwa G, Davis C, Ahmed R. Anti-Ebola virus mAb 3A6 with unprecedented potency protects highly viremic animals from fatal outcome and physically lifts its glycoprotein target from the virion membrane. RESEARCH SQUARE 2023:rs.3.rs-3722563. [PMID: 38196595 PMCID: PMC10775387 DOI: 10.21203/rs.3.rs-3722563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Moreover, their in vivo efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP1,2 MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP1,2 that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | | | - Michael Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health (NIH)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
11
|
Rijal P, Donnellan FR. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr Opin Virol 2023; 61:101339. [PMID: 37392670 DOI: 10.1016/j.coviro.2023.101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/28/2023] [Indexed: 07/03/2023]
Abstract
The filovirus vaccine and the therapeutic monoclonal antibody (mAb) research have made substantial progress. However, existing vaccines and mAbs approved for use in humans are specific to Zaire ebolavirus (EBOV). Since other Ebolavirus species are a continuing threat to public health, the search for broadly protective mAbs has drawn attention. Here, we review viral glycoprotein-targeting mAbs that have proved their broader protective efficacy in animal models. MBP134AF, the most advanced of these new-generation mAb therapies, has recently been deployed in Uganda during the Sudan ebolavirus outbreak. Furthermore, we discuss the measures associated with enhancing antibody therapies and the risks associated with them, including the rise of escape mutations following the mAb treatment and naturally occurring EBOV variants.
Collapse
Affiliation(s)
- Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, United Kingdom.
| | - Francesca R Donnellan
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, UK.
| |
Collapse
|
12
|
Woods H, Schiano DL, Aguirre JI, Ledwitch KV, McDonald EF, Voehler M, Meiler J, Schoeder CT. Computational modeling and prediction of deletion mutants. Structure 2023; 31:713-723.e3. [PMID: 37119820 PMCID: PMC10247520 DOI: 10.1016/j.str.2023.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha motif domain and investigated the structural and thermodynamic changes using 2D NMR spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to model and classify observed deletion mutants. We show a method using AlphaFold2 followed by RosettaRelax performs the best overall. In addition, a metric containing pLDDT values and Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this method on other datasets and show they hold for proteins known to harbor disease-causing deletion mutations.
Collapse
Affiliation(s)
- Hope Woods
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Dominic L Schiano
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan I Aguirre
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Kaitlyn V Ledwitch
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Eli F McDonald
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Markus Voehler
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany.
| | - Clara T Schoeder
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany.
| |
Collapse
|