1
|
Li Z, Qin L, Xu X, Chen R, Zhang G, Wang B, Li B, Chu XM. Immune modulation: the key to combat SARS-CoV-2 induced myocardial injury. Front Immunol 2025; 16:1561946. [PMID: 40438117 PMCID: PMC12116346 DOI: 10.3389/fimmu.2025.1561946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the Coronavirus disease 2019 (COVID-19) pandemic, has posed significant healthcare challenges. In addition to respiratory complications, it has led to severe damage in other organs, particularly the cardiovascular system. Of which, myocardial injury is increasingly recognized as a most significant complication, contributing to the high mortality. Recent research indicates the pivotal role of immune dysregulation in mediating myocardial injury in patients infected with SARS-CoV-2. In this review, we provide a comprehensive analysis of the immune mechanisms involved in SARS-CoV-2-induced myocardial damage, focusing on the roles of key immune cells and molecules that contribute to this pathological process. Aiming at mitigating the myocardial injury of COVID-19, we review immune-based treatments under evaluation in preclinical and clinical trials. Along with talking about the similarities and differences in myocardial injury resulting from SARS-CoV-2, the Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV). This article provides a unique perspective on using past experiences to prevent myocardial injury in the face of ongoing virus mutations.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Yoshida A, Hashimoto Y, Akane H, Matsuyama S, Toyoda T, Ogawa K, Saito Y, Kikura-Hanajiri R, Arakawa N. Analysis of Stratifin Expression and Proteome Variation in a Rat Model of Acute Lung Injury. J Proteome Res 2025; 24:1941-1955. [PMID: 40021485 PMCID: PMC11976852 DOI: 10.1021/acs.jproteome.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Diffuse alveolar damage (DAD) is a pathological hallmark of severe interstitial lung diseases, such as acute respiratory distress syndrome (ARDS), and is linked to poor prognosis. Previously, we identified 14-3-3σ/stratifin (SFN) as a serum biomarker candidate for diagnosing DAD. To clarify the time-dependent relationship between SFN expression and DAD, we here investigated pathological and molecular changes in serum, bronchoalveolar lavage fluid (BALF), and lung tissue in an oleic acid (OA)-induced ARDS rat model. Acute alveolar edema was observed after OA administration, followed by alveolar epithelial cell proliferation and increased BALF and serum SFN levels. Proteomic analysis of lung tissue extracts revealed that proteins related to "inflammatory response" and "HIF-1 signaling," including plasminogen activator inhibitor-1, were markedly increased 3 h after acute lung injury, followed by a gradual decrease. Conversely, proteins associated with "cell cycle" and "p53 pathway," including SFN, showed a persistent increase starting at 3 h and peaking at 48 h. Western blotting and immunohistochemistry confirmed that SFN was expressed in a part of proliferated alveolar type-II cells, accompanied by p53 activation, an important event for differentiation into type-I cells. SFN may be a biomarker closely related to alveolar remodeling during the repair process after lung injury.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yuya Hashimoto
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Hirotoshi Akane
- Division
of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Shinichiro Matsuyama
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division
of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Kumiko Ogawa
- Division
of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yoshiro Saito
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Ruri Kikura-Hanajiri
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Noriaki Arakawa
- Division
of Medicinal Safety Science, National Institute
of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
3
|
Li S, Pan M, Zhao H, Li Y. Role of CCL2/CCR2 axis in pulmonary fibrosis induced by respiratory viruses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00036-2. [PMID: 39955168 DOI: 10.1016/j.jmii.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Respiratory virus infection is an important cause of both community acquired pneumonia and hospital-acquired pneumonia. Various respiratory viruses, including influenza virus, avian influenza virus, respiratory syncytial virus (RSV), SARS-CoV, MERS-CoV, and SARS-CoV-2, result in severe fibrosis sequelae after the acute phase. Since the COVID-19 pandemic, respiratory virus infection, as an important cause of pulmonary fibrosis, has attracted increasing attention around the world. Respiratory virus infection usually triggers robust inflammation responses, leading to large amounts of proinflammatory mediator production, such as chemokine (C-C motif) ligand 2 (CCL2), a critical chemokine involved in the recruitment of various inflammatory cells. Moreover, CCL2 plays a pivotal role in the pathogenesis of fibrosis progression, through regulating recruitment of bone marrow-derived monocytes and increasing the expression of extracellular matrix proteins. This review provided a concise overview of the common fibrosis sequelae after virus infection. Then we discussed the elevated levels of CCL2 in various respiratory virus infection, underscoring its potent profibrotic role. Targeting the CCL2/CCR2 axis holds promise for alleviating fibrosis sequelae post-acute virus infection and warrants further investigation.
Collapse
Affiliation(s)
- Shuangyan Li
- Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| | - Mingming Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
4
|
Warner BM, Vendramelli R, Boese AS, Audet J, Tailor N, Meilleur C, Glowach N, Willman M, Truong T, Moffat E, Tierney K, Kosak B, Dhanidina I, Engstrom J, Korczak B, McGowan I, Embury-Hyatt C, Kobasa D. Treatment with the CCR5 antagonist OB-002 reduces lung pathology, but does not prevent disease in a Syrian hamster model of SARS-CoV-2 infection. PLoS One 2025; 20:e0316952. [PMID: 39908288 PMCID: PMC11798459 DOI: 10.1371/journal.pone.0316952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
Since the emergence of SARS-CoV-2 and the COVID-19 pandemic, a wide range of treatment options have been evaluated in preclinical studies and clinical trials, with several being approved for use in humans. Immunomodulatory drugs have shown success in dampening the deleterious inflammatory response seen in severe COVID-19 patients, but there remains an urgent need for development of additional therapeutic options for COVID-19 treatment. A potential drug target is the CCR5-CCL5 axis, and blocking this pathway may protect against severe disease. Here we evaluated whether OB-002, an analog of human CCL5 and a potent antagonist of CCR5, provides therapeutic benefit in SARS-CoV-2 infected Syrian hamsters. Daily treatment with OB-002 altered immune gene transcription in the lungs, and reduced pathology following infection, but did not prevent weight loss or viral replication in the lungs of infected animals, even in combination with the antiviral drug remdesivir. Our data suggest that targeting the CCR5-CCL5 pathway in SARS-CoV-2 infection in hamsters is insufficient to significantly impact disease development in this model.
Collapse
Affiliation(s)
- Bryce M. Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Amrit S. Boese
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Courtney Meilleur
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nathan Glowach
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Marnie Willman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Thang Truong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Morales AE, Dong Y, Brown T, Baid K, Kontopoulos DG, Gonzalez V, Huang Z, Ahmed AW, Bhuinya A, Hilgers L, Winkler S, Hughes G, Li X, Lu P, Yang Y, Kirilenko BM, Devanna P, Lama TM, Nissan Y, Pippel M, Dávalos LM, Vernes SC, Puechmaille SJ, Rossiter SJ, Yovel Y, Prescott JB, Kurth A, Ray DA, Lim BK, Myers E, Teeling EC, Banerjee A, Irving AT, Hiller M. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature 2025; 638:449-458. [PMID: 39880942 PMCID: PMC11821529 DOI: 10.1038/s41586-024-08471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2024] [Indexed: 01/31/2025]
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.
Collapse
Affiliation(s)
- Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Yue Dong
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dimitrios -Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Arkadeb Bhuinya
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Xiaomeng Li
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ping Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yixin Yang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tanya M Lama
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sebastien J Puechmaille
- Institut Universitaire de France, Paris, France
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joseph B Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron T Irving
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Infection, Immunity and Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
- Department of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
6
|
Akulov AA, Silaeva AI, Varaksin MV, Butorin II, Lyapustin DN, Drokin RA, Kotovskaya SK, Zaykovskaya AV, Pyankov OV, Rusinov VL, Charushin VN, Chupakhin ON. Azolopyrimidine-Based Thioethers: Synthesis via Cross-Dehydrogenative C-S Coupling and In Silico Evaluation of Anti-SARS-CoV-2 Activity. Chempluschem 2025; 90:e202400594. [PMID: 39607271 DOI: 10.1002/cplu.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87 %. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.
Collapse
Affiliation(s)
- Alexey A Akulov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Anastasia I Silaeva
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Mikhail V Varaksin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Ilya I Butorin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Daniil N Lyapustin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Roman A Drokin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
| | - Svetlana K Kotovskaya
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Russian Federation
| | - Vladimir L Rusinov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Valery N Charushin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| | - Oleg N Chupakhin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620062, Ekaterinburg, Russian Federation
- Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., 620991, Ekaterinburg, Russian Federation
| |
Collapse
|
7
|
Biscu F, Zouzaf A, Cicia D, Pridans C, Matteoli G. Innate immunity champions: The diverse functions of macrophages. Eur J Immunol 2024; 54:e2451139. [PMID: 39308210 DOI: 10.1002/eji.202451139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
Macrophages are instrumental in maintaining tissue homeostasis, modulating inflammation, and driving regeneration. The advent of omics techniques has led to the identification of numerous tissue-specific macrophage subtypes, thereby introducing the concept of the "macrophage niche". This paradigm underscores the ability of macrophages to adapt their functions based on environmental cues, such as tissue-specific signals. This adaptability is closely linked to their metabolic states, which are crucial for their function and role in health and disease. Macrophage metabolism is central to their ability to switch between proinflammatory and anti-inflammatory states. In this regard, environmental factors, including the extracellular matrix, cellular interactions, and microbial metabolites, profoundly influence macrophage behavior. Moreover, diet and gut microbiota significantly impact macrophage function, with nutrients and microbial metabolites influencing their activity and contributing to conditions like inflammatory bowel disease. Targeting specific macrophage functions and their metabolic processes is leading to the development of novel treatments for a range of chronic inflammatory conditions. The exploration of macrophage biology enriches our understanding of immune regulation and holds the promise of innovative approaches to managing diseases marked by inflammation and immune dysfunction, offering a frontier for scientific and clinical advancement.
Collapse
Affiliation(s)
- Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anissa Zouzaf
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Donatella Cicia
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
9
|
Tian Q, Yan Z, Guo Y, Chen Z, Li M. Inflammatory Role of CCR1 in the Central Nervous System. Neuroimmunomodulation 2024; 31:173-182. [PMID: 39116843 DOI: 10.1159/000540460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemokine ligands and their corresponding receptors are essential for regulating inflammatory responses. Chemokine receptors can stimulate immune activation or inhibit/promote signaling pathways by binding to specific chemokine ligands. Among these receptors, CC chemokine receptor 1 (CCR1) is extensively studied as a G protein-linked receptor target, predominantly expressed in various leukocytes, and is considered a promising target for anti-inflammatory therapy. Furthermore, CCR1 is essential for monocyte extravasation and transportation in inflammatory conditions. Its involvement in inflammatory diseases of the central nervous system (CNS), including multiple sclerosis, Alzheimer's disease, and stroke, has been extensively studied along with its ligands. Animal models have demonstrated the beneficial effects resulting from inhibiting CCR1 or its ligands. SUMMARY This review demonstrates the significance of CCR1 in CNS inflammatory diseases, the molecules implicated in the inflammatory pathway, and potential drugs or molecules for treating CNS diseases. This evidence may offer new targets or strategies for treating inflammatory CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
He J, Lin X, Gao X, Luan H, Guo Y, Wang X, Tao C, Wang Q, Chen J. Novel artesunate and isatin hybrid CT3-1 suppresses collagen-induced arthritis through abrogating dendritic cell chemotaxis-induced by CCR5. Int Immunopharmacol 2024; 136:112264. [PMID: 38810308 DOI: 10.1016/j.intimp.2024.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chemotaxis and trafficking of dendritic cells (DCs) induced by cytokine receptors are crucial steps in rheumatoid arthritis (RA) pathogenesis. C-C chemokine receptor type 5 (CCR5) plays a key role in DC movement and has been implicated in multitudinous inflammatory and immunology diseases. Thus, targeting CCR5 to suppress DC chemotaxis is considered as a potential strategy for the management of RA. METHODS Herein, we first synthesized a new hybrid named CT3-1 which based on artesunate and isatin. Besides, we studied the regulating effectiveness of CT3-1 on bone marrow-derived DCs (BMDCs) and on collagen-induced arthritis (CIA) through RNA-seq analysis, cell function experiments in vitro and mice model in vivo. RESULTS The results shown that CT3-1 mainly reduced CCR5 expression of immature BMDCs and importantly inhibited immature BMDC migration induced by CCR5 in vitro, with no or minor influence on other functions of DCs, such as phagocytosis and maturation. In the mouse model, CT3-1 relieved arthritis severity and inhibited CIA development. Furthermore, CT3-1 intervention decreased the expression of CCR5 in DCs and reduced the proportion of DCs in the peripheral blood of CIA mice. CONCLUSIONS Our findings suggest that CCR5-induced chemotaxis and trafficking of immature DCs are important in RA. Targeting CCR5 and inhibiting immature DC chemotaxis may provide a novel choice for the treatment of RA and other similar autoimmune diseases. Moreover, we synthesized a new hybrid compound CT3-1 that could inhibit immature DC trafficking and effectively relieve RA by directly reducing the CCR5 expression of immature DCs.
Collapse
Affiliation(s)
- Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Huijie Luan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Yishan Guo
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs; The First Dongguan Affiliated Hospital and School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Cheng Tao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs; The First Dongguan Affiliated Hospital and School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| |
Collapse
|
11
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
12
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Chernov AS, Rodionov MV, Kazakov VA, Ivanova KA, Meshcheryakov FA, Kudriaeva AA, Gabibov AG, Telegin GB, Belogurov AA. CCR5/CXCR3 antagonist TAK-779 prevents diffuse alveolar damage of the lung in the murine model of the acute respiratory distress syndrome. Front Pharmacol 2024; 15:1351655. [PMID: 38449806 PMCID: PMC10915062 DOI: 10.3389/fphar.2024.1351655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1β/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/β, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC), A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Karina A. Ivanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Fedor A. Meshcheryakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Russian University of Medicine, Moscow, Russia
| |
Collapse
|
14
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
15
|
Chen CW, Chen LK, Chung YT, Liu SY, Chen SW, Chang YI, Hsieh PS, Juan CC. Cysteine-cysteine Chemokine Receptor Type 5 Plays a Critical Role in Exercise Performance by Regulating Mitochondrial Content in Skeletal Muscle. Inflammation 2023; 46:2089-2101. [PMID: 37436644 DOI: 10.1007/s10753-023-01864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Cysteine-cysteine chemokine receptor type 5 (CCR5) is thought to play an important role in the trafficking of lymphoid cells but has recently also been associated with AMPK signaling pathways that are implicated in energy metabolism in skeletal muscle. We hypothesized that genetic deletions of CCR5 would alter mitochondria content and exercise performance in mice. CCR5-/- and wild-type mice with the same genetic background were subjected to endurance exercise and grip strength tests. The soleus muscle was stained with immunofluorescence for myosin heavy chain 7 (MYH7) and succinate dehydrogenase (SDH) analysis as well as the expression of genes associated with muscle atrophy and mitochondrial oxidative phosphorylation were measured using qPCR. Although there were no differences in the weight of the soleus muscle between the CCR5-/- group and the wild-type mice, the CCR5-/- mice showed the following muscular dysfunctions: (i) decreased MYH7 percentage and cross-section area, (ii) higher myostatin and atrogin-1 mRNA levels, (iii) dropped expression of mitochondrial DNA-encoded electron respiratory chain genes (cytochrome B, cytochrome c oxidase subunit III, and ATP synthase subunit 6) as well as mitochondrial generation genes (PPARγ and PGC-1α), and (iv) lower SDH activity and exercise performance when compared with wild-type mice. In addition, genes associated with mitochondrial biogenesis (PGC-1α, PPARγ, and MFN2) and mitochondrial complex (ND4 and Cytb) were upregulated when the skeletal muscle cell line C2C12 was exposed to cysteine-cysteine chemokine ligand 4 (a ligand of CCR5) in vitro. These findings suggested that attenuation of endurance exercise performance is related to the loss of mitochondrial content and lower SDH activity of soleus muscle in CCR5 knockout mice. The present study provides evidence indicating that the chemokine receptor CCR5 might modulate the skeletal muscle metabolic energy system during exercise.
Collapse
Affiliation(s)
- Chien-Wei Chen
- International Sport Science Master's Program, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Luen-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan
| | - Yi-Ting Chung
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan
| | - Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan
| | - Shuoh-Wen Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan
| | - Yuan-I Chang
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., 112304, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Kim Y, Kim Y, Lim HJ, Kim DK, Park JH, Oh CM. Integrative single-cell transcriptome analysis provides new insights into post-COVID-19 pulmonary fibrosis and potential therapeutic targets. J Med Virol 2023; 95:e29201. [PMID: 37966390 DOI: 10.1002/jmv.29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The global COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 virus has resulted in a significant number of patients experiencing persistent symptoms, including post-COVID pulmonary fibrosis (PCPF). This study aimed to identify novel therapeutic targets for PCPF using single-cell RNA-sequencing data from lung tissues of COVID-19 patients, idiopathic pulmonary fibrosis (IPF) patients, and a rat transforming growth factor beta-1-induced fibrosis model treated with antifibrotic drugs. Patients with COVID-19 had lower alveolar macrophage counts than healthy controls, whereas patients with COVID-19 and IPF presented with elevated monocyte-derived macrophage counts. A comparative transcriptome analysis showed that macrophages play a crucial role in IPF and COVID-19 development and progression, and fibrosis- and inflammation-associated genes were upregulated in both conditions. Functional enrichment analysis revealed the upregulation of inflammation and proteolysis and the downregulation of ribosome biogenesis. Cholesterol efflux and glycolysis were augmented in both macrophage types. The study suggests that antifibrotic drugs may reverse critical lung fibrosis mediators in COVID-19. The results help clarify the molecular mechanisms underlying pulmonary fibrosis in patients with severe COVID-19 and IPF and highlight the potential efficacy of antifibrotic drugs in COVID-19 therapy. Collectively, all these findings may have significant implications for the development of new treatment strategies for PCPF.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyobin Julianne Lim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ji-Hwan Park
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Wojaczyńska E, Wojaczyński J. Sulfoxides in medicine. Curr Opin Chem Biol 2023; 76:102340. [PMID: 37307682 DOI: 10.1016/j.cbpa.2023.102340] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
In the review, current status of sulfoxides on the pharmaceutical market is discussed. In the first part of the article, natural sulfoxides will be described with a special focus on sulforaphane and amanitin, a mushroom toxin which has been developed as payload in antibody drug conjugates in the possible cancer treatment. Controversies associated with the medical use of dimethylsulfoxide are briefly described in the next section. In the part devoted to PPIs, the benefits of using pure enantiomers (chiral switch) are discussed. An interesting approach, repositioning of drugs is exemplified by new possible applications of modafinil and sulindac. The review is concluded by presentation of cenicriviroc and adezmapimod, both with the status of promising drug candidates.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370, Wrocław, Poland.
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383, Wrocław, Poland
| |
Collapse
|
18
|
O’Halloran JA, Ko ER, Anstrom KJ, Kedar E, McCarthy MW, Panettieri RA, Maillo M, Nunez PS, Lachiewicz AM, Gonzalez C, Smith PB, de Tai SMT, Khan A, Lora AJM, Salathe M, Capo G, Gonzalez DR, Patterson TF, Palma C, Ariza H, Lima MP, Blamoun J, Nannini EC, Sprinz E, Mykietiuk A, Alicic R, Rauseo AM, Wolfe CR, Witting B, Wang JP, Parra-Rodriguez L, Der T, Willsey K, Wen J, Silverstein A, O’Brien SM, Al-Khalidi HR, Maldonado MA, Melsheimer R, Ferguson WG, McNulty SE, Zakroysky P, Halabi S, Benjamin DK, Butler S, Atkinson JC, Adam SJ, Chang S, LaVange L, Proschan M, Bozzette SA, Powderly WG. Abatacept, Cenicriviroc, or Infliximab for Treatment of Adults Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA 2023; 330:328-339. [PMID: 37428480 PMCID: PMC10334296 DOI: 10.1001/jama.2023.11043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Importance Immune dysregulation contributes to poorer outcomes in COVID-19. Objective To investigate whether abatacept, cenicriviroc, or infliximab provides benefit when added to standard care for COVID-19 pneumonia. Design, Setting, and Participants Randomized, double-masked, placebo-controlled clinical trial using a master protocol to investigate immunomodulators added to standard care for treatment of participants hospitalized with COVID-19 pneumonia. The results of 3 substudies are reported from 95 hospitals at 85 clinical research sites in the US and Latin America. Hospitalized patients 18 years or older with confirmed SARS-CoV-2 infection within 14 days and evidence of pulmonary involvement underwent randomization between October 2020 and December 2021. Interventions Single infusion of abatacept (10 mg/kg; maximum dose, 1000 mg) or infliximab (5 mg/kg) or a 28-day oral course of cenicriviroc (300-mg loading dose followed by 150 mg twice per day). Main Outcomes and Measures The primary outcome was time to recovery by day 28 evaluated using an 8-point ordinal scale (higher scores indicate better health). Recovery was defined as the first day the participant scored at least 6 on the ordinal scale. Results Of the 1971 participants randomized across the 3 substudies, the mean (SD) age was 54.8 (14.6) years and 1218 (61.8%) were men. The primary end point of time to recovery from COVID-19 pneumonia was not significantly different for abatacept (recovery rate ratio [RRR], 1.12 [95% CI, 0.98-1.28]; P = .09), cenicriviroc (RRR, 1.01 [95% CI, 0.86-1.18]; P = .94), or infliximab (RRR, 1.12 [95% CI, 0.99-1.28]; P = .08) compared with placebo. All-cause 28-day mortality was 11.0% for abatacept vs 15.1% for placebo (odds ratio [OR], 0.62 [95% CI, 0.41-0.94]), 13.8% for cenicriviroc vs 11.9% for placebo (OR, 1.18 [95% CI 0.72-1.94]), and 10.1% for infliximab vs 14.5% for placebo (OR, 0.59 [95% CI, 0.39-0.90]). Safety outcomes were comparable between active treatment and placebo, including secondary infections, in all 3 substudies. Conclusions and Relevance Time to recovery from COVID-19 pneumonia among hospitalized participants was not significantly different for abatacept, cenicriviroc, or infliximab vs placebo. Trial Registration ClinicalTrials.gov Identifier: NCT04593940.
Collapse
Affiliation(s)
| | - Emily R. Ko
- Duke University Health System, Durham, North Carolina
| | | | | | | | | | | | | | | | - Cynthia Gonzalez
- National Center for Advancing Translational Sciences, Bethesda, Maryland
| | - P. Brian Smith
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Akram Khan
- Oregon Health and Science University, Portland
| | | | | | | | | | | | - Christopher Palma
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | | - Eduardo Sprinz
- Hospital de Clinicas de Porto Alegre HCPA, Porto Alegre, Brazil
| | | | - Radica Alicic
- Providence Medical Research Center, Spokane, Washington
| | | | | | | | | | | | - Tatyana Der
- Duke University Health System, Durham, North Carolina
| | | | - Jun Wen
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Adam Silverstein
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Sean M. O’Brien
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Hussein R. Al-Khalidi
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | | | - Steven E. McNulty
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Pearl Zakroysky
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Halabi
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Daniel K. Benjamin
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Sandra Butler
- Technical Resources International (TRI), Bethesda, Maryland
| | - Jane C. Atkinson
- National Center for Advancing Translational Sciences, Bethesda, Maryland
| | - Stacey J. Adam
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Soju Chang
- National Center for Advancing Translational Sciences, Bethesda, Maryland
| | | | - Michael Proschan
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Samuel A. Bozzette
- National Center for Advancing Translational Sciences, Bethesda, Maryland
| | | |
Collapse
|
19
|
Tian Q, Guo Y, Feng S, Liu C, He P, Wang J, Han W, Yang C, Zhang Z, Li M. Inhibition of CCR2 attenuates neuroinflammation and neuronal apoptosis after subarachnoid hemorrhage through the PI3K/Akt pathway. J Neuroinflammation 2022; 19:312. [PMID: 36566220 PMCID: PMC9789920 DOI: 10.1186/s12974-022-02676-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/17/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neuroinflammation and neuronal apoptosis are closely associated with a poor prognosis in patients with subarachnoid hemorrhage (SAH). We investigated the role of C-C motif chemokine receptor 2 (CCR2) in SAH. METHODS Pre-processed RNA-seq transcriptome datasets GSE167110 and GSE79416 from the Gene Expression Omnibus (GEO) database were screened for genes differentially expressed between mice with SAH and control mice, using bioinformatics analysis. The endovascular perforation model was performed to establish SAH. RS504393 (a CCR2 antagonist) and LY294002 (PI3K inhibitor) were administered to explore the mechanism of neuroinflammation after SAH. SAH grading, neurological scoring, brain water content and blood-brain barrier (BBB) permeability determination, enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence were performed. An in vitro model of SAH was induced in H22 cells by hemin treatment. The protective mechanism of CCR2 inhibition was studied by adding RS504393 and LY294002. Clinical cerebrospinal fluid (CST) samples were detected by ELISA. RESULTS Expression of CCR2 was upregulated in both datasets and was identified as a hub gene. CCR2 expression was significantly upregulated in the cytoplasm of neurons after SAH, both in vitro and in vivo. RS significantly reduced the brain water content and blood-brain barrier permeability, alleviated neuroinflammation, and reduced neuronal apoptosis after SAH. Additionally, the protective effects of CCR2 inhibition were abolished by LY treatment. Finally, the levels of CCR2, inflammatory factors, and apoptotic factors were elevated in the CSF of patients with SAH. CCR2 levels were associated with patient outcomes at the 6-month follow-up. CONCLUSION CCR2 expression was upregulated in both in vitro and in vivo SAH models. Additionally, inhibition of CCR2, at least partly through the PI3K/AKT pathway, alleviated neuroinflammation and neuronal apoptosis in vivo and in vitro. CCR2 levels in the CSF have a moderate diagnostic value for 6-month outcome prediction in patients with SAH.
Collapse
Affiliation(s)
- Qi Tian
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Yujia Guo
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Shi Feng
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Chengli Liu
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Peibang He
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Jianfeng Wang
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Wenrui Han
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Chen Yang
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Zhan Zhang
- grid.412632.00000 0004 1758 2270Department of Rehabilitation, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| | - Mingchang Li
- grid.412632.00000 0004 1758 2270Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, 430060 Hubei China
| |
Collapse
|
20
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
21
|
Naming the Barriers between Anti-CCR5 Therapy, Breast Cancer and Its Microenvironment. Int J Mol Sci 2022; 23:ijms232214159. [PMID: 36430633 PMCID: PMC9694078 DOI: 10.3390/ijms232214159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer represents the most common malignancy among women in the world. Although immuno-, chemo- and radiation therapy are widely recognized as the therapeutic trifecta, new strategies in the fight against breast cancer are continually explored. The local microenvironment around the tumor plays a great role in cancer progression and invasion, representing a promising therapeutic target. CCL5 is a potent chemokine with a physiological role of immune cell attraction and has gained particular attention in R&D for breast cancer treatment. Its receptor, CCR5, is a well-known co-factor for HIV entry through the cell membrane. Interestingly, biology research is unusually unified in describing CCL5 as a pro-oncogenic factor, especially in breast cancer. In silico, in vitro and in vivo studies blocking the CCL5/CCR5 axis show cancer cells become less invasive and less malignant, and the extracellular matrices produced are less oncogenic. At present, CCR5 blocking is a mainstay of HIV treatment, but despite its promising role in cancer treatment, CCR5 blocking in breast cancer remains unperformed. This review presents the role of the CCL5/CCR5 axis and its effector mechanisms, and names the most prominent hurdles for the clinical adoption of anti-CCR5 drugs in cancer.
Collapse
|
22
|
Kanapeckaitė A, Mažeikienė A, Geris L, Burokienė N, Cottrell GS, Widera D. Computational pharmacology: New avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem 2022; 290:106891. [PMID: 36137310 PMCID: PMC9464258 DOI: 10.1016/j.bpc.2022.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- AK Consulting, Laisvės g. 7, LT 12007 Vilnius, Lithuania,Corresponding author
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 11 (B34), Liège 4000, Belgium,Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C (2419), Leuven 3001, Belgium,Skeletel Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Herestraat 49 (813), Leuven 3000, Belgium
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Graeme S. Cottrell
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| | - Darius Widera
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| |
Collapse
|